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Abstract—Automation systems in the domains of smart grids,
digital factories and modern process systems struggle to follow
the permanent shift of their requirements. Hence, the most
prominent non-functional requirement of a system seems to
be evolvability. The recently proposed Normalized Systems
theory has formulated constraints on the modular structure of
software architecture in order to engineer evolvable systems. In
this context, evolvability is related to systems theory stability as
it is defined as the possibility to perform additional anticipated
changes to the system of which the output remains bounded,
even if an unlimited systems evolution is assumed. In this anal-
ysis, one considered the context of compile-time. However, this
view becomes far more complex during run-time deployment,
because some modules have several instances, others only one.
The amount and complexity of connections during run-time is
not straightforward visualizeable. In this paper, we introduce
two new theorems, which are complementary with the existing
four, to achieve a stateful run-time deployment.

Keywords-Normalized Systems; Evolvability; Systems The-
ory; Modularity; Industrial Automation.

I. INTRODUCTION

The non-functional requirement of evolvability is a very
desirable characteristic for both information and production
control systems. First, current information systems still
struggle to provide high levels of evolvability [1]. Indeed,
software maintenance is regarded as one of the most ex-
pensive phases of the software life cycle, and often leads
to an increase of architectural complexity and a decrease of
software quality [2]. However, contemporary organizations
are increasingly faced with changing environments, which
emphasizes the need for evolvability of software systems.
The widely accepted shortage in programming manpower,
and the disappointing success rate in business software
development projects, call for a major gain in this kind of
software development. Second, automation software should
be able to evolve over time as well. This is a key requirement
in the beginning age of decentralized energy generators and
consumers prominently known as smart grid [3]. The up-
coming of PLCs (Programmable Logical Controllers) some
40 years ago, has provided more flexibility to develop and
maintain automation systems in terms of software in spite of

hardware (i.e., electrical circuits). The dynamic interchange
of software components of a PLC with near-to-zero down-
time some years ago, has provided the flexibility to alter
automation systems while staying in full service [4]. The
modification of an automation system should be possible
without affecting existing parts, even if running parts are
reused in a so-called online change (i.e., downloading a new
software part to the controller without stopping the system).

Normalized Systems theory has recently been proposed
to contribute in achieving the characteristic of evolvability
in systems. Requiring stability as defined in systems theory,
four design principles or theorems are proposed. Systems
built with modules, which comply with these theorems, can
increase without losing control over the so-called combi-
natorial effects of a change. A bounded set of anticipated
changes should result in a bounded amount of impacts to
the (growing) system.

One can visualize an overview of a system by placing
a number of modules on a surface, and connecting them
through their interfaces. Since a good interface is roughly
explaining the core functionality of a module, it may seem
rather straightforward to consider the relations between the
modules via their connections. However, from the moment
the (compiled) code starts to run, obtaining this overview is
even far more complex. For instance, some modules have
in run-time several instances, others only one. The amount,
complexity and dimensions of connections during run-time
is not straightforwardly visualizeable. However, obtaining
such overview of the runtime situation in an automation
project is necessary to control evolvability, and predict
combinatorial effects. There is need to minimize downtimes
by dynamic reconfiguration of a system, without a complete
shutdown. It is important to note the contrast with a static
configuration, which does need a complete shutdown of
the system. Such a static reconfiguration is very costly and
should be replaced by a dynamic one [4].

In this paper, we introduce two new theorems, which are
complementary with the existing four, to achieve a stateful
and an evolvable run-time deployment.

The paper is structured as follows. In Section II, we
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mention some related work. In Section III, the Normalized
Systems theory will be discussed. In Section IV, we intro-
duce the two new theorems. Finally, conclusions and future
research are discussed in Section V.

II. RELATED WORK

One of the motivations of Dijkstra to argue for the
abolishment of the GOTO statement from all “higher level”
programming languages was the finding that “...our intellec-
tual powers are rather geared to master static relations and
that our powers to visualize processes evolving in time are
relatively poorly developed. For that reason we should do (as
wise programmers aware of our limitations) our utmost to
shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between
the program (spread out in text space) and the process
(spread out in time) as trivial as possible.” [8]

Most modern higher level programming languages do
not allow GOTO statements, but we think more rules can
contribute to address Dijkstra’s ambition. Even without the
GOTO statement the “dynamic process” (i.e., its dispersal in
time) is still difficult to overview. Designing and developing
modules, connected through interfaces with other modules,
may seem rather straightforward when they are modeled
in a static way (i.e., dispersed in text space or graphical
visualizations). Studying the behavior of these modules in a
dynamic view is even more complex. For example, one type
or class definition results in run-time deployment in several
instances. Some modules have a lot of instances, others only
one. Consequently, representing the behavior of modules,
together with their interrelations and instances during run-
time is far from easy.

Additionally, visualizing and overviewing processes is
harder if the system becomes more complex. Reducing
complexity is a way to facilitate the formation of overviews.
Employing meta data and information modeling contributes
on this field. For example, Mahnke et al. have proposed
classifications of types of information modeling standards
for automation [9]. Also, they discuss the applicability of
possible approaches to expose those models.

Further, Kuhl and Fay introduced an approach to modify
automation systems by way of a middleware concept [4].
They focus on reconfiguration of systems, even during run-
time, when a shutdown is not possible. This reconfiguration
should not affect existing, running parts. Consequently, in
such a system we have running instances, which are instan-
tiated with a specific type version, and new constructions,
which provide instances with a new type version. These
instances should be able to co-exist, even when they are
slightly different because of the different type versions they
are based on.

Version transparency is one of the key points of the
Normalized System theory to achieve stability [10]. As a
consequence, different versions of both data entities and

action entities can co-exist simultaneous. At first sight,
the co-existency of different versions is not contributing
in making the correspondence between the program and
the run-time deployment trivial (i.e., what Dijkstra called
for). However, allowing only one version (typically the
most recent one) in an evolving system leads to unbounded
combinatorial effects. The principle of version transparency
is providing the possibility to overview nevertheless the
different versions. The question is, how can we achieve
an overview of run-time instances of these primitives, each
constructed in one of the co-existing versions.

III. NORMALIZED SYSTEMS

The law of Increasing Complexity (Lehman [11]) states:
“As an evolving program is continually changed, its com-
plexity, reflecting deteriorating structure, increases unless
work is done to maintain or reduce it”. This degradation of a
system’s structure over time is well known. More difficult to
determine is the detailed cause of this deterioration. Which
new parts of the system contribute in the effects of this law?
In other words, why is a piece of code causing more costs
in the mature stage of the lifecycle of a system, than exactly
the same piece of code, is causing in the beginning stage of
the project? The authors of the Normalized Systems theory
combine Lehman’s law of Increasing Complexity with the
assumption of unlimited systems evolution: The system
evolves for an infinite amount of time, and consequently
the total number of requirements and their dependencies
will become unbounded. These authors admit that in practice
this assumption is an overstatement for the most commercial
applications, but it provides a theoretic view on the evolv-
ability issue, which is independent of time. The rather vague
questions like “Is this change causing more troubles than
another?” can be replaced by the fundamental question: “Is
this change causing an unbounded effect?”. The authors of
Normalized Systems want to provide a deterministic and
unambiguous yes/no answer on this question, by evaluation
whether one of the theorems is violated or not.

A. Stability

The single postulate, from which the Normalized Systems
theory is derived from, states that a system needs to be
stable with respect to a defined set of anticipated changes. In
systems theory, one of the most fundamental properties of
a system is its stability: a bounded input function results
in bounded output values, even for T → ∞ (with T
representing time).

Stability demands that the impact of a change only de-
pends on the nature of the change itself. Conversely, changes
causing impacts that are dependent on the size (or amount
of changed or added requirements) of the system, are called
combinatorial effects. To achieve stability, combinatorial
effects should be abolished from the system. Systems that
exhibit stability are defined as Normalized Systems. Stability
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can be seen as the requirement of a linear relation between
the cumulative changes and the growing size of the system
over time. Combinatorial effects or instabilities cause this
relation to become exponential (Figure 1). By eliminating
combinatorial effects, this relation can be kept linear for
an unlimited period of time, and an unlimited amount of
(anticipated) changes to the system.

B. Design Theorems for Normalized Systems

Anticipating all the desired changes of the future might
seem as a rather daunting task. Indeed, lots of system
analysts get lost in this ambition. The authors of Normalized
System’s theory do not state they can do better in listing
up all the functional requirements, possibly hidden in the
present, or desired in the future. Fulfilling this task would
be very complex and exceptional. These authors want to
introduce another approach to achieve the same goal. The
discussion about anticipated changes is not about changes,
which are directly associated to recently expressed desires
of the customers or managers to improve a system. Instead,
anticipated changes focus on elementary changes, associated
to software primitives. Typically, one real-life change corre-
sponds with a lot of elementary changes, expressed in terms
of software primitives. The Normalized System’s theory is
not focussing on the real-life changes, but on the elementary
changes. In this section, we give an overview of the design
theorems or principles of Normalized Systems, i.e., systems
that are stable with respect to a defined set of anticipated
(elementary) changes:

• A new version of a data entity;
• An additional data entity;
• A new version of an action entity;
• An additional action entity.

Figure 1. Cumulative impact over time

These changes are associated with software primitives in
their most elementary form. Changes to meet “high-level
requirements” that are obtained by system analysts from
traditional gathering techniques (including interviews and
use cases) [12] should be converted to these abstract,
elementary anticipated changes. We were able to convert all
high level changes in several case studies to one or more
of these abstract anticipated changes [1][13][14]. However,
some issues we encountered during the implementation of
these proof of principles [14], have led to the introduction
of the two new theorems of the next section. The systematic
transformation of real-life requirements to the elementary
anticipated changes is outside the scope of this paper.
Note that already initial efforts are done in mapping the
organizational requirements to the primitives of Normalized
Systems [15].

1) Separation of concerns:
An action entity can only contain a single task in Nor-

malized Systems.
This principle is focussing on how tasks are implemented

within processing functions. Every concern or task has to be
separated from other concerns. The identification of a task
should be based on the concept of change drivers. A task
is something that is subject to an independent change. A
single change driver corresponds to a single concern in the
application.

Proof: Consider a module M containing a task A and
a second task B. The evolution of task B causes the
introduction of N versions of task B. Since task B is part of
module M, module M has also N versions. The introduction
of a mandatory version upgrade of the task A will require
to upgrade all N versions. According to the assumption of
unlimited systems evolution, N will increase over time and
will become unbounded, and so will the number of versions
of task B. As a result, the number of additional version
upgrades of the module M to implement a given change
becomes unbounded.

2) Data version transparency:
Data entities that are received as input or produced as

output by action entities, need to exhibit version trans-
parency in Normalized Systems.

This principle is focussing on how data structures are
passed to processing functions. Data version transparency
is the property that data entities can have multiple versions,
without affecting the processing functions that consume or
produce them.

Proof: Consider a data structure D, that is passed
through the interfaces of N versions of a processing
function F. The introduction of a mandatory upgrade of
the data structure D will require the adaptation of the
code that accesses this data structure for N versions of F,
unless D exhibits version transparency. According to the
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assumption of unlimited systems evolution, N will increase
over time and will become unbounded, and so will the
number of versions of the processing function F. As a result,
the number of additional adaptations of the code, which
interfaces with the data structure, becomes unbounded.

3) Action version transparency:
Action entities that are called by other action entities,

need to exhibit version transparency in Normalized Systems.
This principle is focussing on how processing functions

are called by other processing functions. Action version
transparency is the property that action entities can have
multiple versions without affecting any of the other pro-
cessing functions that call this processing function.

Proof: Consider a processing function P that is called
by N other processing functions F. The introduction of
an upgrade of P will require the adaptation of the code
that calls P in the N functions F, unless the upgrade of
function P exhibits version transparency. According to the
assumption of unlimited systems evolution, N will increase
over time and will become unbounded, and so will the
number of calling functions F. As a result, the number of
additional adaptations of the code, which are calling the
function P, becomes unbounded.

4) Separation of states: The calling of an action entity
by another action entity needs to exhibit state keeping in
Normalized Systems.

This principle is focussing on how calls between process-
ing functions are handled. The contribution of state keeping
to stability is based on the removal of coupling between
modules that is due to errors or exceptions. The (error) state
should be kept in a separate data entity.

Proof: Consider a processing function P that is called
by N other processing functions F. The introduction of
an upgrade of P, possibly with a new error state, will
require the N functions F to handle this error, unless the
upgrade of function P exhibits state keeping. According
to the assumption of unlimited systems evolution, N will
increase over time and will become unbounded, and so will
the number of calling functions F. As a result, the number
of additional code to handle the new error in each function
F, becomes unbounded.

IV. NEW THEOREMS: ENTITY INSTANCES

Modularity is a central concept in systems theory and
has played a crucial role in software engineering since the
1960s. Doug McIlroy described a vision of the future of
software engineering in which software would be assembled
instead of programmed [16]. Studying evolvability of soft-
ware in terms of its modular structure is widely accepted [1]
and modularity is generally associated with use and reuse.
Hence, when a module is used more than once during run-
time we can call each use an instance.

Regev et al. proposed a definition of “Business Process
Flexibility” [17]. We derive from this definition a more
general interpretation of flexibility-to-change: “the capability
to implement changes in a module’s type and instances
by changing only those parts that need to be changed and
keeping other parts unchanged”. In this interpretation, we
specifically mean that a type change has influence on all
upcoming instance creations. Meanwhile the existing (older)
instances are not aware of this change, and should not be
affected by this change. In other words, we consider the
following sequence. An original version of a module’s type
is compiled on moment t=1. An instantiation of this module
is created during the launch of the system on moment t=2.
On moment t=3 we compile a new version of the module’s
type. We start a new part of the system, which is realizing
a connection with an existing part. More specifically, on
moment t=4 we create a new module instance based on the
new version, without affecting the existing original module’s
instance in run-time (which existed since moment t=2). The
instance, which showed up in run-time on moment t=4,
should not affect the older instance, which was already
launched in run-time on moment t=2.

For some instances of software primitives there are
specific reasons to evolve, for other instances there are
no such reasons. Moreover, even other instances have
reasons to evolve on another way because of other specific
(application dependent) reasons. Finally, we end up with
an additional non-functional requirement, which can be
designed on a similar way as evolvability: support of
diversity. However, when initially identical instances of
primitives evolve to a diversity of instances, the four
theorems of Normalized Systems are not enough to
prescribe how to manage instances. In search for a solution,
we introduce two additional theorems, which focus on
entity instances and how different versions can co-exist and
used. Note that these new theorems are an extension of the
theory. However, the prediction of the orignal authors of the
existing Normalized Systems theory is not violated: these
additions do not fundamentally alter the first 4 principles,
they only suggest additional principles [7]. Moreover, the
new theorems are run-time equivalents of the original
theorems 2 and 3 (version transparency theorems). Besides,
these existing theorems are proven by a simple reductio ad
adsurdum, and the new ones are proven by evaluating a
possible violation of the original theorems. Future research
should provide experience reports in order to find possible
empirical confirmations.

We define two additional anticipated changes:
• An additional data entity instance (known entity type

version)
• An additional action entity instance (known entity type

version)
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We further posit the assumption of unlimited systems
evolution in both compile-time and run-time, namely that
the system evolves for an infinite amount of time. Note that
the run-time evolution of the system is more complex than
the compile-time evolution, because the run-time evolution
also includes old instances, from which no module’s type
definitions exist any more in upcoming compile-time.
One can imagine situations where new versions are just
extending older version, and consequently the existence of
the older module’s type stops. Equivalently, the amount of
both data entity instances and action entity instances will
become (theoretically) unbounded. The amount of versions
will become unbounded as well.

5) Data instance transparency: A data instance has to
keep its own instance ID and the version ID on which it is
based or constructed.

Proof (reductio ad adsurdum): When a data entity
instance, constructed or generated with an old version is
showing up in a more recent action entity instance, the
action entity instance has to be able to decide whether it
can
a) just process the data instance
b) use default values for non-existing fields
c) not process the request, but setting a ’data type obsolete’
status.
Consider this action entity instance, which can not identify
the version of the older data instance. Next, this action
entity instance attempts consuming a non-existing field in
the older data entity instance, and end up in an unexpected
and/or stateless behavior. The latter would result in
a violation of the fourth theorem (separation of states),
and thus also of the postulate of Normalized Systems theory.

This principle is focussing on the interaction between data
entity instances and action entity instances. It contributes to
the problem that instances of the same data entity can differ
in version. When a recent action entity meets an older data
entity instance, this action has to know the version of the
provided data instance, to be able to treat this instance in
a correct way. It should for example not happen that the
action entity is performing operations with a recently added
data field, which is not available (yet?) in the provided data
instance.

6) Action instance transparency: An action instance has
to keep its own instance ID and the version ID on which it
is based or constructed, preferably in a separate data entity
instance

Proof (reductio ad adsurdum): Consider an action entity
instance, which calls another action entity instance, without
being able to identify the version of the called action entity
instance. Next, the calling action entity instance requests
to perform a non-existing (supporting) task of the called

Figure 2. Two instances for different brands

action entity instance, without being able to determine a
correct state of the called operation. This would result in
a violation of the fourth theorem (separation of states),
and thus also of the postulate of Normalized Systems theory.

This principle is focussing on the mutual interaction
between action entity instances. It contributes to the problem
that action instances of different versions are calling other
action instances of different versions. The youngest instance
has to be able to determine the version of the older instance,
to be able to make a good decision concerning the opera-
tion of the requested functionality. Consider for example a
control module, which is managing the control of a motor
[13]. Suppose an existing motor instance is replaced by a
motor of another brand, with different system functions. A
new version of the control module would support a new
connector element, which is managing the connection with
the motor of the new brand (Figure 2). To comply to the
theorem ’separation of concerns’, a new connector element
has to be added to the control module. However, besides
the property of evolvability, support for diversity is needed
too in this case. A calling action has to be able to specify
and select which connector should be used in the operation.
If, due to the absence of action instance transparency , the
wrong (old) connector element is used, we will end up in
unexpected behavior of the motor of the new brand.

V. CONCLUSION

Parts of a system, which are initially identical, will differ
over time. In other words, some parts will evolve, others not
(on the same way). Our ambition is to find rules to facilitate
building systems, which are able to support both evolvability
and diversity.

The Normalized Systems theory contributed in mak-
ing heuristic knowledge explicit. We think the necessary
knowledge for building evolvable systems is available, but
often only in the form of tacit knowledge, which is often
fragmented design knowledge [10]. The use of this tacit
knowledge is very dependent of individuals, or of which
individuals are supporting and coaching the development
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process. For large systems, it is hardly manageable to only
allow developers in the team, who have the required tacit
knowledge. Making this tacit knowledge explicit can con-
tribute in facilitating non-experienced engineers to develop
evolvable systems.

This paper proposes two additional new theorems, which
are in line with the existing theorems. In this contribution
we focussed on the existing theorems “data version trans-
parency” and “action version transparency”. We specify that
these original theorems apply explicitly for written code of
data entity and action entities respectively. We suggest to in-
terpret them as “data type version transparency” and “action
type version transparency”. Our two new theormes apply
explicitly for instances during run-time for data entities
and action entities. Therefore we call them “data instance
transparency” and “action instance transparency”.
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