
A Graphical Development Tool for Earth System Model Using Component
Description Language

Chao Tan, Sujun Cheng, Zhongzhi Luan, Si Ye, Wenjun Li, Depei Qian
Sino-German Joint Software Institute, Beijing Key Laboratory of Network Technology

Beihang University
Beijing, China

E-mail: tanchao128 @126.com

Abstract—Historically, researchers have developed large-
scale Earth System Model (ESM) applications under the
monolithic software development practices that seriously
hamper further innovation in complex, highly integrated
simulations. Earth System Modeling Framework (ESMF)
which organizes applications as discrete components is built
to achieve the loose coupling of model and component reuse.
Yet it is a big challenge for earth researchers to develop,
maintain and share the component code due to the absence
of the system software development training and Integrated
Development Environments for ESM. To overcome these
disadvantages, in this paper we propose an Earth System
Model Component Description Language (ESMCDL) which
describes not only the interface of component but also the
inner behavior of the interface. At the same time, based on
this language a graphical development tool is designed to
help researchers encapsulate, release components and build
templates which consist of these components. Results show
that the tool based on the ESMCDL significantly reduces the
time required to develop models.

Keywords-component description language; Earth System
Model(ESM); ESM Framework.

I. INTRODUCTION

With the development of Earth System Science, the
scale of the software systems for Earth System Model
(ESM) becomes increasingly huge. In addition, under
monolithic software-development practices, the structure
is also becoming more and more complex and there exist a
large number of reusable modules as well as their
combinations. For example, Community Earth System
Model [1], which has nearly 1 million lines of source code,
is a coupled climate model for simulating Earth’s climate
system and composed of one central coupler component
and five separate models that simultaneously simulate the
Earth’s atmosphere, ocean, land, land-ice, and sea-ice,
what’s more, each model is composed of a serial of
physical processes and calculation processes.

NASA with other research institutions has built
standards-based open-source software -- Earth System
Modeling Framework (ESMF) [2], which defines a
component architecture and aims to reduce the coupling
between each module and increase Earth System Modeling
software reusability.

However, on one hand, researchers who generally lack
the system software development training have to consider
about plenty of the essential framework code not related
with the business logic; on the other hand, there is no
unified platform which helps researchers from different
institutions share component code. What’s more, at present,
no matter from general or professional perspective, there is
still no widely adopted Integrated Development
Environments (IDE) [3] [4] for ESM. Therefore,
developing, maintaining and sharing the component code
put extra pressure on researchers, which limit the
widespread use of ESMF.

 In order to solve these problems, this paper firstly
introduces the Earth System Model Component
Description Language (ESMCDL). The research on
component description language can be traced back to the
1980’s. The most representative works includes the OBJ
[5] and LIL [6] developed by Gougen. In the 1990’s, most
efforts were spent on how to enable CDLs to describe
component, as well as component sub-system. Main works
include CIDER [7], RESOLVE [8], and etc. [9] presents a
visual Coupling Description Language, but it only focus
on hydrology domain. Our ESMCDL, as a kind of
metadata describing language, describes not only the
interface of the component defined in the ESMF but also
the inner behavior of the interface. Moreover, based on
this language we develop a graphical development tool
which helps researchers not only encapsulate existing
modules to form the general earth system component
library through the ESMF and parallel technology, but also
analyze and summarize the common combinations of
components to form the general template library.

This ESMCDL helps the tool with the following
functions to achieve the support of rapid development of
software.

1) Interface Reuse: ESMCDL separates component
code from the abstract definition layer and the specific
implementation layer, like the concept of generality. Based
on the identical abstract definition, different researchers
can adopt different logic realizations.

2) Code Generating: one *.esmcdl file, the context of
which follows the ESMCDL format, can be automatically
mapped to FORTRAN source code by the tool we provide.

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

3) Specification Definition: ESMCDL defines one
unified programming standard, based on which researchers
will realize the encapsulation and release of all
components. It can favor code’s maintenance and sharing.

4) Template verification: templates could be verified
by validating the links between components at the
beginning of the design.

The remainder of the paper is organized as follows.
Section II gives a short introduction to the ESMF. The
syntax structure of the ESMCDL is presented in Section
III. Section IV introduces an ESMCDL-based graphical
development tool. In Section V, we demonstrate how the
tool assist the researchers in developing ESM components
as well as templates with a case study of Parallel Ocean
Program (POP) [10] and give the preliminary result of it.
Finally, we conclude with Section VI.

II. ESMF OVERVIEW

As illustrated in Figure 1, the ESMF comprises a
superstructure and an infrastructure. The role of the
superstructure layer is to provide a shell that encompasses
user code and a context for interconnecting input and
output data streams between components. Classes called
gridded components, coupler components, and states are
used in the superstructure layer to achieve this objective
[11]. The infrastructure layer provides a standard support
library that researchers can use to speed up construction of
components and ensure consistent, guaranteed component
behavior. It contains a set of data classes such as Array,
Field, and utility classes (including Time, Config). This
paper focuses on description for all superstructure classes
and data classes.

Figure 1. Architecture of the ESMF

Following the principles of loose coupling, we divide
the code for each component into Registration, Init, Run,
and Final methods as follows:

1) Registration: components register all INF (Init,
Run, and Final) methods which can be multi-phase and
create all sub-components and States.

2) Init: components allocate the key data structures
used to pass persistent states in and out. Coupler
components allocate ESMF_RouteHandl Objects.

3) Run: during the run phase, data should be accepted
at the beginning of the method and updated after
computing in the gridded components. Complex type data

transfer occurs by ESMF_RouteHandl Objects in the
Coupler components.

4) Final: applications shut down components cleanly
in the Final method. For example, Gridded Components
destroy sub-components, States and Complex type data,
Coupler components destroy ESMF_RouteHandl Object.

Particular emphasis is given to the Sub-component’s
INF methods, which will be called recursively in each INF
method of Gridded Component.

III. THE ESMCDL

In this section we will make rules for the coding
behavior of users before introducing the ESMCDL, which
simplify the complexity and is also beneficial to the
realization of language engine.

1) All the Complex data such as Array, Field,
ArrayBundle and FieldBundle should be created in the Init
method of which the phase is 1 and destroyed in the Final
method.

2) Each State object created in the parent Gridded
Component is associated with only one child Gridded
Component. It means if one Import State object is passed
to any method of one child Gridded Component as
parameter, another child Gridded Component couldn’t
take in it as input.

3) The name of Registration method adopts uniform
format “*_setServices”, which can be identified by tool.

4) State object (import or export) can only be added
into the same type of State object.

5) A Gridded Component contains one Coupler
Component at most.

A. Gridded Component

We adopt XML instead of other textual, graphical or
binary formats to define ESMCDL as meta–language,
since it has many advantages such as scalability, platform-
independence and readability. Figure 2 shows the structure
of the Gridded Component Description Language.

 GridComp denotes an ESMF_GridComp Object.
Each GridComp element has name, location and
variable property.

 CplComp denotes an ESMF_CplComp Object.
Each CplComp element has name, location and
variable attributes.

 State denotes an ESMF_State Object. Parent
Gridded Component needs to assign Import State
and Export State to its child components. Each
State element has a name, variable and type
attributes. Type is ESMF_STATE_IMPORT or
ESMF_STATE_EXPORT.

 Init denotes Gridded Component registers an
ESMF_SETINIT type of method in the
*_SetSevice subroutine. It consists of four
subelements: InitializeComp, StateAdd and
AttributeGet, and AttributeSet, whose order of
appearance is the same as the order of being called

ESMF Superstructure
AppDriver

Component Classes: GridComp, CplComp, State….

ESMF Infrastructure
Data classes: Array, Field, ArrayBundle, FieldBundle

Utility classes: Clock, LogErr, Time, Config

User Code

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

in the source code. InitializeComp indicates that
this Gridded Component will initialize its
subcomponents. StateAdd and AttributeSet
indicate that the Gridded Component creates data
and adds them into state object.

Figure 2. Core Structure of the Gridded Component Description
Language

 Run denotes Gridded Component registers an
ESMF_SETRUN type of method in the
*_SetSevice subroutine. It consists of four
subelements: RunComp, StateGet, AttributeGet
and AttributeSet. RunComp. RunComp indicates
that this Gridded Component will run its
subcomponent. StateGet and AttributeGet indicate
that the Gridded Component needs the data which
is necessary to execute.

 Final denotes Gridded Component registers an
ESMF_SETFINAL type of method in the
*_SetSevice subroutine. &∈ {ESMF_GridComp,
ESMF_State, ESMF_Array, ESMF_ArrayBundle,
ESMF_Field, ESMF_FieldBundle}.

B. Coupler Component

A Coupler Component (or ESMF_CplComp) arranges
and executes the data transformation between the Gridded
Components. It takes in one or more import ESMF states
as input and maps them through spatial and temporal
transformation onto one or more output export ESMF
states. The structure of the Coupler Component
Description Language is given in Figure 3.

 AttributeCopy describes the mapping
relationship of metadata between the Gridded
Components. Scope property (may be one or all)

denotes the scope of exchanging. The sub-
elements from and to describe where the attributes
are from and which to be copied to.

 &: There are ESMF_Array, ESMF_Field,
ESMF_ArrayBundle, ESMF_FieldBundle on
complex data types that have all versions of the
data communication methods: Halo, Redist,
Regrid, SMMS. Therefore, & can be any of all the
16 transformation methods

 RouteHandle denotes an ESMF_RouteHandle
Object which identifies those stored
communication patterns mentioned above which
can be precomputed during an initialization phase
and then later executed repeatedly.

Figure 3. Core Structure of the Coupler Component Description

Language

IV. THE GRAPHICAL DEVELOPMENT TOOL

To uniformly build, share components and templates,
we created a graphical development tool. This tool is
based on ESMCDL which consists of graphical modeling,
components publishing and sharing, code generating and
data validation. It is built on the Eclipse platform and
adopts Photran [12], GMF [13] plug-in technology to
strengthen the extensibility. The technical details are
beyond the scope of this paper. As shown in Figure 4, the
system is composed of four parts.

Figure 4. Overview of the graphical tool

Engine

Code
Editor

Library

Graphical
Editor

Comp Init*

Run*

Final*

AttributeCopy*

&Store*

AttributeCopy*

&*

&Release*

from

to

Attribute

from

to

RouteHandle

RouteHandle*
Comp

CplComp

GridComp*

State*

Init*

Run*

Final*

InitializeComp*

RunComp*

FinalizeComp*

StateAdd*

AttributeSet*

AttributeGet*

StateGet*

&Destroy*

AttributeSet*

AttributeGet*

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

1) Graphical editor: application based on the ESMF is
executed in a top-down, recursive method mentioned in
the section 2. In contrast, with the help of the graphical
editor, the application can be built in a bottom-up, iterative
method. In the Graphical editor, researchers can do the
following things.

a) Building a Gridded Component (including leaf
component and parent component or from a *.esmcdl file
directly).

b) Building a Coupler Component.
c) Building a template: Researchers can drag and

drop components which have been in the components
library into the graphical editor and then organize them to
build the whole template.

2) Code editor: It contains some IDE features such as
syntax-highlighting, content assist, code version control
and so on.

3) Component and template library: similar to
database. It is used to manage ESM templates and
components as well as corresponding ESMCDL interface
files published by different researchers, including
registering, deleting, searching and other functions. The
principle that issued once and used many times is followed
to provide component providers and consumers with a
uniform platform, which make their sharing model code
convenient and flexible.

4) ESMCDL engine: ESMCDL needs one
corresponding language engine which involves converting
ESMCDL documents to Component objects when dragged
into the graphical editor or standard FORTRAN code as
well as parsing source code of Components to generate
ESMCDL files if rule validation is passed.

We present a case study next that ties everything
together.

Figure 5. Structure of the components-based POP

V. CASE STUDY

To illustrate the power of our ESMCDL, we now give
a complete example, Parallel Ocean Program (POP), one
of the most representative models in ESM field. Figure 5
displays the structure of the components-based POP
bringing in superstructure and infrastructure for ESMF and
following the partitioning strategy mentioned in section 2
as well as programming rules referred in section 3. The
Components-based POP is divided into two major parts:
Dynamic GC processing data and Physical GC providing
date. POPAppDriver is the entry point of the application.

As illustrated in Figure 6 we demonstrate how to create
the POP in the bottom-up approach via our graphical
software development tool.

First of all, we build those six leaf Gridded
Components one by one, including heat fluxes GC,
atmospheric pressure GC, wind stress GC, Interior
potential GC, fresh water flux GC, interior salinity GC. It
includes a series of steps: 1) drag a new component into
the graphical editor and configure its information such as
the name and interface functions. 2) Based on the
configuration information, the standard framework code is
generated with the help of the EMCDL engine. 3) After
that, researchers can fill the INF’s internal logic code of
each child component In the Code editor. 4) EMCDL
engine checks the component code according to the rules
to determine whether the code is correct. 5) If no problem,
one *.esmcdl file is generated with which every child
component will be released to the component library. In
addition, our tool also supports interface reuse, for
instance, based on the same interface different researchers
can realize the different calculation processes.

Now those six leaf components have been in our
component library. Researchers can drag them into the
graphical editor to form the Forcing Gridded Component
and then release it into our component library in the same
way stated in the previous paragraph. It is necessary to
specially emphasize that ESMCDL engine will parse the
code of the Component when generating the
corresponding *.esmcdl file. We take the forcing Gridded
Component and CC1 Coupler Component as an example
to explain what the engine analyzes. Figure 7 and 8
illustrate that code is divided into many parts by ESMCDL
engine. The code on the left will be mapping to the xml on
the right.

Lastly, when all the type components (there may exist
different ones based on the same interface) have been
prepared in the component library, we can choose some
components and drag them into the graphical editor and
then link them to build a new POP template or modify an
existing POP template saved in template library. Before
generating model application code, ESMCDL engine will
validate the legitimacy of the link between components
recursively from the root node POPAppDriver.

Baroclinic
GC

Barotropic
GC

: Gridded ComponentPOPAppDriver

Interior
salinity

GC

Interior
potential

GC

Heat
fluxes

GC

Fresh
water

flux GC

Wind
stress
GC

POP
GC

CC1

CC3

Forcing
GC

Ice
GC

Atmosp-
heric

press GC

Dynamic
GC

CC2

Physical
GC

GC

CC : Gridded Component

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Figure 6. Process of creating one Earth System Model application. (a)Drag and drop components. (b)Configure components’ information. (c)Validate the
template and generate its code (d)Check the code of the new component and generate its *.esmcdl file. (e)Release the components into the component library

(f) Release the template into the template libraray

Figure 7. Mapping between ESMCDL and code for forcing Gridded Component

(a)

(c)

(d)

(e)

(b)

(e)

(f)

<Comp name="surfaceCompMod" imp="surfaceComp.F90">
<GridComp name="sfwf_Comp" location="surface_sfwfCompMod"varaible="sfwf_Comp" />
………………………………
<CplComp name="surfaceCplComp" location="surfaceCplCompMod"variable="surfaceCplComp"/>

<State name="surface_ws Import" statetype="ESMF_STATE_IMPORT" variable=" wsimp "/>
<Init name="my_init" phase="1" importState="importState" exportState="exportState">

<InitializeComp type="Grid "comp="ws_Comp" importState="wsimp" exportState="wsexp" phase="1"/>
……………………….
<StateAdd>

 <state>exportState</state>
<item type="ESMF_Array" name="FW">FW_array</item>

</StateAdd>

</Init>
<Run name="my_run" phase="1" importState="importState" exportState="exportState">

 <AttributeGet>
 <object>
 exportState
 </object>
 <name>lsmft_avail</name>
 <value type="log_kind">
 lsmft_avail
 </value>

 </AttributeGet>
<RunComp type="Grid "comp="ws_Comp" importState="wsimp" exportState="wsexp" phase="1"/>

……………………..
 </Run>

<Final name="my_final" phase="1" importState="importState" exportState="exportState">
<ArrayDestroy>

<state>exportState</state>
 <Array name="FW">

FW_array
</Array>

</ArrayDestroy>
………………………………

.</Final>
</Comp>

//call child component’INF procedures
call ESMF_GridCompRun (ws_Comp, importState=wsimp,
exportState=wsexp, clock=parentclock, rc=rc)

//get date from sfwfexp object
call ESMF_AttributeGet(exportState, name=" lsmft_avail ",
value= lsmft_avail, rc=rc)

//create all the State objects in register phase
Sfwfimp=ESMF_StateCreate(statetype=
ESMF_STATE_IMPORT, name="surface_sfwf Import")

//create all child components in register phase
sfwf_Comp=ESMF_GridCompCreate(name=”sfwf_name”,
grid=parentgrid, rc=rc)

//add date in to state object in the Init method
call ESMF_StateAdd(exportState, FW_array, rc=rc)

// Register INF method
call ESMF_GridCompSetEntryPoint (gcomp, ESMF_SETRUN,
my run, rc=rc)

//destroy all date created in Init method
callESMF_StateGet(exportState,"FW",FW_array,rc=rc)
call ESMF_ArrayDestroy(FW_array, rc=rc)

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Figure 8. Mapping between ESMCDL and code for CC1 Coupler Componen

We simulated the results of the original POP and the
component-based POP. Tests were run on the quad-core
Intel(R) Xeon(R) CPU/2.40GHz. The environment of the
platform is: RedHat 5.4, MPI: OpenMPI-1.4.1,
FORTRAN Compiler: ifort-10.1.022.

We assume that if the K.E. diagnostic and tracer
diagnostic in the output log file specified by the name list
flag “log _filename” are congruent to both types of POPs;
the reconstructed result for the component-based POP is
true. The result of the experiments is shown in Table 1.

TABLE I. COMPARISON FOR THE COMPONENT-BASED POP AND
ORIGINAL POP AT THE SAME PARALLEL DEGREE.

Parallel
Degree

Original
POP

Component-based
POP

K.E Tracer

1 7482s 7856s true true
2 4042s 4243s true true
4 1981s 2083s true true

VI. CONCLUSIONS AND FUTURE WORKS

With the development of Earth System Science,
Software scale becomes increasingly large. In order to
improve the earth system researchers' development
efficiency, this paper proposes an Earth System Model
Component Description Language and then based on this
language introduces a graphical development tool which
has been widely used by the earth system researchers from

China. We have presented a case study that demonstrates
the process of creating one earth system model application
by using our graphical development tool. We conclude
that the ESMCDL–based graphical development tool not
only improves development efficiency for ESM
application but also accumulates plenty of reused
components and templates which will offer help to other
researchers.

In the future, we will continue our research in the
following directions: 1) improving the performance of the
component-based POP by introducing the parallel
technology; 2) expanding the ESMCDL to describe more
complex behaviors of a component and logical
relationships between components; 3) applying the
ESMCDL and the tool to other earth system models to
cumulate much more reusable components into our
component library.

ACKNOWLEDGMENT

This paper is supported by the 863 project of China
under the grant No. 2010AA012404, the China
International Science and Technology Cooperation
Program from the Ministry of Science and Technology of
China under the grant No. 2009DFA12110.

REFERENCES
[1] Kauffman, B.G. and W.G. Large, “The CCSM Coupler Version

5101: Combined User’s Guide, Source Code Reference and
Scientific Description,” National Center for Atmospheric
Research, 2002, pp. 1-46.

< Comp name="POPCplCompMod" imp="POPCplCompMod.F90">

<RouteHandle>SMF_Array_RouteHandle</ESMF_RouteHandle>

<Init name="my_init" phase="1" importState="importState" exportState="exportState">

<ArrayRedistStore>

 <RouteHandle>SMF_Array_RouteHandle</RouteHandle>

 <from type="ESMF_Array" varibale="SMF_Array">

 surfaceComp export/SMF

 </from>

 <to type="ESMF_Array" varibale="SMF_Array">

 SMF

 </to>

</ArrayRedistStore>

<AttributeCopy scope="all" attcopyflag="ESMF_ATTCOPY_HYBRID" atttributflag="ESMF_ATTTREE_ON">

 <from type="ESMF_STATE_EXPORT"> surface_ws Export </from>

 <to type="ESMF_STATE_EXPORT">root</to>

</AttributeCopy>

</ Init>

<Run name="my_run" phase="1">

 <ArrayRedist>

 ……………………….

 </ArrayRedist>

</Run>

<Final name="my_run" phase="1" importState="importState" exportState="exportState">

 <ArrayRedistRelease>

 ……………………………….

 </ArrayRedistRelease>

</Final>

</Comp>

// Register INF method
call ESMF_CplCompSetEntryPoint(comp, ESMF_SETINIT, &
userRoutine=my_init, phase=1,rc=rc)

//store Routehandle objects
call ESMF_StateGet(importState, "surfaceComp export/SMF", srcArray,rc=rc)
call ESMF_StateGet(exportState, "SMF", dstArray, rc=rc)
call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &
routehandle= SMFRouteHandle, rc=rc)

//deallocate Routehandle obejects in final meyhod
 call ESMF_ArrayRedistRelease(routehandle= SMFRouteHandle, rc=rc)

// copy data between the Gridded Components
call ESMF_StateGet(importState, "surfaceComp export/surface_ws Export",
wsexp, rc=rc)
call ESMF_AttributeCopy(wsexp, exportState, ESMF_ATTCOPY_HYBRID,
ESMF_ATTTREE_ON, rc=rc)

//execute data transformation by the Routehandle obeject
call ESMF_StateGet(importState, "surfaceComp export/SMF", srcArray,rc=rc)
call ESMF_StateGet(exportState, "SMF", dstArray, rc=rc)
call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, routehandle=
SMFRouteHandle, rc=rc)

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

[2] Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. DaSilva, “The
architecture of the earth system modeling framework,”
Computing in Science and Engineering, 2004, Vol. 6, No.1 pp.
18-28, doi:10.1109/MCISE.2004.1255817.

[3] Eclipse, http://www.eclipse.org, June 2011.
[4] Microsoft Visual Studio, http://www.microsoft.com/visualstudio,

July 2011.
[5] Gougen, “Parameterized programming,” IEEE Transactions on

Software Engineering, 1983, Vol.10, No. 5, pp. 528-543,
doi:10.1109/TSE.1984.5010277.

[6] Gougen, “Reusing and interconnecting software component,”
IEEE Computer, Vol.19, No.2, February 1986, pp. 16-27,
doi:10.1109/MC.1986.1663146.

[7] Paolo Bucci and Stephen H. Edwards, “Special Feature:
Component-Based Software Using RESOLVE”, Software
Engineering Notes, ACM SIGSOFT, Vol. 19, No. 4, October

1994, pp.21-67.
[8] Whittle and M. Ratcliffe, “Software Component Interface

Description for Reuse,” IEEE BCS Software Engineering Journal,
Vol.8, No.6. November 1993,pp. 307-318

[9] Tom Bulatewicz and Janice Cuny, “A domain-specific language
model coupling,” Proceedings of the 2006 Winter Simulation
Conference, December 2006. pp. 1091-1100,
doi:10.1109/WSC.2006.323199.

[10] Smith R.D. and Gent P., “Reference manual for the Parallel
Ocean Program (POP),” Los Alamos Unclassified Report LA-
UR-02-2484, 2002.

[11] Earth System Modeling Framework Reference Manual for Fortran
Version 5.2, http://www.earthsystemmodeling.org, May 2011

[12] Photran, http://www.eclipse.org/photran/, September 2011.

[13] GMF, http://www.eclipse.org/modeling/gmp/, February 2011.

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

