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Abstract—Balancing between the desire for information-
hiding and the risk of introducing undesired hidden depen-
dencies is often not straightforward. Hiding important parts
of the internal functionality of a module is known as the black
box principle, and is associated with the property of reusability
and consequently evolvability. An interface, which is roughly
explaining the core functionality of a module, helps indeed
the developer to use the functionality without being forced
to concentrate on the implementation details. However, some
implementation details should not be hidden if they hinder
the use of the module when the environment changes. These
kind of implementation details can be called undesired hidden
dependencies. An interesting question then becomes, which
information should be hidden and which not? In this paper,
we use the Normalized Systems theorems as a base to evaluate
which details should be hidden versus transparent in order to
improve reusability. In other words, which kind of information
encapsulation contributes towards safe black box reuse?

Keywords-Normalized Systems; Reusability; Evolvability;
Systems Theory; Modularity; Black Box.

I. INTRODUCTION

Modern technologies provide us capabilities to build large,
compact, powerful and complex systems. Without any doubt,
one of the major key points is the concept of modularity.
Systems are built as structured aggregations of lower-level
subsystems, each of which have precisely defined interfaces
and characteristics. In hardware for instance, a USB memory
stick can be considered a module. The user of the memory
stick only needs to know its interface, not its internal
details, in order to connect it to a computer. In software,
balancing between the desire for information-hiding and the
risk of introducing undesired hidden dependencies is often
not straightforward. Experience contributes in learning how
to deal with this issue. In other words, best practices are
rather derived from heuristic knowledge than based on a
clear, unambiguous theory.

Normalized Systems theory has recently been proposed
[1] to contribute in translating this heuristic knowledge into
explicit design rules for modularity. In this paper, we want
to evaluate which information-hiding is desired and which
is not with regard to the theorems of Normalized Systems.

The authors of this paper have each a different implemen-
tation focus (business process software versus automation

control software), with different programming languages and
development environments (JAVA [2] versus IEC 61131-3
[3]). In this collaboration we want to study fundamental
principles, which should be independent of implementation
focus. With regard to this independence, the different im-
plementation focus of the authors might be an advantage.
Moreover, at some point the need for combining these disci-
plines is arising. Automation systems have to be upgraded to
new communication protocols and to provide new processing
rules, as the interconnection of different grids will be forced
in future [4].

Doug McIlroy called for families of routines to be con-
structed on rational principles so that families fit together
as building blocks. In short, [the user] should be able safely
to regard components as black boxes [5]. Decades after the
publication of this vision, we have black boxes, but it is still
difficult to guarantee that users can use them safely. How-
ever, we believe that all necessary knowledge is available,
we only have to find all the necessary unambiguous rules to
make this (partly tacit) knowledge explicit.

Scientific research groups contribute in converting tacit
knowledge to theorems and fundamental rules, like the
authors of Normalized Systems did. In addition, industrial
working groups contribute in converting tacit knowledge
to standards and specifications. For example, the OPC UA
working groups provide the concept of OPC UA profiles.
Profiles define the functionality of an OPC UA application
[6]. Software Certificates contain information about the sup-
ported Profiles. OPC UA Clients and Servers can exchange
these certificates via services.

The paper is structured as follows. In Section II, the
Normalized Systems theory will be discussed. In Section lII,
we give an overview of the most commonly discussed kinds
of coupling, and evaluate whether they comply with the Nor-
malized Systems theorems or not. In Section lV, we make
suggestions on how we should deal with undesired hidded
dependencies. Finally, conclusions and future research are
discussed in Section V.

II. NORMALIZED SYSTEMS

The current generation of systems faces many challenges,
but arguable the most important one is evolvability [7]. The
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evolvability issue of a system is the result of the existence of
Lehman’s Law of Increasing Complexity which states: “As
an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is
done to maintain or reduce it” [8]. Starting from the concept
of systems theoretic stability, the Normalized Systems theory
is developed to contribute towards building systems, which
are immune against Lehman’s Law.

A. Stability

The postulate of Normalized Systems states that a system
needs to be stable with respect to a defined set of anticipated
changes. In systems theory, one of the most fundamental
properties of a system is its stability: a bounded input
function results in bounded output values, even for T → ∞
(with T representing time).

The impact of a change should only depend on the
nature of the change itself. Systems, built following this
rule can be called stable systems. In the opposite case,
changes causing impacts that are dependent on the size
of the system, are called combinatorial effects. To attain
stability, these combinatorial effects should be removed from
the system. Systems that exhibit stability are defined as
Normalized Systems. Stability can be seen as the requirement
of a linear relation between the cumulative changes and the
growing size of the system over time. Combinatorial effects
or instabilities cause this relation to become exponential
(Figure 1). The design theorems for Normalized Systems
contribute to the long term goal of keeping this relation
linear for an unlimited period of time, and an unlimited
amount of changes to the system.

Figure 1. Cumulative impact over time

B. Design Theorems for Normalized Systems

In this section, we give an overview of the design the-
orems or principles of Normalized Systems, i.e., systems
that are stable with respect to a defined set of anticipated
changes:

• A new version of a data entity
• An additional data entity
• A new version of an action entity
• An additional action entity
Please note that these changes are associated with

software primitives in their most elementary form. Real-life
changes or changes with regard to ‘high-level requirements’
[9] should be converted to these abstract, elementary
anticipated changes. We were able to convert all real-life
changes in several case studies to one or more of these
abstract anticipated changes [10][11][12]. However, the
systematic transformation of real-life requirements to the
elementary anticipated changes is outside the scope of this
paper.

1) Separation of concerns:
An Action Entity can only contain a single task in Nor-

malized Systems.
In this theorem, we focus on how tasks are structured

within processing functions. Each set of functionality, which
is expected to evolve or change indepently, is defined as a
change driver. Change drivers are introducing anticipated
changes into the system over time. The identification of
a task should be based on these change drivers. A single
change driver corresponds to a single concern in the
application.

2) Data version transparency:
Data Entities that are received as input or produced as

output by Action Entities, need to exhibit version trans-
parency in Normalized Systems.

In this theorem, we focus on how data structures are
passed to processing functions. Data structures or Data
Entities need to be able to have multiple versions, without
affecting the processing functions that use them. In other
words, Data Entities having the property of data version
transparency, can evolve without requiring a change of the
interface of the action entities, which are consuming or
producing them.

3) Action version transparency:
Action Entities that are called by other Action Entities,

need to exhibit version transparency in Normalized Systems.
In this theorem, we focus on how processing functions

are called by other processing functions. Action Entities
need to be able to have multiple versions without affecting
any of the other Action Entities that call them. In other
words, Action Entities having the property of action
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version transparency, can evolve without requiring a change
of one or more Action Entities, which are connected to them.

4) Separation of states: The calling of an Action Entity
by another Action Entity needs to exhibit state keeping in
Normalized Systems.

In this theorem, we focus on how calls between processing
functions are handled. Coupling between modules, that is
due to errors or exceptions, should be removed from the
system to attain stability. This kind of coupling can be
removed by exhibiting state keeping. The (error) state should
be kept in a separate Data Entity.

III. EVALUATION OF KINDS OF COUPLING

Coupling is a measure for the dependencies between
modules. Good design is associated with low coupling and
better reusability. However, lowering the coupling only is not
specific enough to guarantee reusability. Classifications of
types of coupling were proposed in the context of structured
design [13]. The key question of this paper is whether
a hidden dependency and therefore coupling is affecting
the reusability of a module? In general, the Normalized
Systems theorems identify places in the software architecture
where high coupling is threatening evolvability [14]. More
specifically, we will focus in this paper on several kinds
of coupling and evaluate which of them is lowering or
improving reusability.

A. Content coupling

Content coupling occurs when module A refers directly
to the content of module B. More specifically, this means
that module A changes instructions or data of module B.
When module A branches to instructions of module B, this
is also considered as content coupling.

It is trivial that direct references between modules prevent
them from being reused separately. In terms of Normalized
Systems, content coupling is a violation of the first theorem,
separation of concerns.

Avoiding content coupling is not new, other rules than
those of the Normalized Systems already made this clear.
Decades ago, Dijkstra suggested to abolish the Go To
statement from all ‘higher level’ programming languages
[15]. Together with restricting access to the memory space
of other modules, Dijkstra’s suggestion contributed to exile
content coupling out of most modern programming lan-
guages.

B. Common coupling

Common coupling occurs when modules communicate
using global variables. A global variable is accessible by
all modules in the system. If a developer wants to reuse
a module, analyzing the code of the module to determine
which global variables are used is needed. In other words,

a white box view is required. Consequently, black box use
is not possible.

In terms of Normalized Systems, common coupling is a
violation of the first theorem, separation of concerns.

We add however, that not the existence but the way of
use of global variables violates the separation of concerns
theorem. In earlier work we used global variables in a proof
of principle with IEC 61131-3 code, which complies with
Normalized Systems [11]. The existence of global variables
was needed for other reasons than mutual communication
between modules (i.e., connections with process hardware).
In this project, the global variables were passed via an
interface from one module to the other. Some authors state
that the declaration of global variables in the IEC 61131-
3 environment is somewhat ambiguous [16], although we
do not think this is crucial to determine the characteristic
of reusability of a module (as long as there is no common
coupling!).

Since the use of global variables in case of common
coupling is not visible through the module’s interface, each
use of these global variables is considered to be a hidden
dependency. And since common coupling is a violation of
separation of concerns, this is an undesired hidden depen-
dency with respect to the safe use of black boxes.

C. Control coupling

Control coupling occurs when module A influences the
execution of module B by passing data (parameters). Com-
monly, such parameters are called flags. Whether a module
with such a flag can be used as a black box depends on
the fact whether the interface is explaining sufficiently the
meaning of this flag for use. Obviously, if a white box view
is necessary to determine how to use the flag, black box
use is not possible. The evaluation of control coupling in
terms of reusability is twofold. Adding a flag can introduce
a slightly different functionality and improve the reuse
potential. For example, if a control module of a motor is
supposed to control pumping until a level switch is reached,
a flag can provide the flexibility to use both a positive level
switch signal and an inverted one (positive versus negative
logic). On the other hand, extending this approach to highly
generic functions, would lead in its ultimate form to a
single function doIt, that would implement all conceivable
functionality, and select the appropriate functionality based
on arguments. Obviously, the latter would not hit the spot
of reusability.

One of the key questions during the evaluation of control
coupling is: how many functionalities should be hosted in
one module? In terms of Normalized Systems, the principle
‘separation of concerns’ should not be violated. The concept
of change drivers brings clarity here. A module should
contain only one core task, eventually surrounded by sup-
porting tasks. Control coupling can help to realize theorem
2 (data version transparency) and theorem 3 (action version
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transparency). The calling action is able to select a version
of the called action based on control coupling. We conclude
that control coupling should be used for version selection
only. More details about versions and their instances are part
of very recent research of which the results are in a review
process on the moment of the submissing of this paper.

D. Stamp coupling

Stamp coupling occurs when module A calls module B
by passing a data structure as a parameter when module B
does not require all the fields in the data structure.

It could be argued that using a data structure limits the
reuse to other systems where this data structure exists,
whereas only sending the required variables separately does
not impose this constraint. However, we emphasize that the
key point of this paper does not concern reuse in general.
Rather, it focuses on safe reuse specifically. The research
towards safe black box reuse is more about adding contraints
or defining limitations than keeping or creating possibilities.
When working with separated, simple datatypes as a set of
parameters, every change requires a change of the interface
of the module. Since we do not consider ‘changing the
interface’ as one of our anticipated changes, stamp coupling
is an acceptable form of coupling. With regard to the
first theorem, separation of concerns, one should keep the
parameter set (Data Entity), the functionality of the module
(action) and the interface separated. Keeping the interface
unaffected, while the Data Entity and Action Entity are
changing, can be realized with stamp coupling.

E. Data coupling

Data coupling occurs when two modules pass data using
simple data types (no data structures), and every parameter
is used in both modules.

Realizing theorem 3 (action version transparency) is im-
possible with data coupling, since the introduction of a new
parameter affects the interface of the module. This newer
version of the interface would not be suitable for previous
action versions, and could consequently not be called a
version transparent update. The addition of a parameter
in the module’s interface would violate the separation of
concerns principle. Changing or removing a parameter is
even worse.

Note that the disadvantage of data coupling, affecting the
module’s interface in case of a change, does not apply on
reusing modules, which are not evolving. This can be the
case when working with system functions, e.g., aggregated
in a system function library. However, problems can occur
when the library is updated. We will give more details about
this issue in the next section.

F. Message coupling

Message coupling occurs when communication between
two or more modules is done via message passing. Message

passing systems have been called ‘shared nothing’ systems
because the message passing abstraction hides underlying
state changes that may be used in the implementation of
sending messages.

The property ‘sharing nothing’ makes message coupling
a very good incarnation of the separation of concerns
principle. Please note that asynchronous message passing
is highly preferable above synchronous message passing,
which violates the separation of states principle.

IV. IMPLICIT DEPENDENCIES

We consider the case of one developer, who has pro-
grammed a part of a modular system with an acceptable
amount of coupling. Every entity of the subsystem complies
to the theorems of Normalized Systems. The code is fulfill-
ing a part of the requirements of a bigger system, which
has to be built by several developers. Another part of the
system is programmed by a second developer, using the
same programming language and the same platform. The
question is, can both developers exchange the source code
of their modules and reuse them as safe black boxes, i.e.,
without the need of a white box view of their colleagues’
code? In this paper, we concentrate on the case where both
developers used the same programming language, the same
platform, but a different set-up of programming environ-
ment. In other words, they do not share the same - company
standard - system functions in their respective programming
environments.

We start our discussion with a second case, where two
or more hardware developers share several ICs (Integrated
Circuits) to build for example embedded systems. Can they
just pick an IC out of the box and safely use it as a black
box? On one hand, hardware engineers did a remarkable job
with regard to the production of safe black boxes, because
they do not need to know the internal details of the IC to
use it. However, before usage, the user needs the information
that is printed on the IC to estimate its expected behaviour.
If the IC is very recently built as a prototype, with nothing
printed on it, the user needs information of the prototype-
builder to know how to use it. In other words, information
about the interface has to be available in order to use the
black box. Besides, the information — rarely more than
a type number — which is typically printed on an IC, is
referring to data sheets, explaining in more detail the black
box use of the (hardware) module.

In software, we have the advantage that interfaces can
be made roughly self-explaining. But in comparison with
hardware, possible dependencies are introduced. Our two
or more software developers who want to (re)use each
others modules, made in another programming environment,
should inform each other about the libraries they used.
But even if they do this well, they might end up in a
so-called dependency-hell. This is a colloquial term for
the frustration of some software users who have installed
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software packages, which depend on specific versions of
other software packages. It involves for example package
A needing package B & C, and package B needing package
F, while package C is incompatible with package F.

This kind of compatibility conflicts is — in terms of
Normalized Systems — caused by a violation of the first
theorem, separation of concerns. Every external technology
should be separated by a connector element. Note that a
connector element is an Action Entity dedicated to connect
a module with an external technology. To prevent version
conflicts, every connector element should exhibit version
transparency, like every other Action Entity should.

Let us consider the situation in which highly qualified
software developers indeed implemented connector elements
for every package or library they used. This makes the inte-
grated system robust against anticipated changes, although it
is obviously not delivering any garantee regarding the proper
functioning of that external technology itself. In other words,
if one or more packages or libraries are not properly linked
to the development environment, the connector elements will
deliver (on an asynchronous way) an error status.

Safe black box (re)use includes that a developer should
be able to anticipate which conditions are necessary for
(re)use. A self-explaining interface is a good start, but
typically dependencies like packages or libraries are not
included in the interface. We conclude that it should, and
phrase the following rule.

In order to design safe black box (re)useable software
components, every (re)use of a library or package in a
module, should include a reference, path or link to the
identification of the dependency, accompanied with the used
version.

We make the reflection that there is a similarity
between global variables and dependencies, which are
not passed through the module’s interface. Consequently,
these dependencies cause common coupling. Remember
it is not the existence of global variables, libraries or
packages which is causing common coupling, but rather
the fact that these variables, libraries or packages are not
passed via the module’s interface. As a result, these kind
of dependencies violate the separation of concerns principle.

In searching ways to identify dependencies through the
module’s interface, the concept of OPC UA Profiles is
interesting [17]. OPC UA Profiles define the functionality of
an OPC UA application. As human-readable announcements,
they inform users which parts of the OPC UA standard
are implemented. In addition, this information can also be
exchanged between OPC UA applications. This allows appli-
cations to accept or reject connection requests depending on
which Profiles their counterpart is supporting. The concept
of OPC UA Profiles is dedicated to exchange information

about the interface and communication concepts of OPC
UA applications. The functionality behind such an OPC
UA interface is not exchangeable via OPC UA Profiles.
In other words, the functionality, which can be expressed
in standardized OPC UA Profiles, is limited to interface
and communication functionality. This principle should be
extended to a more general form to provide information
about dependencies on different levels. For modules, directly
connected to the internet, a worldwide accessible website
could provide standardized information about well defined
dependencies. For other modules, the same concept of ref-
erence could be introduced for specific application domains,
or even vendor-dependent dependency information.

Remember the case of hardware engineers willing to share
ICs for the development of embedded systems. The code
printed on the ICs is referring to data sheets. This situation is
similar to software modules, accompanied with a reference
to dependency information in their interface. Whenever a
user can not find the dependency information through a
reference in the interface of a black box, it should be possible
to reject the possible use of this module. This would result
in an enforcement of the separation of states principle.

V. CONCLUSION

The reasons why properties like evolvability, (re)usability
and safe black box design are difficult to achieve, have most
likely something to do with a lack of making the existing
knowledge and experience-based guidelines explicit. Un-
doubtedly, the theorems of Normalized Systems contribute
on this issue by formulating unambiguous design rules
at the elementary level of software primitives. However,
on a higher implementation level, it is expected that not
all implementation questions like those related to e.g., a
dependency-hell, are easy to answer. Experienced engineers
will find that these are violations of the theorems ‘separation
of concerns’ and ‘separation of states’. However, we aim that
— on top of these fundamental principles — some derived
rules can make these violations easier to catch, also for less
experienced engineers.
In this paper we introduced the derived rule that, based
on the 1st and 4th principle of Normalized Systems, any
dependency should be visable in the module’s interface,
accompanied by its state and version. Of course, the way
how this information is included in the interface, should be
done in a version transparent way, to prevent violations of
the 2nd and 3rd principle of Normalized Systems.
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