
Orchestration Driven by Formal Specification

Charif Mahmoudi
Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University
Creteil, France

charif.mahmoudi@sfr.fr

Fabrice Mourlin
Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University
Creteil, France

fabrice.mourlin@wanadoo.fr

Abstract—Mobile agent software provides a programming
paradigm which allows reconfiguration during runtime.
Because code migration is a basic concept, software
architecture becomes more important. Classically, the lifecycle
of distributed application starts with specification description.
Several facets have to be specified: agent behavior, message
exchange, service composition, but also architecture. This
description has also two levels: software and hardware. We use
formal specifications because our objective is to define
properties about our application. Also, process algebra, like Pi-
Calculus, is a formal language, which allows us to provide a
formal description of architecture. We can then combine agent
behavior and reason to define minimal constraint set of future
runtime context. Our work provides a process from formal
specification of distributed applications to a skeleton of BPEL
script.

Keywords-mobile agent; architecture specification; service
composition.

I. INTRODUCTION
Mobile agent application is a kind of distributed

application where software can react with its environment
and react to external events. Also, this is particularly useful
in case of unstable runtime context or when architecture
changes during execution. For instance, grid computing
needs large set of computing resources. But, if a resource is
missing or fails, the whole computation has to continue until
its end. In that context, the result is more important than the
performance, also mobile agents are able to move
computation to a node where computing resources is free [1].
Without mobile agent, it is not possible to adapt a distributed
application to its runtime context because placement is
defined at load time. This limit is suppressed with mobility.

Mobile agents are useful in other domain such as
software administration or code instrumentation. Software
administrator needs to deploy new distributed applications
with adapted configuration for security, underlying services,
etc. A first solution is to replicate a static image from one
node of the network to the others, but the strategy becomes
complex when the nodes are not similar. If location involves
a specific behavior then mobile agent is a solution. It can
adapt its mission to the precise location where it incomes.
This can mean select specific permissions depending to a
resource location, or choose between several persistence
services, etc. [2].

Code instrumentation is another domain where context
adaptation is essential. Software instruments can observe
runtime properties such as time measure of methods,
memory allocation of data structure or state of threads into a
thread group. If the analysis is done after an execution, a
classical approach can be applied, but if actions have to be
done depending on features which are observed then only
mobile agents can react and adapt their actions to a specific
context [3] [4]. For instance, several threads are blocked
because there is a gridlock. Also, a mobile agent can change
state of one of the threads to force a specific execution.

We have presented the role of one agent into a distributed
application but these examples are useful for understanding
the concept of software adaptation based on code migration.
Into a case study, there are a large number of mobile agents
and all have a common objective, for instance data collection
for a performance analysis. Coordination between agents is
crucial to insure that all contributions will be used in a
suitable manner. This means writing coordination
specification. It plays the role of master description where
each agent is a piece of software like a rugby player into his
team. The whole objective is to win a match, but depending
on his role into the group, his own behavior will be to adapt
his actions to the context and his partners.

Our experience into software specification was about use
of formal language like CCS [5] or Unity [6]. Agent
migration needs a higher order language and Pi-Calculus
possesses such kind of construction. Also, we used this
formal language for writing our formal specifications. Pi-
Calculus [7] has operational semantics, which allows us to
evaluate terms and transform our specifications into other
representations useful for reasoning. In this document, we
present how we write coordination description of mobile
agent group or agency. Then, we explain how this
specification can be used to provide a more executable
representation. Finally, we propose an approach to specify
architecture and a way to exploit it by an agency. By the end,
we sum up through an example that illustrates main concepts
of agent migration with message definition.

II. COORDINATION SPECIFICATION
Coordination can be considered as a road book for an

agency or group of mobile agents. It contains start state and a
final state and between them a succession of steps. A step is
realized by a mobile agent. Also, this action step is defined
with a location where it has to be done, initial information

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

for the launch and eventually final information for observing
results. This means that only one description is not enough
but several descriptions are built concurrently.

Two specification approaches are observed. First, a top
down specification approach needs to build all descriptions
into a coherent manner. This starts with step definition; for
instance, the objective to achieve and then the migration
(from where to where); finally, the data format of the input
message is defined. These descriptions can be completed by
some more details about local resources and output message.
This formal language has a syntax which allows designer to
express mobility as term. Channels are used to exchange not
only data but also agents which are specified as first order
term. First, we present quickly higher order Pi-Calculus
language.

A. Formal specification language
The descriptive ability that Pi-Calculus offers, emerges

from the concept of naming, where communication links,
known as channels, are referenced using a naming
convention. Hence, mobility arises by having processes
communicating the channel names. Some extensions are
added by R. Milner himself to allow specification writers
with higher order term [8]. Then, agent migration can be
expressed through a communication of a first order term [9].

The Pi-Calculus notation (Fig. 1) models distributed
agent into a system, which can perform input or output
actions through channels, thus allowing the agents to
communicate. The message which is sent from one agent to
the other is a name, which gives a reference to a channel or a
first order term which gives a reference to a local mobile
agent.

Figure 1. Syntax of Pi-Calculus language.

When a term is received by an agent host, term
unification algorithm is applied to propagate names into
agent host definition. Operational semantics [9] is useful to
build evaluation tree of the agent host term. As an example,
we provide a specification of SLP protocol. The Service
Location Protocol (SLP) is an Internet Engineering Task
Force (IETF) standard track protocol [10] that provides a
framework to allow networking applications to discover the
existence, location, and configuration of networked services
in enterprise networks.

SLP can eliminate the need for the user to know the
technical features of network hosts. With the SLP, the user
needs only to know the description of the service he is
interested in. Based on this description, SLP is then able to
return the URL of the desired service. SLP is a language
independent protocol. Thus, the protocol specification can be
implemented in any language. The SLP infrastructure
consists of three types of agents:

1. UserAgent (UA) is a software entity that is looking for
the location of one or more services; its role is client,

2. ServiceAgent (SA) is a software entity that provides the
location of one or more services; its role is mobile agent,

3. DirectoryAgent (DA) is a software entity that acts as a
centralized repository for service location information; its
role is registry.

Figure 2. Main term of SLP specification.

The subterms UA, SA and DA (Fig. 2) are detailed into

annex. This grammar is useful for writing specification by
hand but is quite complex to use into a workflow system
also, we have translated this grammar into an XML schema.
Also, this allows us to write specification in a more rigorous
manner. Our XML schema stresses the structure of an agent
based on the composition operators: sum, parallel, match,
restriction, etc. A higher order Pi-Calculus specification
becomes a well formatted XML description, which can be
transformed into an object easily. It is the pilot of an activity
of mobile agents.

B. Coordination of an agency
In the previous example, all components are independent

and each has its own behavior. But, the problem is to
describe relation between these behaviors. Coordination of
software component is not a new challenge. Solutions have
been already given by web project architects. Reo project
forms a paradigm for composition of software components
based on the notion of mobile channels [15]. This project
defined its own coordination language which is a channel-
based exogenous coordination model. The specification
writer defines complex coordinators, called connectors,
which are built out of simpler ones [16]. Of course, the Reo
coordination language provides, pleasant features such that:
loose coupling among components and services or support
for distribution and mobility of heterogeneous components
or compositional construction. But this language is not
become a standard. Also, it is not easy to inter operate with
other coordination model. But, Reo language stresses which
are the key concepts into coordination. First, a composition
of agents has two kinds of observation [14]. On one side, an
external observer is not able to distinguish the structure of
the composition. On the other side, an internal observer can
follow the precise evaluation of the composition. Secondly,
the better coupling is asynchronous and exchanges are
considered as message passing [13].

We considered these requirements to select a language
for defining coordination of agents. An obvious solution
could be to declare a master agent which contains the
scheduling of coordination. But this approach has
drawbacks. If the description is inside an agent, a new

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

coordination cost becomes another development and there is
no standardization of the approach. When an agent pilots
coordination programmatically, the state of the evaluation is
difficult to observe. Also, the definition of coordination
should be external and then its interpretation can be done by
an agent or another engine.

Because of our past experience on Web service design,
we studied several existing coordination languages such as
WSCI (Web Services Choreography Interface), BPML
(Business Process Modeling Language), WSCL (Web
Services Conversation Language), BPEL4WS (Business
Process Execution Language for Web services) [12].

WSCI is a description language based on XML, which
aims at describing the messages exchanged between agents
into coordination. BPML is a high level language which is
used to describe business process as a sequence of simple,
complex activities including the interaction between
participants in order to achieve a common objective. WSCL
language is used to describe the business logic or public sub
processes based on the definition of a web service. BPEL
[11] language (Business Process Execution Language)
replaces previous specifications of Microsoft XLANG and
WSFL (Web Services Flow Language) from IBM. BPEL is
used to model two types of processes

• Abstract process: specifies the messages exchanged
between the partners, without specifying the internal
behavior of each.

• Executable process: specifies the execution order of
activities constituting the process, the partners
involved in the process, the messages exchanged
between the partners, and processing of errors and
exceptions specifying the behavior in case of errors
or of exceptions.

An external observer can consider a process as a mobile
agent if this agent has a formal declaration. In the context of
BPEL language, this description is provided as WSDL
format.

BPEL is a language for describing orchestration of Web
services. But inside an orchestration services are composed
and often a transaction is created for the execution. We
consider that BPEL specification can describe the execution
order between a numbers of agents constituting the process
definition, the partners involved in the process, the messages
exchanged between these partners. Next, we need to define a
mapping between higher order Pi-Calculus and BPEL
language. It means a transformation from a formal language
into a more operational language.

C. From HOPi calculus to BPEL
Some works already exist about mapping between Pi-

Calculus and BPEL. Faisal Abouzaid uses a first version of
Pi-Calculus based on monadic expressions and first order
term definitions [18], [19]. We extend this work and adapt it
to our framework of mobile agent system. Two main features
are taken into account: polyadic expression and higher order
term which are used for communication description. Because
BPEL language is verbose and contains a lot of technical
details, we have developed a strategy to generate BPEL
skeleton. The choice of BPEL language involves that each

component can be considered through its WSDL description.
This one contains several parts such as types, messages or
port type, etc. Also, we consider Pi-Calculus specification as
an input source for filling not only BPEL skeleton but also
WSDL declaration.

Because our input specifications are written into XML
format, each step of our strategy is an elementary
transformation belonging to a more global chain called
BPEL generation. We use the structure of specifications to
enrich all our artifacts (WSDL and BPEL).

III. TRANSFORMATION INTO BPEL SCRIPT
As we presented in Section 2.A, a Pi-Calculus

specification contains a main term, called System into Figure
2. This pi-calculus process is composed by parallel and
synchronizing actions. So, the underlying rules of the
mapping are correspondences between Pi-Calculus terms and
BPEL blocks. Identifiers are essential to propagate data and
refactoring is necessary as a pre statement for preparing
future generation. The first part of our transformation chain
is described as follows into figure 3:

Figure 3. Pre statement from a specification to an enriched description.

A. Structural transformation
We use a top down approach; this means that we exploit

the structure of a higher order Pi-Calculus specification.
First, we consider the main term as a main BPEL sequence.
The definitions of each sub term are considered first as
partners of the script.

Process calls can contain typed arguments. Abstract data
types can be specified with Pi-Calculus language as a
process. Such a definition is converted into types in the
WSDL description. Of course, this declaration is included
first into the WSDL flow where agent is declared. But, data
types are shared between several process declarations, also, it
is useful to create XML schema which contains complex
type. Then, XML schemas are imported into WSDL
definitions of associated agent. We build a dependency graph
of the definitions (data and behavior). The edges represent
definition importation and communication relation (I/O).
This relation is used to enrich first XML representations with
annotations. These ones are about oriented actions such as
input message, output message, call of agent, etc.

B. Annoted XML flow
Each transformation is built with XSL-T language. This

means that we use a standard language dedicated to graph
transformation. Because each XML flow can be considered
as a graph, we can use a set of rules for the basic
construction of Higher Order Pi-Calculus language and a
rule engine to select closest rules. A rule is a template based
on specific patterns of XML from the input source.

Then, an XML output is computed based on the input.
Our schema allows us to check the structure of agents before
and to map Pi-Calculus structure on to BPEL blocks. For
instance, a sequence of actions is mapped as a BPEL
sequence. More complex is the transformation of data

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

exchange. An input of data means a message output; this
involves not only a type definition for the message, but also a
call to an operation of another agent.

Figure 4. From a higher order Pi-Calculus into an annoted graph.

The previous figure (Fig. 4) shows an XML view of the
Pi-Calculus specification of UA agent (SLP protocol). After
enrichment, we obtained another graph where each node is
an XML tag with new attributes and process annotations.
More precisely, we save into annotations technical
information useful for the construction of the final BPEL
script and WSDL script.

C. BPEL and WSDL attributes
We have defined two main schemas; one is about useful

details of WSDL language and another about useful details
of BPEL language. So, we can label a node with attributes
called: partnerLink, variable, portType, etc. For instance, if
we consider a part of the specification of UA agent (complete
definition is given in annex): an emission (1) on channel
SrvRqst, then the corresponding labeled node is presented (2)
below and the BPEL skeleton is displayed as (3):

 (1)
Previous parsing of input XML sources provides that

SrvRqst channel is a link between UA agent and DA agent.
Also send tag is transformed as follows,

<hopi:send gate=”SrvRqst” (2)
 bpel:partnerLink=”DA” bpel:portType=”ns1:DA”>
 <hopi:message name=”msg1” type=”Msg1Type”/>
</hopi:send>
During the synthesis of all tagged graph, a part of the

BPEL action is given as follows.
<bpws:reply name="Reply" (3)
operation="SrvRqst" partnerLink="DA" portType="ns1:DA"
wpc:displayName="Reply" wpc:id="3">

 <wpc:input>
 <wpc:parameter name="msg1" variable="msg1"/>
 </wpc:input>
</bpws:reply>
Receive and reply activities go hands in hand in a

request-response flow. After this output message, UA agent
receives detail about Print service. We follow the same
approach as before, first the Pi-Calculus term, then the
tagged node and finally BPEL action.

 (4)
As before, the dependency graph provides that the input

channel is a link between UA agent et IdleDA agent.
<hopi:receive gate="SrvRply" (5)
 bpel:partnerLink=”IdleDA”
 bpel:portType=”ns1:IdleDA”>
 <hopi:message name="name" type="Any"/>
</hopi:receive>
Finally, a BPEL action is:
<bpws:receive createInstance="yes" (6)
name="Receive" operation="SrvRply" partnerLink="IdleDA"
portType="ns1:IdleDA" wpc:displayName="Receive"
wpc:id="2">
 <wpc:output>
 <wpc:parameter name="Name" variable="Name"/>
 </wpc:output>
</bpws:receive>

Receive activity is known as blocking activity as in Pi-
Calculus. This means it will wait till any message received.
And it will create a new process instance. Inside the receive
activity an output element is specified which refer to the
request variable. The request variable data can be used in
other activity in the business process.

Then the definition of the agent ends with a call to UA
definition. We follow the same approach as before, first the
Pi-Calculus term, then the tagged node and finally BPEL
action.

 (7)
The dependency graph offers a lot of metrics such as

scope and depth. Also we can label the XML tags as follows:
<hopi:call process="UA" (8)
 bpel:partnerLink=”UA”
 bpel:portType=”ns1:UA”
 bpel:operation=”process”>
 <hopi:argument value="SrvRqst"/>
 <hopi:argument value="SrvRply"/>
</hopi:call>
The depth of this call corresponds to a distance

computation in dependency graph. The closest definition is
considered as a solution.

<invoke partnerLink="UA" portType="ns1:UA" (9)
operation="process" inputVariable="UARequest"
outputVariable="UAResponse" />

UARequest and UAResponse are declared as local
variable of the process definition. Their type is automatically
computed from the input XML source. In our case,
UARequestType is a couple of information and
UAResponseType is a Boolean value as acknowledgment.
We could detail all the primitive of the syntax presented
before but the size of the document does not allow us to give
more details about them. We have presented these three
actions because they support higher order feature of the
formal language. In definition (2), the Msg1Type can be the
definition of another agent. This means that the message is
linked to the port type of the mobile agent. So, the agent host

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

can then invoke all operations presented into the description
of this port type.

D. Synthesis and control
After creating the upper part of the WSDL definition of

agent, controls have to be applied to validate relations
between the agents of the agency. This means that BPEL
skeletons are used to check partner link definition and also
their role into the main script. Type checking is also applied
on variable used as parameters or as local data. The objective
is to provide XML definitions as good as possible to
specifiers.

Figure 5. Information synthesis.

Previous diagram (Fig. 5) depicts the last part of our
approach. As mentioned in the last section, a labeled graph is
synthesized to obtain a couple of description (bold lines).
Next controls are done by the use of type definition as XML
schema and agent definition as WSDL definition.

IV. ARCHITECTURE DESCRIPTION
Because mobile agent system exploit network and is

deployed over a set of computers, it is necessary to have a
specification language that can model computers at a higher
level of abstraction and enable analysis of description. The
language should be powerful enough to capture high-level
description of software architecture. On the other hand, the
language should be simple enough to allow correlation of the
information between the specification and the architecture
manual.

Architecture Description Languages (ADL) enables
design automation of embedded processors [21]. The ADL
specification is used to generate various executable models
including simulator, compiler and hardware implementation.
This language is a reference in the architecture specification
domain but it is not natural to compose such a specification
with other process algebra specification.

A. Agent host and neighboring
We consider each node of our network as a future host

for receiving mobile agents. Also, it is essential to describe
which the local services available are for an incoming agent.
More precisely, this can be viewed as a first security layer
where local services are callable under condition on the role
of the caller.

We need a description language for our software
architecture which can be composed with HIGH ORDER

(H.O.) Pi-Calculus. Matthew Hennessy proposes a process
algebra called SafeDPi, which is based on Pi-Calculus. This
is an extension used to type processes depending on their
location [22]. Also, this is precisely what is important in our
context of partner link and end point definition. If a unique
resource location (URL) is used to call a Web service. We
need to express this uniqueness into our specifications and
define migration of agent based on this feature. Moreover,
SafeDPi language is defined to embed higher order Pi-
Calculus definition of agent host [23].

So, software architecture takes the form:

 (10)
Where there are two agents UA and DA, which are on the

same location host1, and the agent SA is running on another
location called host2. The agents DA and SA share
information called SrvReg which is the gate to publish a
service into the registry. The agents UA, SA and DA are
defined with H.O. Pi-Calculus language.

We use this language to provide a formal description of
all nodes which can host mobile agents. New location can
also be taken into account as a new configuration of the
network. So, our case study use 3 agents on 2 distinct nodes
called host1 and host2.

 (11)
The type of the locations defines which kind of agent can

be deployed on it. (12)

This definition stresses that a node of type Host1 can
support an agent which exploits a couple of resources called
SrvRqst for sending a message to DA and SrvRply for
receiving a message from IdleDA. The location definition
should be completed to support also a DA agent. The Host2
definition is defined with the same approach. We use such
specification as a set of constraints for the deployment step.
When an agent is deployed or installed initially on a node
which is specified as previously; we can checked whether the
communication services are compatible.

As in Section 2, we have defined an XML schema for
SafeDPi-Calculus language. A deployment specification is
an XML flow and we compare provided services of a node
like host1 with the required services used by UA. This is done
importation of an XML flow into another one and the control
of invoke, receive and reply actions.

B. Local resources access and migration
Previously, we specified message types. Also, channel

can also be types. For instance, a link between host1 and
host2 can only support message of type Document. Also, we
have added type on communication link. Now, we restricted
the definition (12) into (13) to limited value on gate.

 (13)
Now, we can check message type from agent

specification and possible message type into deployment
specification. But we need to have more control about the
definition of node. Also want to express that from node
host2, it is possible to move to host1 but not from another

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

node. Also, we place oriented links between nodes. So,
location declaration can be enriched as follows:

This expresses that on host1 the agent UA can be placed

in parallel with a mobile agent with the ability to move
towards host2. Then, after the migration, each code can
continue its evaluation on two separate nodes. A constraint is
added on the migration statement: this will occur though the
port type called pt on host2. This allows us to add new
deployment restrictions. Because these restrictions can be
checked into agent specification, we can raise anomalies if a
rule is not respected.

C. SLP case study
As presented before, this protocol is suitable for our

presentation. It simulates the need of a print service by a
client called UA. The service print is published by an agent
called SA into a registry called DA. In nominal scenario,
when UA agent asks the registry to know where the print
service is, then it receives the service on the node where it is.
Thus, we have to express code mobility and agent moves
from host2 to host1. The data to be printed do not move on
the network. This part of the description is just specified but
the use of one specification level called software
specification. Then, physical constraints are described
through another level of specification called deployment
specification. Because the formats of these specifications are
compatible, we are able to combine them and check is
software constraints are satisfied through physical
constraints.

V. CONCLUSION
Through this paper, we have described a process to

generate executable representation from formal specification.
Of course, this work is currently prototyped through several
examples and we need to complete our BPEL generator to
help designer into his business process definition.

We think that design of distributed application can
evolved by the use of mobility feature. Engineer has to
separate the concerns: a level for software component and
another for the deployment. With mobile agent, placement is
not frozen from load time. But depending on runtime, mobile
agents can move component and adapt initial placement as a
new configuration for continuing the execution. Next
direction is to provide our work to project partner for deeper
validation. The extensions of Pi-Calculus language are as
rich as extensions of BPEL language, also we are confident
in our approach to assist business analyst in a more formal
approach and check business property of his whole system.

REFERENCES
[1] C. Moemeng, V. Gorodetsky, Z. Zuo, Y. Yang, and C. Zhang, Agent-

Based Distributed Data Mining: A Survey, L. Cao (ed.), Data Mining
and Multiagent Integration, Springer Science + Business Media, May
2009, pp. 234-246.

[2] Takahashi, H. and Kavalan, V., A mobile agent for asynchronous
administration of multiple DBMS servers, Systems Management,

1998. Proceedings of the IEEE Third International Workshop on 22-
24 Apr 1998 pp. 32 - 33.

[3] Ponci, F. and Deshmukh, A.A., A Mobile Agent for measurements in
distributed power electronic systems, Instrumentation and
Measurement Technology Conference Proceedings, 2008. IMTC
2008. IEEE, 12-15 May 2008, pp. 870 - 875.

[4] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, Mobile
Agent Coordination for Distributed Network Management, Journal of
Network and Systems Management Volume 9 Issue 4, Dec 2009.

[5] Verdejo, A. and N. Martí-Oliet, Implementing CCS in Maude 2, in: F.
Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on
Rewriting Logic and its Applications (2002)

[6] M. Große-Rhode. A Compositional Comparison of Specifications of
the Alternating Bit Protocol in CCS and UNITY Based on Algebra
Transformation Systems. In K. Araki, A. Galloway, and K. Taguchi,
eds., Proceedings of the 1st International Conference on Integrated
Formal Methods (IFM’99), pages 253–272, UK, 1999. Springer
Verlag.

[7] B. C. Pierce, D. R#my, and D. N. Turner. A typed higher-order
programming language based on the picalculus. In Workshop on
Type Theory and its Apphcation to Computer Systems, Kyoto
University, July 1993.

[8] R. Milner. Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, Cambridge, UK, May 1999.

[9] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, LFCS, University of
Edinburgh, Avr 1993.

[10] C.Perkins and E. Guttman. Service Location Protocol (SLP), Version
2. Sun Microsystems, http://www.ietf.org/rfc/rfc2608.txt.

[11] F. Curbera et al. Business process execution execution language for
web services, version 1.0. Standards proposal, BEA Systems,
International Business Machines Corporation, and Microsoft
Corporation, http://www-106.ibm.com/developerworks/library/ws-
bpel/, 2003.

[12] Siebel. Business process execution language for web services
bpel4ws, version 1.1. http://www.siebel.com/bpel, 2003.

[13] Dave Clarke. A Basic Logic for Reasoning about Connector
Reconfiguration. Fundamenta Informaticae 81(4):361-390, Jun 2008.

[14] Sascha Kluppelholz and Christel Baier. Symbolic model checking for
channel-based component connectors. Science of Computer
Programming 74(9):688-701, Sep 2009.

[15] Sun Meng, Farhad Arbab, and Christel Baier. Synthesis of Reo
circuits from scenario-based interaction specifications. Science of
Computer Programming 76(8):651-680, Avr 2011.

[16] Carolyn Talcott, Marjan Sirjani, and Shangping Ren. Comparing
three coordination models: Reo, ARC, and PBRD. Science of
Computer Programming 76(1):3-22, May 2011.

[17] Farhad Arbab. Elements of Interaction. In Marc Aiguier, Francis
Bretaudeau, and Daniel Krob, editors, Complex Systems Design &
Management, pages 1-28. Springer, 2010.

[18] Faisal Abouzaid. Toward a pi-calculus based verification tool for web
services orchestrations. In Proceedings of the 8th International
Conference on Enterprise Information Systems (ICEIS06), Paphos
2006.

[19] F. Abouzaid, "A Mapping from Pi-Calculus into BPEL", in Proc.
ISPE CE, 2006, pp. 235-242.

[20] Uwe Nestmann and Frank Puhlmann: Business Process Specification
and Analysis. In Process Algebra for Parallel and Distributed
Computing. Boca Raton, Chapmann & Hall/CRC Press (2009) pp.
129-160

[21] ANSI/IEEE Std 1471™-2000, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems.

[22] Matthew Hennessy , Julian Rathke , and Nobuko Yoshida . SafeDPi:
A language for controlling mobile code (2003). In Proc. FOSSACS,
LNCS 2987

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

[23] C Lhoussaine. Type inference for a distributed pi-calculus (Jun 2003).
Science of Computer Programming

ANNEX

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

