
MDE-based QoS Management Framework for RTDB Management Systems

Development

Salwa M’barek, Leila Baccouche, Henda Ben Ghezala

RIADI-GDL laboratory

INSAT, National Institute of Applied Science and Technology

C.U. Nord, B.P 676, Tunis Cedex 1080, Tunisia

salwa.mbarek@riadi.rnu.tn leila.baccouche@insat.rnu.tn henda.bg@cck.rnu.tn

Abstract—This paper sets out a framework for real-time

database management systems (RTDBMS) model design

integrating QoS management. We use a Model Driven

Engineering (MDE) approach based on model transformation

techniques. The aimed systems apply the feedback control

scheduling for QoS management which gives a robust and

controlled behavior of the system even in transient overloads.

The framework provides metamodels and processes to extend,

reuse and transform RTDBMS models for different QoS

requirements and different real-time applications. A RTDBMS

design tool has been developed based on EMF (Eclipse

Metamodeling Framework) and Kermeta metamodeling and

transformation language.

Keywords-real-time database management systems; QoS

management; feedback control scheduling; MDE; model

transformation ; Kermeta.

I. INTRODUCTION

The real-time database management systems

(RTDBMS) are database management systems

manipulating real-time data and real-time transactions with

time constraints [4, 15].

The real-time data must be updated periodically by real-

time update transactions to reflect the real world state at any

time, otherwise they become unfresh which may cause a

disaster.

The real-time user transactions which have to access

real-time data, must be executed within a deadline otherwise

they become useless for the application.

Recent works in RTDBMS [1, 2, 3, 8, 9, 10, 16] propose

QoS management architectures and QoS management

algorithms based on the Feedback Control Scheduling

Architecture (FCSA) to give a robust and controlled

behavior of the RTDB even during transient overloads and

when we have inaccurate run-time estimates of the

transactions [12].

We propose a model design framework for RTDBMS

using FCSA, which is based on the MDE (Model Driven

Engineering) approach. This new approach for software

systems engineering is centered on the models and not on

the implementation [11].

Our aim is to support designers to easily set up the

appropriate model of the RTDBMS with a QoS

management approach based on the Feedback Control

Scheduling. Moreover, to satisfy new real time

requirements, persistent RTDBMS models can be easily

reused, extended and combined based on model

transformation techniques.

The framework provides metamodels and processes for

RTBDMS model and code generation.

This paper begins in Section 2 with an overview of the

MDE (Model Driven Engineering) approach. Section 3 sets

out the Feedback Control Scheduling Architecture (FCSA)

for QoS management in RTDBMS. The metamodel of

Feedback Control Loops is presented in Section 4. Section 5

gives a metamodel of QoS management approaches in

RTDBMS. Section 6 illustrates the proposed MDE-based

framework for RTDBMS development. The Model

transformation to integrate the QoS management to basic

RTDBMS is explained in Section 7. We conclude this paper

by a summary of contributions and perspectives.

II. MODEL DRIVEN ENGINEERING

The model-driven engineering (MDE) approach has

allowed several significant improvements in the

development of complex systems by putting the focus on a

more abstract concern than the classical programming. It is

a form of generative engineering in which (all or part of) an

application is generated from models [5, 6].
Modeling allows the generation of parts of an application

instead of implementing the source code manually. This
increases the development speed and even more importantly,
it increases the implementation quality. Models can be
checked for consistency before source code is created from
them. If an application evolves, changes only have to be
applied in the model, while the source code can be re-
generated automatically.

Models provide a higher level of abstraction than source
code. Developers can focus on key aspects of an application,
instead of dealing with the complexities inherent in a
programming language. The creation of custom models, so-
called Domain-Specific Languages (DSL), can make the
application understandable without a background in
programming.

The Eclipse Modeling Top-Level Project facilitates MDE
for Eclipse and is one of the biggest and most active areas in
the Eclipse ecosystem. The Eclipse Modeling Framework
(EMF) builds the foundation for a variety of modeling

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

mailto:henda.bg@cck.rnu.tn

technologies such as the Graphical Modeling Framework
(GMF) or textual modeling (XText), and has become a
widely used standard for modeling worldwide.

III. FEEDBACK CONTROL SCHEDULING ARCHITECTURE

The Feedback Control Scheduling Architecture (FCSA)

as visualized in Figure 1, gives a robust and controlled

behavior of the RTDBMS even during transient overloads

and when we have inaccurate run-time estimates of the

transactions [12].

 This architecture is based on the following principle:

"observation then auto-adaptation". The database

administrator defines some parameters and their thresholds

to give the QoS specification. For instance the Miss Ratio

(MR) is a QoS parameter which measures the percentage of

user transactions that missed their deadlines (MR  20%).

The observation consists on measuring periodically the QoS

parameters to compute the system performance.

The auto-adaptation consists on adjusting the system

behavior, using control loops, update policies and QoS

management algorithms.

The Figure 1 shows the FCSA as proposed in [10]. It

consists of several main components:

Sources generate user transactions to be submitted to

the system. Each Update Stream periodically submits an

update transaction for a certain temporal data object (real-

time data). Admission control is applied to user

transactions.

Transaction handler consists of a concurrency

controller (CC), a freshness manager (FM) and a basic

scheduler.

Update transactions with highest importance are

scheduled in the high priority ready queue while user

transactions and Update transactions with lowest

importance are scheduled in the low priority queue. In each

queue, transactions are scheduled in EDF (Earliest Deadline

First) manner. A transaction can be aborted and restarted by

CC. It can also be preempted by a higher priority

transaction. Freshness manager (FM) checks the freshness

of real-time data before the initiation of a user transaction.

FM blocks the corresponding transaction if an accessing

data is currently stale. The blocked transaction(s) will be

transferred from the block queue to the ready queue as soon

as the corresponding update commits.

Monitor periodically measures QoS parameters (miss

ratio, utilization, and perceived freshness) and reports the

statistics to the feedback QoS controllers (MR/Utilization

Controllers) and QoD manager. QoS controllers compute

the control signals U based on the current performance

error using the PID control (Proportional Integral

Derivative control) [14, 15].

QoD Manager adapts the update policy, if necessary. It

informs the admission controller of the new control signal

U (Unew) after potential QoD adaptations. Update

scheduler decides whether or not to schedule an incoming

update depending on the selected update policy.

IV. THE FEEDBACK CONTROL LOOPS METAMODEL

An important step in designing the FCSA of an

RTDBMS is to decide the following concepts: controlled

variables, performance reference, control signal,

manipulated variable, control loop and control function.

1. Controlled variables are the performance metrics
controlled by the scheduler. Controlled variables of

a real-time system may include the deadline miss

ratio M(k) and the CPU utilization U(k) (also called

miss ratio and utilization, respectively), both

defined over a time window ((k-1)W, kW), where

W is the sampling period and k is called the

sampling instant. The miss ratio M(k) at the kth

sampling instant is defined as the number of

deadline misses divided by the total number of

completed and aborted tasks in a sampling window

((k-1)W, kW). Miss ratio is usually the most

important performance metric in a real-time

system.

The utilization U(k) at the kth sampling instant is the

percentage of CPU busy time in a sampling window

((k-1)W, kW). CPU utilization is regarded as a

controlled variable for real-time systems due to cost

and throughput considerations. CPU utilization is

important because of its direct linkage with the

deadline miss ratio [1, 3, 10].

2. Performance reference is a target value specified by the

DBA for a specific controlled variable. Each controlled

variable must converge to its performance reference

(reference). For instance: in steady state, the controlled

variable MR must be less than 30% so its reference is

MRr =30%. An overshoot noted Mp is allowed in

transient overloads; so that

Figure 1 : Feedback Control Scheduling Architecture (FCSA)

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

3. Control loop is a closed loop using a control function to

generate a performance adjusting signal called a control

signal. The entry of the control loop is the error e(t)

between the target value of a controlled variable and its

current value. There is a control loop for each controlled

variable. The unique control signal generated by the QoS

Controller is derived from all control signals generated

by its control loops.

4. Control signal (generally noted ΔU) is provided

periodically by control loops of the QoS Controller. It is

computed by a certain control function based on the

error e(t) between the target values of the controlled

variables (performance reference) and their measured

values. In [1], the control signal ΔU which is the

requested CPU utilization adjustment is computed as

follows.

5. Control function represents the relation between the

control signal (t) and the controlled variable error

e(t).

 ; V is the controlled variable

6. Manipulated variable is a QoS parameter which has an

impact on the performance of the system and the

controlled variables. Its value must be adjusted

dynamically to guarantee QoS specification and so

system robustness. For instance, the data freshness has

an impact on the miss ratio MR, so, it can be considered

as a manipulated variable. In fact, decreasing the number

of update transactions will degrade data freshness.

Consequently, the number of completed user transaction

will increase and so the average miss ratio MR will

decrease.

Auto-adaptation consists on adjusting (decreasing

or increasing); by a certain function; the value of the

manipulated variable depending on the value of the

control signal ΔU which is computed from Controlled

variables errors (based on PID function or other control

function).

The QoS management algorithm makes, at each

sampling period, the Auto-adaptation. It is running on

the QoD Manager which is considered as the QoS

regulator. Regulation orders come from QoS controller

which sends him the control signal.

We propose a metamodel to design feedback

control loops for QoS management in RTBDMS

presented in Figure 2. This metamodel establish

relations between the different concepts explained in

this section.

From this metamodel, different models can be generated

for specific requirements.

V. QOS MANAGEMENT APPROACHES METAMODEL

All studied works [1, 2, 3, 8, 9, 10, 16] use the Feedback

Control Scheduling Architecture. However, we notice many

differences on their QoS management approaches.

They propose different QoS metrics. The specification of

feedback control loops in the QoS controller varies from an

approach to another. They are applying the PID control

(Proportional Integral Derivative Control) [14, 15] as a

control function, but there are some differences in their

formula.

Each approach use only two kinds of transactions: user

transactions and update transactions with firm deadlines (if

they miss their deadlines, they will simply be rejected from

the system).

Compared approaches use different transaction models.

In [1, 7], they propose the milestone model where a

transaction is decomposed into one mandatory sub-

transaction which must obligatory meet its deadline and

many optional sub-transactions which can be rejected in

overload situations without affecting QoS specification.

However, in [8, 12] they use a service differentiation.

They don’t decompose transactions, they classify them in

three service classes regarding to an importance factor.

All approaches consider only base data which hold the

view of the outside environment, in opposition to derived

data which are derived from other base or derived data.

Each approach uses a specific Data model and update

policy [8, 9, 12].

Even transactions queues are configured differently.

Queues configuration depends on transactions model.

In these approaches, are applied different update policies

(adaptive policy, MDE policy) and different scheduling

Figure 2 : Feedback Control Loops metamodel

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

algorithms (EDF: Earliest Deadline First, HEF: Highest

Error First, HEDF: Highest Error Density First).

Many QoS management algorithms are proposed such as:

FCS-IC1(Feedback Control Scheduling-Imprecise

Computation-1) [1]; FCS-IC2 (Feedback Control

Scheduling-Imprecise Computation-2) [1]; FCS-HEF

(Feedback Control Scheduling-Highest Error First) [13];

FCS-HEDF (Feedback Control Scheduling- Highest Error

Density First) [13], QMF1 (QoS-sensitive approach for

Miss ratio and Freshness guarantees 1) [10] and QMF-Diff

(QoS-sensitive approach for Miss ratio and Freshness

guarantees with Differentiated Services) [10].

However, these algorithms are little similar. These

algorithms try to balance the system load between user

transactions and update transactions. For example, in

overload situations, the QoD is decreased applying the

corresponding QoS management algorithm until steady state

reaching, where QoD will be increased without QoT

violating. When the system is saturated, all arrived

transactions are discarded by the admission controller [3, 9].

 An evaluating study of these approaches and

algorithms is detailed in [17].

We propose a metamodel of QoS managements approachs

as shown in the following figure. Based on this metamodel

we can derive any QoS management approach model for

specific QoS requirements.

VI. PROCESSES FOR RTBDMS DEVELOPMENT

Existing QoS management approaches are very

interesting. However, it is difficult to reuse them or a part of
them. Furthermore, it is very difficult to develop a new
RTDBMS architecture from scratch, to extend or to
reconfigure an existing architecture, to modify the QoS
management algorithm or to add other QoS parameters and
QoS specification.

The proposed framework tries to answer these issues. We
are interested only in RTDB management systems with
feedback control scheduling, because they are complex

systems but at the same time, they are robust systems
offering QoS constraints specification and management.

Our first aim was to design a metamodel for QoS
management loops and then a metamodel for QoS
management approaches.

Metamodels will be transformed to generate abstract
component based models for QoS management in
RTDBMS: Component based model of QoS management
policy and Component based model of QoS management
approach.

The component based models resulting from the Y-
process are the entry to the second process (as shown in
Figure 7) which allows the reuse of these models to build
new ones and to generate the implementation into a specific
language.

We built a three-layered database (Figure 7) for QoS
models reuse and code generation. Component based models
of QoS management approaches and policies are stored in
the "Models level" of the database with platform models
(J2EE…). Models are decomposed and components are
stored separately in the "Component level". The data about
metamodels, models, components and bindings are stored in
the "Metadata level".

VII. FRAMEWORK IMPLEMENTATION

Every real time database management system can be

modeled using our metamodels. The QoS management layer

can be added through models transformation as shown in the

following figure. We used the Eclipse Modeling Framework

tool to implement different metamodels conformant to the

Ecore metametamodel and to generate models in the XMI

(XML Metadata Interchange) format. The Kermeta langage

is used to load and transform models.

Models

Data model

Queues

model

Transactions

model

Parameters

QoD

parameters

Overload

parameters

QoT

parameters

Control loops

model

Policies

QoS

management

policy
Update

policy

Inserting

policy

Extracting

policy

Based on

Depends on

use

Global

parameters

Models

Data model

Queues

model

Transactions

model

Parameters

QoD

parameters

Overload

parameters

QoT

parameters

Control loops

model

Policies

QoS

management

policy
Update

policy

Inserting

policy

Extracting

policy

Based on

Depends on

use

Global

parameters

Figure 3 : QoS management Approachs metamodel

Figure 4 : Y-process for model generation

Figure 5: Model reuse process

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

A graphical user interface with the java language is under

development to facilitate the RTDBMS model design and

transformation for designer not expert at EMF and Kermeta.

VIII. CONCLUSION

This paper focused on the real-time database
management systems (RTDBMS) using the Feedback
Control Scheduling Architecture (FCSA) for QoS and time
constraints management. Studied architectures are interesting
but can’t be easily reconfigured, extended or reused. To
answer these issues, we proposed a model driven framework
for QoS-aware RTDBMS development based on the Model
Driven Engineering principles and the Model Driven
Architecture standards. It provides processes, metamodels,
component-based models, models transformation and models
repository. It is possible to generate new approaches and
QoS policies from stored ones or from scratch. Generated
models are component based for two reasons: (1) make easy
the reuse and reconfiguration of models (2) generate a code
for component oriented platforms (J2EE). Object-oriented
or aspect-oriented code may be generated through mapping
between considered metamodels.

REFERENCES

[1] M. Amirijoo, "Algorithms for Managing Real-time Data Services

Using Imprecise Computation", Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA),
Taiwan, 2003.

[2] E. Bouazizi C. Duvallet and B. Sadeg, "Using Feedback Control
Scheduling and Data Versions to enhance Quality of Data in
RTDBSs". Proc. of IEEE International Computer System and
Information Technology (IEEE ICSIT'2005), Alger, Algérie,
2005, pp. 322-327.

[3] E. Bouazizi, C. Duvallet and B. Sadeg, "Une nouvelle approche
pour la gestion de la QdS dans les SGBD temps réel", Proc. of
INFORSID'2006, Hammamet, Tunisie, 2006, pp. 547-559.

[4] L. Cingiser, H. Son and K. Ramamritham, "Real-Time Databases
and Data Services", Journal of Real-Time Systems, 28, 179-215,
2004.

[5] B. Combemale, "Approche de métamodélisation pour la
simulation et la vérification de modèle : Application à
l’ingénierie des procédés", PhD Thesis, Institut National
Polytechnique de Toulouse, 2008.

[6] B. Combemale, "Ingénierie Dirigée par les Modèles (IDM) : État
de l’art", hal-00371565, 2008.

[7] J. Den Haan, "MDA and Model Transformation", 2008.
http://www.theenterprisearchitect.eu/archive/2008/02/18/mda-
and-model-transformation.

[8] C. Duvallet, E. Bouazizi and B. Sadeg, "Improvement of QoD
and QoS in RTDBS". Proc. 14th International Conference on
Real-Time and Network System (RTNS'2006), Poitiers, France,
2006, pp. 87-95.

[9] J. Hansson, M. Amirijoo and S. H. Son, "Specification and
Management of QoS in Real-Time Databases Supporting
Imprecise Computations". IEEE Transactions on Computers,
2006, V. 55, No. 3.

[10] K. Kang, S. Son A. Stankovic, "Managing Deadline Miss Ratio
and Sensor Data Freshness in Real-Time Databases". IEEE
Transactions on knowledge and data engineering, Vol. 16, No.
10, 2004, p. 1200-1216.

[11] S. Kent, "Model Driven Engineering", IFM 2002, 2002, p. 286-
298.

[12] C. Lu, A. Stankovic, G. Tao and H. Son, "Feedback control real-
time scheduling: Framework, modeling and algorithms", Journal
of Real-Time Systems, vol.23, n. 1, 2002, p.85-126.

[13] O. Patrascoiu, "Model Transformations in YATL". Studies and
Experiments, 2004, Technical Report 3-04.

[14] J.D. Poole, "Model-Driven Architecture: Vision, Standards And
Emerging Technologies", ECOOP 2001, 2001.

[15] K. Ramamritham, "Real-Time Databases", International Journal
of Distributed and Parallel Databases, 1996.

[16] B. Sadeg, C. Duvallet and E. Bouazizi, "Prise en compte des
données dérivées temps réel dans une architecture de contrôle par
retroaction". Proc. of MAJECSTIC'2006, 2006.

[17] S. M’barek, L. Baccouche and H. Ben Ghezala, "An evaluation
of QoS management approaches in Real-Time Databases".
ICONS 2008, 2008, p. 41-46.

[18] S. H. Son, M. Amirijoo and J. Hansson, "Specification and
Management of QoS in Imprecise Real-Time Databases", IEEE
Database Engineering and Applications Symposium (IDEAS),
Hong Kong, 2003.

[19] D. Xue, Y. Chen and D.P. Atherton, "PID Controller Design",
Linear Feedback Control, Chapter 6, 2007. Society for Industrial
and Applied Mathematics.

[20] M.J. Willis, "Proportional-Integral-Derivative Control", 1999.

Figure 6 : Models transformation for QoS integation

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

http://www.informatik.uni-trier.de/~ley/db/conf/ifm/ifm2002.html#Kent02
http://www.cs.kent.ac.uk/pubs/2004/1863
http://www.cs.kent.ac.uk/pubs/2004/1863

