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Abstract—This paper presents a fault detection and isolation 

(FDI) model for an industrial Linear Friction Welding (LFW) 

production machine in Rolls-Royce. The LFW machine is a 

complex 11 actuator machine which has 6 degrees of freedom. 

The inplane axis is the most complex axis due to the high 

power and high dynamic response requirements, necessitating 

the use of two four-stage servo valves. We adapted a previously 

proposed model with fault diagnosis techniques to enable fault 

detection and isolation for the LFW inplane welding axis. This 

paper will demonstrate the models ability to detect and isolate 

faults during production, allowing immediate detection - 

enabling operators or maintenance to utilize the information to 

effectively get the LFW machine back into production. 

Keywords-modelling; fault detection; fault isolation. 

 

I. LFW INTRODUCTION 

Linear Friction Welding (LFW) [1] has been a key 

technology in recent years for aircraft engine manufacture in 

both commercial and military market sectors. For joining 

Blades to Discs (Blisks) [1], LFW is the ideal process for 

the following reasons: 

 LFW is a solid state process which gives 

reproducibility, and high quality bonds therefore 

improving performance 

 More cost effective than machining Blisks from 

solid billets  

 Blisks enable up to 30% weight saving over 

conventional rotors 

 LFW enables hollow bladed Blisks 

 Dissimilar materials can be joined for optimised 

blade and disc properties 

 

The process can be divided into six phases: contact - 

initial advancement of actuators seating the blade onto the 

disc stub and applying a seating force, ramp up - blade 

oscillations start to occur, conditioning – maintaining the 

oscillations to enable frictional heat to build up, burn-off – 
material deforming plastically under compression, ramp 

down – blade decelerated to a static position, and forging – 

allowing the weld to complete under a constant pressure.  

 

Fig. 1 outlines the process phases: 

 

 

Figure 1 - LFW Process phases 

 

Rolls-Royce’s LF60 is a linear friction welding system 

that is designed to weld Blisks in a production environment. 

The system uses a combination of high performance, high 

accuracy servo-hydraulics to produce oscillatory motion 
between the components which creates frictional heating, 

and a forging force sufficient to produce a high strength and 

geometrically precise bond. 

Faults occurring on the LF60 can lead to system 

downtime and the scrapping of components [2], both of 

which could lead to a monetary loss for the business. In 

order to reduce the likelihood of these issues a novel method 

of redundancy has been placed on the machine, with no 

additional sensors or hardware needing to be installed. 

Analytical redundancy in detecting faults has then been 

applied to the system. 

 
Section 2 introduces the LFW machine and gives an 

overview of the modelled system. Section 3 reviews residual 

generation methods applicable to this work and section 4 

outlines the chosen residual generation and evaluation 

methods for the FDI system. Section 5 evaluates the FDI 

model using two actual production fault cases. Section 6 

concludes this paper. 
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II. FAULT DETECTION INTRODUCTION 

Over the years different computer based diagnosis 
techniques have been tried and tested in a number of 

different domains. For the simpler and well understood 

systems, techniques such as decision trees, fault directories, 

and probability theory have been successfully applied [3, 4]. 

When applying these techniques with more complex 

systems, the accuracy of results reduces resulting in 

incomplete and inconsistent diagnosis. This is due to the 

fact that a high number of interactions could exist, therefore 

more complex techniques have been developed and used. 

More complex techniques such as artificial intelligence have 

been used in the fault diagnosis area, but limitations such as 

incompleteness and inconsistencies in knowledge, 
knowledge extraction, and the dependency of the extracted 

knowledge exists [5]. To reduce these limitations fault 

diagnosis by the use of model-based techniques was 

approached, this involves capturing knowledge about the 

structure and behavior of the system, and the key system 

interactions. Simulating the knowledge alongside the system 

can then be used to predict the system behaviour, and 

identify when a fault could occur or diagnose it. This is 

done by the model generating the systems nominal 

behaviour, and any deviations identified. 

 
Model-based fault detection and diagnosis/isolation 

(FDI) techniques have been researched widely in the 

literature, examples being [6-10]. This involves creating a 

residual signal by comparing the systems actual output 

signal and the estimated one from a nominal system model, 

once created this residual signal can be used as the indicator 

of abnormal system behavior. An example of residual 

indication can be seen in Fig. 2. As the error occurs in Fig. 2 

the residual in a) appears out of its threshold, in b) there is a 

frequency change but the majority of the residual stays 

within the threshold. There is a threshold present due to 

system modeling uncertainties and noise. Fig. 2 identifies 
that faults can be detected but not simply by residuals 

appearing out of tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - (a) Detection of a sensor offset fault, (b) 

Detection of a sensor gain fault. [9] 

 

 

FDI focuses on the use of fundamental knowledge to 

achieve efficient and effective diagnosis. Models of the 

correctly functioning system which can generate the 

expected system behavior are used to express the 
fundamental knowledge. Comparing the systems behavior 

with the models behavior can give the ability to derive 

possible faults, but the fault detection accuracy depends 

greatly on the existence of a good system model [11].  

Other FDI techniques exist such as knowledge based 

methods [12] which don’t involve an analytical model but 

are data-driven and knowledge based techniques able to 

estimate the system dynamics. Signal processing techniques 

in the time-frequency domain can also be applied to detect 

faults. Some examples of these are spectrogram and 

scalogram [13], and wavelet decomposition [14]. 

 
A fault can be defined as a departure from an acceptable 

range of an observed variable or a calculated parameter 

associated with a process [15]. The underlying cause of this 

abnormality is called the root cause. With increased systems 

complexity it is becoming difficult for human operators to 

continuously diagnose systems, manage system degradation, 

parameter drift, and component failures. This difficulty is 

compounded by production pressures, the amount of system 

variables, and incomplete or unreliable data. FDI deals with 

timely detection, and diagnosis of abnormal system 

behaviour. Once detected the human operator is able to take 
action accordingly. 

 

A model of the LF60 Inplane actuation system has been 

developed in [16], fault detection methods have been placed 

onto the model to enable detection and isolation for faults 

which have previously occurred on the system. 

 

III. THE LF60 LINEAR FRICTION WELDING MACHINE 

Each machine axis on the LF60 is independently 

controlled using a combination of PID and Amplitude and 

Phase control (APC). The six main degrees of freedom are 

referred to as inplane, forge, hade, roll, pitch and yaw. The 
inplane actuator, which is driven by two four stage valves, 

oscillates the blade tangentially to the disk. Forging pressure 

is obtained by a combination of four PID controlled 

hydrostatic actuators. The six hade actuators restrain the 

unwanted movement in the other degrees of freedom [17]. 

 

A CAD picture of the LF60 inner cage showing the actuator 

attachments can be seen in Fig. 3. 
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Figure 3 - Picture of the inner cage with actuators attached 

 

The inplane actuation system provides the oscillating 

motion. This is the most complex system on the machine 

and therefore the one where the majority of faults occur [2]. 

It is driven by two 4 stage servo valves. Each one has a pilot 

two stagevalve rated at 6.31x10-5m3/s; this drives the 3rd 

stage 2.52x10-3 m3/s spool which in turn drives the 4th stage 

2.52x10-2 m3/s spool.  

 

Fig. 4 shows a front view of the inplane servo valves. 
 

 

 

Figure 4 - LF60 4 stage inplane Valves arrangement: front 

view 

 

The 4 stage servo valve works by the initial first stage 

torque motor controlling flow via a nozzle-flapper 
arrangement. The 2nd stage has a mechanically feedback 

spool linked to the first stage by the feedback spring. The 3rd 

stage spool, with electronic position feedback, acts as a flow 

amplifier to the 4th stage, which also has electronic closed-

loop control of the spool position. The modelled system in 

[16] models important factors as outlined in [18] which 

include fluid compressibility, variable cylinder oil volumes, 

internal cylinder leakage, cylinder cross-port bleed, valve 

orifice pressure-flow characteristic, valve overlap, valve 

body pressure drop, manifold pressure drop and oil volume, 

valve spool dynamics, maximum valve opening, valve spool 

slew rate limit, friction, and geometric properties. 

IV. RESIDUAL GENERATION 

A number of fault detection approaches exist in the 

literature. A classification of these different approaches can 
be seen in Fig. 5.  
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Figure 5 - Classification of the diagnostic system [19] 

 

Quantitative based diagnosis methods involve creating 

analytical redundancy with the use of physical models to 

generate residuals that can be used for isolating process 

failures. These can be detailed or simplified physical 

models.  

Qualitative based diagnosis methods can be rule based, or 

qualitative physics based. Rules based systems involve 
systems derived from expert knowledge, first principles, or 

limits checks.  

Process history based diagnosis methods are used when a 

priori knowledge of the process is not known therefore 

input-output (black box) relationships are developed using 

statistical, neural network, or similar pattern recognition 

techniques. Grey box methods use process data to determine 

model parameters by using mathematical terms.  

Given the availability of a system model (developed and 

validated in [16]) the diagnosis system used will be 

qualitative based, detailed physical modeling. A number of 
model-based fault diagnosis methods can be found in the 

literature [7, 8, 19]. The main two are parity equation 

methods and observer based approaches which are discussed 

in the following subsections. 

 

A. Parity Equation Methods 

 

The Parity Equation Method involves providing a proper 

check of the parity (consistency) of the measurements for 

the monitored system first proposed by [20]. Mathematical 

models describing the relationships between system 

variables are used to describe the input-output or space-state 

characteristics of the system, the rearrangement of these 

gives the parity equations [19]. Output of the parity equation 

in theory should be zero mean, but in reality due to model 

inaccuracies, measurement and process noise the output will 

be nonzero. Parity methods are similar to observer methods 
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but usually designed more intuitively. Fig. 6 shows two 

methods for parity generation, an output error method and 

the equation error method. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6 - Parity equations for fault detection: Equation 

error method (upper), Output error method (lower) [21] 

B. Observer approaches 

 

Reconstructing the outputs of a system from 

measurements using the estimation error with observers or 

Kalman filters is another commonly used approach for fault 

diagnosis [22]. With the observer approach the estimation 

error can be considered as the residual, in order to detect 

and isolate faults. For stochastic systems, the Kalman 

filtering technique can be used, which enables noise to be 

factored into the approach [23]. State estimation is improved 
with the use of Kalman filters due to the processing of all 

available measurements regardless of precision to estimate 

the current variable of interest. 

For example, take the system state and measurement 

equations (1) and (2) respectively: 

 

 ̇                                        (1) 

 

                                     (2) 

 

  is the system input, the process noise is represented by  , 

and the measurement white noise is represented by   with 

  (   )   , and   (   )   . The state and estimation 

noise is uncorrelated i.e.   (   )   . The Kalman filter 

equation can provide the optimal estimate of   termed  ̂: 

 

 ̂    ̂      (    ̂    )                 (3) 

 

 ̂    ̂                                       (4) 

The weightings for   and   are chosen by trading off fault 

sensitivity to the likelihood of false alarms using 

engineering experience. Fig. 7 shows the Kalman estimator, 

which uses the known inputs   and the measurement   to 

generate the output and state estimates  ̂      ̂ . Riccati 

equations are solved to find the Kalman filter gain  . 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7–Kalman filter example 

 

 

C. Residual Generation Summary 

 

Each of the discussed approaches involves the creation 

of a residual (or series of residuals) which need to be 

analyzed further to provide indication and isolation of faults. 

Residual evaluation can be done using a constant threshold 

or an adaptive threshold, constant threshold residual 

evaluation has a number of disadvantages. Due to the 

inclusion of noise, or uncertainties in models false alarms 

can be triggered. Therefore, adaptive thresholds which take 

into account any modeled inaccuracies or noise can enable 
better fault detection, and the reduction of false alarms. 

Given the availability of a validated model, the preferred 

method of residual generation is the parity method, utilizing 

the model to compare outputs of the actual system to form 

residual signals. 

V. RESIDUAL EVALUATION 

The fault diagnostic method used in this paper will be of 

the qualitative based type with detailed physical modelling 

of the system used to check the consistency of the actual 

system. The inplane system model developed in [16] will 

act as an intuitively designed observer providing analytical 
redundancy. Residual generation will be done by comparing 

the measured values of the system outputs   , with the 

corresponding analytically computed values  ̌ : 

 

       ̌                                     (5) 

 

Fig. 8 outlines a flow diagram of the fault diagnosis system, 

indicating residual generation, evaluation in order to detect 

and isolate faults. 
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Figure 8–Fault diagnosis flow diagram 

 

Once a residual has been generated, the residual would 

need to be evaluated to see if a fault is present or not. 

Various forms of residual evaluation exist in the literature, 

some of which include residual threshold setting based on 

the minimal detectable failure [24], posterior probabilities to 

process information in order to detect faulty circuits [25], 

the use of fuzzy logic enabling the incorporation of human 

operator knowledge to interoperate the residuals [26], and 
probabilistic methods based on likelihood ratios [27]. The 

residual limits in this research will be created by using 

previous fault free data executed through the model and 

used to capture the maximum residual limits for fault free 

conditions, therefore creating adaptive residual limits 

defined from previous fault free data, similar as in [28]. Due 

to the different components welded on the LF60 the residual 

limits will be component specific, therefore a number of 

knowledge based data files will be stored which hold 

residual limits for each residual and component. In the 

presence of a fault the residual signal will appear high i.e. 

     at that time signal. 

 

The use of adaptive residual limits defined from 

previous fault free data will allow for any compared signals 

(model vs. new data) which deviate more than normal, 

outside of the modeling noise, disturbances, and 

inaccuracies to be picked up and therefore flagged by the 

model alerting to a fault, or a change in system 

performance. On the detection of a residual breach the 

system will decide on the type of fault, its cause, location, 

and possible solutions given a knowledge base of logical 
rules defined from previous fault occurrences. A flow 

diagram of the logical rules can be seen in Fig. 9. The 

logical rules would be triggered post residual evaluation of 

Fig. 8. 

 

 

Figure 9– Flow diagram of the Knowledge Base – Logic 

decision process 

 

The following section implements the fault detection 

scheme and tests it against a number of fault cases. 

VI. FAULT DETECTION AND ISOLATION CASE STUDIES 

This section evaluates the FDI with two actual 

production fault cases. 

 

A. Fault case 1: Start-up instability 

 

The start-up instability shown in Fig. 10 was caused by a 

faulty relief valve [29], the machine alerted to this issue 

therefore production was immediately halted (due to Rolls-
Royce confidentiality the current machine detection 

methods cannot be shown).  The benefits of a fault detection 

model would not only be the ability to detect the fault, but 

also the isolation of the issue by the model informing the 

operators of its cause and possible solution.  
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Figure 10 - Start-up instability 

 

Simulating a non-faulty component of the same type 

through the FDI model yields the outputs shown in Fig. 11. 

The upper figure compares the actual (fault free) output with 

the models output, the 2nd figure shows the residual signal 
and adaptive limits. The 3rd figure indicates any trips of the 

adaptive residual limit by the residual, and the lower figure 

indicates detection of a fault on the signal. The fault 

detection signal only trips if the limit trip signal is triggered 

and remains triggered for a predefined persistence of 3ms, 

which is done to further reduce false fault detections. 

 

 
Figure 11 – Start-up Instability, Fault detection with the 

residual generation method (fault free) 

 

Fig. 12 shows the FDI model simulated with the start-up 

instability fault. The limit trip signal is tripped immediately 

and a number of times throughout the simulation – therefore 

the fault detection signal trips also and stays high from the 

start of the simulation. This simulation shows an effective 

capture of the fault using the FDI model. Using the logic 
previously defined in Fig. 9, the model outputs an indication 

to the user to “Check HSM” after detecting the presence of 

the fault occurrence on the relevant signals.  

 

 

 
Figure 12 – Start-up instability, Fault detection with the 

residual generation method (fault) 

 

B. Fault case 2: Force holding Instability 

 

The Inplane force holding instability of Fig. 13 was only 

captured during manual review of the data post Blisk 

completion. Therefore the immediate detection of this type 

of fault would be of great benefit to potentially saving the 

scrapping of the Blisk and rectify the issue immediately. On 

simulation of the fault through the FDI model, the model 

and residual limits are sensitive enough to capture the 

instability and therefore indicate the presence of a fault, as 

shown in Fig. 14. 

 

Example of the instability:  
 

 

 
 

 

Figure 13 – Force hold Instability 
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FDI model output simulated with the fault in Fig. 14: 

 
Figure 14 – Force hold instability, Fault detection with the 

residual generation method (fault) 

 

FDI model simulated with fault free data: 

 
Figure 15 – Force hold Instability, Fault detection with the 

residual generation method (fault free) 

 

Therefore this fault can be successfully detected and the 

operator/maintenance engineers notified immediately. A 

notification of “Valve instabilities” would be displayed post 

fault occurrence.  

 

Therefore the model demonstrates effective capture of 

this fault at the first instance of its occurrence, enabling 
quick detection and isolation of the fault – reducing the 

potential for scrapping a component. 

 

VII. CONCLUSION 

A fault detection system has been implemented on a 

model previously developed in [16]. Case studies of actual 

production faults have been examined with the FDI model 

proving the model’s ability in detecting abnormal system 

behaviour and using a series of logic steps to isolate the 

fault, its cause, and possible solutions.  

 

The FDI system will be placed alongside the LFW 
system in order to detect faults upon the occurrence thus 

providing timely detection and identification, saving the 

business valuable time and money. Implementing the FDI 

system will involve careful understanding and integration 

with the LFW system and its users. This will be 

accomplished by utilizing the latest soft systems research 

knowledge.  
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