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Abstract—The paper presents new points of view to the
problems concerning the robust stability of a class of large-scale
systems with subsystems interactions. The asymptotic stability
conditions are formulated in terms of LMI while the impact of
interconnection uncertainties is minimized using H∞ approach.
As results, a sufficient condition for the existence of solutions
to this constrained stabilization problem is provided and a
non-iterative algorithm for the control design solution is given.
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I. INTRODUCTION

The control of large-scale linear systems has been studied
by many researchers. If the linear model of a large dynamic
system is partitioned into interconnected subsystems, the
interactions of the subsystem play significant role in global
system stability and, if interactions contain uncertainties,
expected performances cannot be attained if the control is
designed only for the nominal models. The success of these
methods can be improved if the system state are grouped
so that subsystem interaction is minimized and the decen-
tralized controllers are optimized with respect to interaction
uncertainties. The first results for the existence of robust
decentralized controllers mostly involve the conditions under
which the interconnection matrix in the considered system
satisfies the prescribed matching condition [14].

Recently, a number of efforts have been made to extend
the application of robust control techniques using convex
optimization, involving linear matrix inequalities (LMI). It is
well known that LMI-based approaches [3] are powerful for
a centralized control design, but, in the decentralized case,
the control design task may not be reducible to a feasibility
problem because of control law structural constraints.

To meet modern system requirements, controllers have to
quarantine robustness over a wide range of system operating
conditions and this further highlights the fact that robustness
to interconnections and interaction uncertainties is one of
the major issues. Applying for power systems control, the
most important terms are robustness and a decentralized

control structure [10]. The robustness issue arises to deal
with uncertainties which mainly come from the varying
network topology and the dynamic variation of the load. On
the other hand, since a real-time information transfer among
subsystems is unfeasible, decentralized controllers must be
used. To achieve less-conservative control gains design con-
ditions, norm-bounded unknown uncertainties in subsystem
interactions, or nonlinear bounds of interconnections, are
included in terms of design [6].

This paper is sequenced in eight sections and one ap-
pendix. Following the introduction in Section I, the second
section places the results obtained within the context of
existing requests. Section III briefly describes the problems
concerning with control of the large-scale dynamical sys-
tems with subsystem interactions. The preliminaries, mainly
focused on the H∞ design approach and the bounded real
lemma, are presented in Section III. Section IV provides the
quadratic stability analysis of the controlled system by use of
LMIs, and states the newly proposed conditions for the state
controller design. Section V illustrates the controller design
task by the numerical solution and the system stability
analysis and Section VI draws some concluding remarks.
Appendix is devoted to a model of the multi-area power
systems, used in the illustrative example.

II. THE STATE OF THE ART

During the past two decades, there has been significant but
scattered activity in control of the systems with interactions.
A necessary and sufficient condition for solvability, for the
case of fixed interconnections, has been found, e.g., in [4],
[5], [15], where a homotopic method was used to reduce the
control design to a feasibility problem of a bilinear matrix
inequality (BMI). Moreover, if the LMI method is adopted
by using a single Lyapunov function [1], [13], it leads to
very conservative results.

The paper reflects the problems concerning with the
system robust stability for one class of disturbed large-scale
systems, in the presence of interconnection uncertainties
among subsystems. The used approach is concentrated on
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performance improvement of control systems and is a con-
tinuation of the earlier work started in [9], [12], especially
motivated by the techniques presented in [2]. Comparing
with the above mentioned articles, the merit of the results
proposed in this paper relies on the conservatism reducing,
the disturbance transfer function norm minimization, the
system dynamics improvement and the decentralized control
design simplification. This represents issues which lead to
a newly formulated set of LMIs, giving the sufficient con-
ditions for design of the decentralized controllers. Results
are illustrated using the load frequency control model of the
multi-area power systems.

III. PROBLEM FORMULATION

To formulate the control design task, it is assumed that
the subsystems are given adequately to (A.10), (A.11), i.e.
for i = 1, 2, ..., p it is

q̇i(t)=Aiqi(t)+biui(t)+

p∑
l=1

Gilql(t)+f idi(t) (1)

yi(t) = cTi qi(t) (2)

where qi(t) ∈ IRni is the vector of the state variables of the
i-th subsystem, ui(t), yi(t) ∈ IR are input and output vari-
ables of the i-th subsystem, respectively, Ai,Gil ∈ IRni×ni

are real matrices, bi, ci,f i ∈ IRni are real column vectors.
It is supposed that all states variables of a subsystem

are observed or measured, pairs (Ai, bi) for all i are
controllable, and the i-th subsystem is controlled by the local
control law

ui(t) = kT
i qi(t) (3)

where ki ∈ IRni is a constant vector.
Writing, in general, the subsystem interconnections as

Gihi(q(t)) =

p∑
l=1

Gilql(t) (4)

where hi(q(t)) ∈ IRni is a vector function, it is supposed
that

hT
i (q(t))hi(q(t)) ≤ ε−1

i qT(t)wT
iwiq(t) (5)

where ε−1
i > 0, εi ∈ IR is a scalar parameter, related

to interconnection uncertainties in the system, and wi are
constant vectors of appropriate dimensions, as well as that

qT(t) =
[
qT
1(t) qT

2(t) · · · qT
p (t)

]
(6)

Using the above defined overall system state variable vector
q(t), (5) can be written as

p∑
l=1

hT
l (q(t))hl(q(t)) = hT(q(t))h(q(t)) ≤

≤ qT (t)

[
p∑

l=1

ε−1
l wT

lwl

]
q(t)

(7)

The global system model with the subsystem interactions
takes the form

q̇(t) = Aq(t) +Bu(t) +Gh(q(t)) + Fd(t) (8)

y(t) = Cq(t) (9)

where

uT(t) =
[
u1(t) u2(t) · · · up(t)

]
(10)

yT(t) =
[
y1(t) y2(t) · · · yp(t)

]
(11)

dT(t) =
[
d1(t) d2(t) · · · dp(t)

]
(12)

A = diag
[
A1 · · · Ap

]
, B = diag

[
b1 · · · bp

]
(13)

C = diag
[
cT1 · · · cTp

]
, F = diag

[
f1 · · · fp

]
(14)

G = diag
[
G1 · · · Gp

]
(15)

where
∑p

i=1 ni = n, q(t) ∈ IRn, u(t),y(t) ∈ IR r, A,G ∈
IRn×n, B,F ∈ IRn×r and C ∈ IR r×n.

The goal is the designing the parameters of the control
law

u(t) = Kq(t) = diag
[
kT
1 kT

2 · · · kT
p

]
q(t) (16)

K ∈ IRr×n, which rises up the stable large-scale system.

IV. PRELIMINARY RESULTS

Definition 1: Let the state-space model of the linear
MIMO system is described by the vector differential equa-
tion

q̇(t) = Aq(t) +Bu(t) (17)

and by the output relation

y(t) = Cq(t) +Du(t) (18)

where q(t) ∈ IRn, u(t) ∈ IR r, and y(t) ∈ IRm are vectors
of the state, input and output variables, respectively, and
A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and D ∈ IRm×r

are real matrices.
The transfer function matrix G(s) of the system (17), with

the output relation (18), is given as

G(s) = C(sI −A)−1B +D (19)

Note, this definition is used only in the Section IV.
Proposition 1: If M , N are matrices of appropriate

dimension, and X is a symmetric positive definite matrix,
then

MTN +NTM ≤ NTXN +MTX−1M (20)

Proof: [11] Since X = XT > 0, then(
X− 1

2M −X
1
2N

)T(
X− 1

2M −X
1
2N

)
≥ 0 (21)

MTX−1M +NTXN −MTN −NTM ≥ 0 (22)

It is evident that (22) implies (20).
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Proposition 2: (Quadratic performance) If a stable sys-
tem is described by the stable transfer function matrix of
the form (19) of the dimension m × r, there exists such
γ > 0, γ ∈ IR that∫ ∞

0

(yT(v)y(v)− γuT(v)u(v))dv > 0 (23)

where y(t) ∈ IRm is the vector of the system output
variables, u(t) ∈ IRr is the vector of the system input
variables and γ is square of the H∞ norm of the transfer
function matrix of the system.

Proof: [8] It is evident from (19) that

ỹ(s) = G(s)ũ(s) (24)

where ỹ(s), ũ(s) stands for the Laplace transform of m
dimensional output vector and r dimensional input vector,
respectively. Then (24) implies

∥ỹ(s)∥ ≤ ∥G(s)∥∥ũ(s)∥ (25)

where ∥G(s)∥ is the H2 norm of the system transfer function
matrix G(s). Since H∞ norm property states

1√
m
∥G(s)∥∞ ≤ ∥G(s)∥ ≤

√
r∥G(s)∥∞ (26)

where ∥G(s)∥∞ is the H∞ norm of the system transfer
function matrix G(s), using notation ∥G(s)∥∞ =

√
γ, the

inequality (26) can be rewritten as

0 <
1√
m

≤ ∥ỹ(s)∥
√
γ∥ũ(s)∥

≤ ∥G(s)∥
√
γ

≤
√
r (27)

Thus, based on Parceval’s theorem, (27) gives for m ≥ 1

1 <
∥ỹ(s)∥

√
γ∥ũ(s)∥

=

( ∞∫
0

yT (v)y(v)dv
) 1

2

√
γ
( ∞∫

0

uT (v)u(v)dv
) 1

2

(28)

and subsequently∫ ∞

0

yT (v)y(v)dv − γ

∫ ∞

0

uT (v)u(v)dv > 0 (29)

It is evident that (29) implies (23).
Proposition 3: (Bounded real lemma) System described

by (17), (18) is asymptotically stable with the quadratic
performance ∥C(sI−A)−1B+D∥∞ ≤ √

γ, if there exist a
symmetric positive definite matrix P ∈ IRn×n and a positive
scalar γ ∈ IR such that

P = P T > 0, γ > 0 (30) ATP + PA PB CT

∗ −γ2Ir DT

∗ ∗ −Im

 < 0 (31)

where Ir ∈ IR r×r, Im ∈ IRm×m are identity matrices,
respectively.

Here, and hereafter, ∗ denotes the symmetric item in a
symmetric matrix.

Proof: (see. e.g. [3], [11]) Defining the Lyapunov function

v(q(t)) = qT(t)Pq(t)+

+
t∫
0

(yT (v)y(v)− γrT (v)u(v))dv > 0
(32)

where P = P T > 0, P ∈ IRn×n, γ > 0, γ ∈ IR, and
evaluating the derivative of v(q(t)) with respect to t along
the system trajectories, it yields

v̇(q(t)) = q̇T (t)Pq(t) + qT (t)P q̇(t)+

+yT (t)y(t)− γ2uT (t)u(t) < 0
(33)

Thus, substituting (3), (4) into (33) gives

v̇(q(t)) = (Aq(t) +Bu(t))TPq(t)+

+qT (t)P (Aq(t)+Bu(t))− γuT(t)u(t)+

+(Cq(t) +Du(t))T (Cq(t) +Du(t)) < 0

(34)

and with the notation

qT
c (t) =

[
qT (t) uT (t)

]
(35)

it is obtained

v̇(q(t)) = qT
c(t)Pc qc(t) < 0 (36)

where

Pc=

[
ATP + PA PB

∗ −γIr

]
+

[
CTC CTD

∗ DTD

]
<0 (37)

Since[
CTC CTD

∗ DTD

]
=

[
CT

DT

][
C D

]
≥ 0 (38)

applying Schur complement property to (38), (37) implies
(31).

V. STATE CONTROL DESIGN

Theorem 1: The autonomous system from (8) is asymp-
totically stable with bounded quadratic performance if there
exist symmetric positive definite matrices P i ∈ IRni×ni and
positive scalars γi, λi, εi ∈ IR such that

P i = P i > 0, γi > 0, λi > 0, εi > 0 (39)

Φ PB PF CT PG w1 · · · wp

∗ −Γu 0 0 0 0 · · · 0
∗ ∗ −Γd 0 0 0 · · · 0
∗ ∗ ∗ −Ir 0 0 · · · 0
∗ ∗ ∗ ∗ −Ir 0 · · · 0
∗ ∗ ∗ ∗ ∗ −ε1 0
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ −εp


< 0 (40)

for i = 1, 2, . . . , p, where

Φ = ATP + PA (41)
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The matrices

P = diag
[
P 1 P 2 · · ·P p

]
(42)

Γu = diag
[
γ1 · · · γp

]
, Γd = diag

[
λ1 · · · λp

]
(43)

are structured matrix variables, and all system matrix pa-
rameter structures are given in (13)-(15).
Proof: Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t)+

+
t∫
0

(
yT(v)y(v)−

p∑
h=1

(
γhu

T
h(v)uh(v)+λhd

T
h(v)dh(v)

))
dv

(44)
where v(q(t)) > 0, P = P T > 0 is given in (42), and
γh > 0, λh > 0, h = 1, 2, . . . p, are introduced in (43).
Evaluating the derivative of v(q(t)) with respect to t along
the autonomous system trajectories, it yields

v̇(q(t)) = q̇T(t)Pq(t) + qT (t)P q̇(t)+

+yT(t)y(t)−
[
uT(t) dT(t)

]
Γ

[
u(t)
d(t)

]
< 0

(45)

where with (43)

Γ = diag
[
Γu Γd

]
(46)

Thus, substituting (8), (9) into (45) gives

v̇(q(t)) = qT(t)CTCq(t)+

+
(
Aq(t)+Bu(t)+Gh(q(t))+Dd(t)

)T
Pq(t)+

+qT(t)P
(
Aq(t)+Bu(t)+Gh(q(t))+Dd(t)

)
−

−
[
uT(t) dT(t)

][Γu

Γd

][
u(t)
d(t)

]
< 0

(47)

Subsequently, using (20) with X = I , it can be written

hT(q(t))GTPq(t)+qT(t)PGh(q(t)) ≤
≤ qT(t)PGGTPq(t)+hT(q(t))h(q(t))

(48)

and using (5), (48) gives

hT(q(t))GTPq(t)+qT(t)PGh(q(t)) ≤

≤ qT(t)PGGTPq(t)+qT(t)
p∑

h=1

ε−1
h wT

hwhq(t)
(49)

Thus, with the notation

q•T
c (t) =

[
qT(t) uT(t) dT(t)

]
(50)

(47) can be rewritten as

v̇(q(t)) ≤ q•T
c (t)P •

c q
•
c(t) < 0 (51)

where

P •
c =

ATP + PA PB PF
∗ −Γu 0
∗ ∗ −Γd

+

+

CTC + PGGTP 0 0
∗ 0 0
∗ ∗ 0

+

+
p∑

h=1

wT
h ε

−1
h wh 0 0
∗ 0 0
∗ ∗ 0

 < 0

(52)

Since it yieldsCTC 0 0
∗ 0 0
∗ ∗ 0

 =

CT

0
0

[C 0 0
]
≥ 0 (53)

PGGTP 0 0
∗ 0 0
∗ ∗ 0

 =

PG
0
0

[GTP 0 0
]
≥ 0 (54)

whε
−1
h wT

h 0 0
∗ 0 0
∗ ∗ 0

=

wh

0
0

ε−1
h

[
wT

h 0 0
]
≥ 0 (55)

then, applying Schur complement property to (53)-(55), (52)
implies (40).

Theorem 2: The system (8), with output given by the
relation (9), is stabilized with bounded quadratic perfor-
mance via the controller (16) if there exist symmetric
positive definite matrices Xi ∈ IRni×ni and positive scalars
γi, λi, εi ∈ IR such that

Xi = Xi > 0, γi > 0, λi > 0, εi > 0 (56)

Φ̃ B F XCT G Xw1 · · · Xwp

∗ −Γu 0 0 0 0 · · · 0
∗ ∗ −Γd 0 0 0 · · · 0
∗ ∗ ∗ −Ir 0 0 · · · 0
∗ ∗ ∗ ∗ −Ir 0 · · · 0
∗ ∗ ∗ ∗ ∗ −ε1 0
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ −εp


<0 (57)

for all i = 1, 2, . . . , p, where

Φ̃ = XAT +AX − Y TBT −BY (58)

The matrices

X = diag
[
X1 X2 · · · Xp

]
(59)

Γu = diag
[
γ1 · · · γp

]
, Γd = diag

[
λ1 · · · λp

]
(60)

are structured matrix variables, and all system matrix pa-
rameter structures are given in (13)-(15).

If the above conditions hold, the set of control gain
matrices is given by

K = Y X−1 =
[
kT
1 kT

2 · · · kT
p

]
(61)
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Proof: Inserting the global closed-loop system matrix Ac =
= A−BK in (41) gives

Φ = ATP −KTBTP + PA− PBK (62)

Defining the congruence transform matrix

T = diag
[
P−1 Ir Ir Ir Ir 1 · · · 1

]
(63)

and pre-multiplying both side of the (40) by (63), the next
LMIs are obtained

Φ̃ B F P−1CT G P−1w1 · · · P−1wp

∗ −Γu 0 0 0 0 · · · 0
∗ ∗ −Γd 0 0 0 · · · 0
∗ ∗ ∗ −Ir 0 0 · · · 0
∗ ∗ ∗ ∗ −Ir 0 · · · 0
∗ ∗ ∗ ∗ ∗ −ε1 0
...

...
...

...
...

. . .
∗ ∗ ∗ ∗ ∗ ∗ −εp


<0

(64)
Φ̃ = P−1AT − P−1KTBT +AP−1 −BKP−1 (65)

respectively. Introducing the LMI variables

P−1 = X, KP−1 = Y (66)

then (66) implies (61), and (64), (65) implies (57), (58).

VI. ILLUSTRATIVE EXAMPLE

To demonstrate the algorithm properties, the next subsys-
tem parameters for i = 1, 2, 3 are used

Ai =


−12.50 0.00 −5.21 0.00

3.33 −3.33 0.00 0.00
0.00 6.00 −0.05 −6.00
0.00 0.00 1.10 0.00

 , bi =


12.5
0.0
0.0
0.0


cTi =

[
0 0 1 0

]
, fT

i =
[
0 0 −6 0

]
and

Gih =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −0.55 0

 , gx =


0
0
0

−0.55


G = diag

[
gx gx gx

]
wT

1 =
[
0 0 0 0 0 0 1 0 0 0 1 0

]
wT

2 =
[
0 0 1 0 0 0 0 0 0 0 1 0

]
wT

3 =
[
0 0 1 0 0 0 1 0 0 0 0 0

]
Thus, solving (56), (56) with respect to the LMI matrix vari-
ables X , Y i, γi, λi, εi, i = 1, 2, 3 using SeDuMi package
for Matlab, the feedback gain matrix design problem was
feasible with the results

Y T
i =

[
−12.9516 1.4183 0.1961 −3.4268

]

Xi =


14.7389 2.7960 −1.9062 3.6230

∗ 5.0205 −1.7327 3.4803
∗ ∗ 2.2244 −0.6127
∗ ∗ ∗ 3.6596


γi = 16.9863, λi = 15.5306, εi = 11.5833

giving the control law gain vectors

kT
i =

[
−0.4870 3.5065 1.4243 −3.5505

]
The decentralized closed-loop eigenvalues spectrum is

ρ(Ach) = {−0.2646 − 3.2126 − 3.1578± 11.9004i}

and rises up the stable global system.

VII. CONCLUDING REMARKS

A new characterization for interaction bounds is presented
and sufficient condition for stabilizing decentralized robust
control design are formulated in the sense of the bounded
real lemma. The optimization, involving structured matrix
variables in the linear matrix inequalities, take into account
the strong interactions among subsystems, as well as the in-
teraction uncertainties. An illustration example is presented
to show that such a procedure can simplify the decentralized
control design.

ACKNOWLEDGEMENT

The work presented in this paper was supported by
VEGA, the Grant Agency of the Ministry of Education and
the Academy of Science of Slovak Republic under Grant No.
1/0256/11. This support is very gratefully acknowledged.

REFERENCES

[1] L. Bakule, "Decentralized control. An overview", Annual
Reviews in Control, vol. 32, no. 1, pp. 87-98, 2008.

[2] G.K. Bekefadu and I. Erlich, "Robust decentralized controller
design for power systems using convex optimization involving
LMIs", in Prepr. 16th IFAC Word Congress, Prag, Czech
Republic, pp. 1743-1743, 2005.

[3] B. Boyd, L. El Ghaoui, E. Peron, and V. Balakrishnan,
Linear Matrix Inequalities in System and Control Theory,
Philadelphia: SIAM, PE, USA, 1994.

[4] N. Chen, M. Ikeda, and W. Gu, Int. J. Control, Automation,
and Systems, vol. 3, no. 2, pp. 143-151, 2005.

[5] C. Cheng, B. Tang, Y. Cao, and Y. Sun, "Decentralized
robust H∞ control of uncertain large-scale systems with state-
delays. LMIs approach", Proc. American Control Conference,
Philadelphia, PE, USA, pp. 3111-3115, 1998.

[6] C. Dou, J. Yang, X. Li, T. Gui, and Y. Bi, "Decentralized
coordinated control for large power system based on transient
stability assessment", Int. J. Electrical Power & Energy
Systems, vol. 46, no. 1, pp. 153-162, 2013.

[7] O.I. Elgert and C.E. Fosha, "Optimum megawatt-frequency
control of multiarea electric energy system", IEEE Trans.
Power Apparatus and Systems, vol. 89, no. 4, pp. 556-563,
1970.

[8] A, Filasová and D. Krokavec, "Pairwise control principle in
large-scale systems", Archives of Control Sciences, vol. 21,
no. 3, pp. 227-242, 2011.

17Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems



[9] A, Filasová and D. Krokavec, "Partially decentralized design
principle in large-scale system control", in Recent Advances
in Robust Control. Novel Approaches and Design Methods,
A. Mueller Ed., Rijeca: InTech, Croatia, pp. 361-388, 2011.

[10] Y. Guo, D.J. Hill and Y. Wang, "Nonlinear decentralized
control of large-scale power systems", Automatica, vol. 36,
no. 9, pp. 1275-1289, 2000.

[11] D. Krokavec and A. Filasová, Discrete-Time Systems, Košice:
Elfa, Slovakia, 2008. (in Slovak)

[12] D. Krokavec and A. Filasová, "Load frequency control involv-
ing subsystem interaction", in Proc. 9th Int. Conf. Control of
Power Systems CPS 2010, Tatranske Matliare, Slovakia, pp.
1-8, 2010.

[13] J. Lunze, Feedback Control of Large-Scale Systems, Engle-
wood Cliffs: Prentice Hall, NJ, USA, 1992.

[14] D.D. Siljak, D.M. Stipanovic, and A.I. Zecevic, "Robust
decentralized turbine/governor control using linear matrix
inequalities. IEEE Trans. Power Systems, vol. 19, no. 3, pp,
1096-1103, 2004.

[15] G. Zhai, M. Ikeda and Y. Fujisaki, "Decentralized H∞ con-
troller design. A matrix inequality approach using a homotopy
method", Automatica, vol. 37, no. 4, pp. 565-572, 2001.

APPENDIX

The next analysis is based on the assumption that the
electrical interconnections within each area of multi-area
power system are so strong, at least in relation to ties
with the neighboring areas that the whole area can be
characterized only by a single frequency (see, e.g., [12] and
the references therein). Therefore, it is supposed that the
power equilibrium applied to the area i can be written as

TPi
d∆fi(t)

dt +∆fi(t) +KPk∆PTk(t) =

= KPi∆PGi(t)−KPi∆PDi(t)
(A.1)

where TPi is the area model time constant (s), ∆fi(t) is the
area incremental frequency deviation (Hz), KPi is the area
gain (Hz/pu MW), ∆PTi(t) is the incremental change of
total real power exported from area (Hz/pu MW), ∆PGi(t)
is the incremental change in generator output (Hz/pu MW),
and ∆PDi(t) is the unknown load disturbance (Hz/pu MW).

If the line losses are neglected, the individual line powers
can be written in the form

PTi(t) =
|Vi||Vυ|
XυiPυi

sin(δi(t)− δυ(t)) =

= PTiυmax sin(δi(t)− δυ(t))
(A.2)

Vi(t)= |Vi| exp(jδi(t)), Vυ(t)= |Vυ| exp(jδυ(t)) (A.3)

is the terminal bus voltage of the line, and Xνi is its
reactance.

If the phase angles deviate from their nominal values by
amounts ∆δi, ∆δν , respectively, it can be obtained

∆PTi(t) =

= Vi||Vυ|
XυiPυi

cos(δin(t)−δυn(t))(∆δi(t)−∆δυ(t))
(A.4)

∆PTi(t) =

=2π|Vi||Vυ|
XυiPυi

cos(δin(t)−δυn(t))

{∫ t

0
∆fi(r)dr−

−
∫ t

0
∆fυ(r)dr

}
(A.5)

respectively. Related to the area frequency changes, the
derivative of the individual line powers with respect to time
is

d∆PTiυ(t)

dt
= Siυ(∆fi(t)−∆fυ(t)) (A.6)

d∆PTi(t)

dt
=

∑
i ̸=l

Sil(∆fi(t)−∆fl(t)) (A.7)

respectively, where Sil is the synchronizing coefficient (elec-
trical stiffness of the tie line).

The incremental generated power of the area i for small
signals around the nominal settings can be represented by
the equations

TTi
d∆PGi(t)

dt
+∆PGi(t) = ∆xHi(t) (A.8)

THi
d∆xHi(t)

dt
+∆xHi(t) = ∆PCi(t)−

1

Ri
∆fi(t) (A.9)

where TTi is the turbine time constant (s), THi is the gover-
nor time constant (s) (generator response is instantaneous),
Ri is a measure of static speed droop (Hz/pu MW), ∆PCi(t)
is the incremental change of command signal to the speed
changer (control input), and ∆xHi(t) is the incremental
change in the governor value position (pu MW), all with
respect to the area i.

The compact form of (A.1), (A.7), (A.8), and (A.9) is [12]

q̇i(t)=Aiqi(t)+biui(t)+

p∑
l=1

Gliqi(t)+f idi(t) (A.10)

yi(t) = cTi qi(t) (A.11)

where

qi(t)=
[
∆xHi(t) ∆PGi(t) ∆fi(t) ∆PTi(t)

]T
(A.12)

ui(t) = ∆PCi(t) di(t) = ∆PDi(t) (A.13)

Ai =


− 1

THi
0 − 1

RiTHi
0

1
TTi

− 1
TTi

0 0

0 KPi

TPi
− 1

TPi
−KPi

TPi

0 0
∑
l ̸=i

Sil 0

 (A.14)

Gli =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −Sli 0

 , bi =


0
0
0
1

THi

 (A.15)

f i =


0
0

−KPi

TPi

0

 , ci =


0
0
1
0

 (A.16)

Under above given model parameters, the stability of the
overall system can be studied by the stability properties
of all subsystems, and by global features of all subsystem
interactions.
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