
How About Agile Systems Development?

Hermann Kaindl, Edin Arnautovic, and Jürgen Falb
Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
{kaindl, arnautovic, falb}@ict.tuwien.ac.at

Abstract—In recent years, a hype about “agile” software
development has been growing. So, there may be some temp-
tation to simply transfer such approaches to general systems
development, for system including hardware. It is important to
understand, however, that a core idea behind agile software
approaches is iterative and incremental development (IID),
actually an old and proven idea. Unfortunately, increments
especially in rapid iterations face inherent limitations in hard-
ware development. So, we claim that agile development for
general systems involving hardware is much more difficult to
achieve than what current folklore may assume. In order to
address this issue, we constructively propose a development
life cycle for general systems that takes these limitations into
account. It distinguishes between iterations with major, minor
and with almost no increments, in order to include hardware
development realistically in IID. In this way, some of the
promises of agile approaches may be kept in general systems
development, whether it is called “agile” or not.

Keywords-Agile development; iterative and incremental de-
velopment; development life cycle

I. INTRODUCTION

It is important to distinguish between Agile Systems engi-
neering and agile Systems Engineering [1]. The former deals
with systems that are flexible, reconfigurable, extensible,
scalable, etc. The latter focuses on flexibility and speed in
the process of conceiving, designing and implementing sys-
tems. It is about the ability of the process to respond to new
requirements and information during system development.

In this latter spirit, actually software development ap-
proaches have become popular recently around the notion
of “agility”, where the most popular today is Scrum [2].
A major core idea of these approaches is iterative and
incremental development (IID), which is actually an old and
proven idea.

So, how about “agile” systems development? Is it possible
to transfer such approaches directly from software to general
systems development? Can hardware involved in such sys-
tems be developed incrementally in the same rapid iterations
as software?

We try to answer these questions in this paper in the
following manner. First, we sketch related work on this sub-
ject. Then we argue about inherent difficulties arising with
hardware increments, which cause issues in agile systems

development. Finally, we propose an IID life cycle that takes
these limitations with hardware increments into account.

II. RELATED WORK

Research in agile systems engineering is still in its
infancy, and most of the work investigates the potential
utilization of agile approaches in general, or just emphasizes
a need for such approaches.

By performing a series of interviews with industry rep-
resentatives, Stelzmann [3] investigated under which con-
ditions agile Systems Engineering could be used for the
development of systems that have a major hardware portion.
His results suggest that manufacturing, prototyping and
testing of hardware is expensive and takes a lot of time,
and implementing changes is hard. For these reasons, his
interviewees did not apply agile development for hardware.
However, his results also indicate that there is a strong need
for more agility in systems engineering, in particular due
to dynamic business environments. The industry representa-
tives also claim that agile approaches would better support
innovative products as well as complex systems that require
more prototyping.

Development of a software-intensive system contains
three important aspects according to [4]: business, system,
and software. The business aspect is responsible for the
economic and operational characteristics of the system in-
cluding contracting, funding, operational requirements, and
overall system delivery structure. The system aspect is re-
sponsible for the overall technical and technical management
aspects of the system, and the software aspect deals with
the software in the system. These authors state that, while
some agile approaches have been introduced and executed
for business and software aspects, there is a lack of such
approaches for the system aspect. We agree with this ob-
servation, and claim that caution is needed in transferring
these approaches to the engineering of general systems. In
addition, these authors argue for development of an agile
systems engineering framework but do not give any concrete
details how such a framework would look like.

Haberfellner and de Weck [1] propose “Piecemeal En-
gineering” for the agile adaptation of existing, modular
systems. They propose, e.g., to introduce new modules into

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

already existing systems first, and to use such modules for
new systems afterwards. Another approach for more agility
proposed in the same paper is “Set-Based-Design”. Here,
designers should work on a set of design alternatives in
parallel, and the final design emerges over a sequence of
steps (the “best” solution “wins”). However, they do not give
any information about how such steps (iterations) should be
organized and do not particularly address the specifics of
software versus hardware development.

Taxen and Pettersson [5] present Integration Driven De-
velopment to combine plan-driven, incremental development
with agile methods. They define “deltas”, which are the
incremental system’s changes. This approach consists of
rigorous planning, but agile realization of such deltas. They
propose that such deltas should be implemented in a short
time frame (e.g., a couple of weeks), and that this imple-
mentation results always in a new working version of the
system. It seems, however, that also these authors focus only
on software systems (even though large ones) and do not
specify how to deal with hardware.

III. INHERENT DIFFICULTIES WITH HARDWARE
INCREMENTS

Since in our view inherent difficulties with hardware
increments pose a key issue for agile systems development,
let us briefly sketch them.

First, it is important to understand the difference between
iterations and increments in IID. Iterations mean repetitions
in the process, whether they involve increments or not.
Increments mean extensions of the (software) system in
(small) portions.

Such iterations involving increments are at the core of
current agile approaches to software development, in partic-
ular relatively short iterations. For instance, Scrum involves
rapid iterations (with continuous customer input along the
way), no longer than one month and usually more than one
week.

However, certain inherent properties of hardware de-
velopment constrain the development of increments. Such
properties are, for example, that mechanical parts usually
have to be fully built before they can be used in the
system, and cabling, which usually has to be done at once
for all planned subsystems. This, in turn, requires a final
design and a manufactured frame or cover upfront. Further,
these properties require a completed design of most of
the components before building them. For example, it is
necessary to have a good estimate of the power consumption
of all electrical parts to be able to specify the required
batteries and, in turn, their dimensions.

In general, hardware cannot be built in the timeframe of,
e.g., a Scrum iteration. In contrast to software, evolutionary
prototyping is usually not possible, since the flexibility
required for hardware prototyping is too expensive for
production.

Therefore, it is not really possibly to simply apply a
current approach to agile software development for the
development of general systems involving hardware.

IV. A LIFE CYCLE MODEL INCLUDING HARDWARE
INCREMENTS

For agile systems development, we present a life cycle
model for systems engineering as illustrated in Figure 1 (we
started our work in the context of a prototypical shopping
robot [6]). This life cycle model emphasizes the different
character of software and hardware development within
systems development and recommends what should happen
in a controlled development of general systems containing
software and hardware. It is iterative and incremental but
takes the differences between increments in software and
hardware into account.

Although iterations are not necessarily tied to the in-
crements (e.g., the iterations could only improve or polish
existing features and not add something new), we focus only
on the iterations that are related to increments and implement
additional features.

We distinguish between planned features and new fea-
tures. Planned features are typically already agreed between
stakeholders and prioritized for implementation. New fea-
tures typically arise from new stakeholder wishes caused by
the feedback from the system’s users. They are prioritized
together with the remaining planned features.

We also distinguish between three types of iterations by
the “grade” of the associated increment: iterations with
major, minor, and almost no increments. Iterations with
major increments are only possible in software as well as for
the complete system when next product releases are planned.
Iterations with minor, and almost no increments are typical
for hardware development.

Let us now give some more process details about the
life cycle model as illustrated in Figure 1. It starts with
Elicitation of Stakeholder Wishes as a basis of System
Requirements Engineering. Defined requirements serve as
input for System Architecting, where the overall system
architecture is developed. This activity includes also analysis
of possible architectural patterns and variants, design space
exploration, architectural constraints, etc. We have studied
iterations between System Requirements Engineering and
System Architecting before [7].

The System Decomposition activity focuses on the break-
down of the system into subsystems and allocation of the
planned functionality to the subsystems. Such subsystems
typically contain both software and hardware, and can
be more or less complex. Depending on their complex-
ity, they may be further decomposed recursively. Finally,
each of these subsystems may be further decomposed into
software and hardware, which are separately developed in
Software Development and Hardware Development activities.
Although the allocation of functionality to software and/or

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Hardware DevelopmentSoftware Development

System
Integration

Elicitation of
Stakeholder

Wishes

System
Requirements
Engineering

Software
Design

System
Testing

Manufacturing
& Production

iterations
with many

major
increments

iterations
with minor
increments

iterations with few minor
hardware and more
software increments

System
Architecting

Hardware
Design

Prototyping
& Testing

Product
Design

Modeling
& Evaluating

Synchronisation
iterations with

almost no
increments

iterations
with major increments
for next product release iterations with

minor increments

System
Decomposition

iterations with minor increments
iterations with almost no increments

iterations with major increments

Operations

Implementation
& Testing

Figure 1. Life Cycle Model for Agile Systems Development

hardware might seem trivial at first (e.g., computations are
done in software and movement is performed by drive trains
and wheels), this allocation can be challenging. For exam-
ple, image processing could be done in software but also
in (programmable) hardware, and sophisticated techniques
could be applied to find a good allocation.

The system architecture and its style, the separation into
subsystems and allocation of functionality to hardware or
software already define some limitations on increments.
When considering software, e.g., the addition of increments
in plug-in or component-based architectures is much easier
than in a model-view-controller architecture.

The Software Development process might go through
many iterations consisting of Software Design and Imple-
mentation & Testing activities with major increments. The
number and size of increments depends mainly on the choice
of the software development method. Using a rapid appli-
cation development process results in more iterations and
smaller increments than software development based on the
Unified Process. Figure 1 expresses the possibility to include
iterations with major increments in the software development
process by the double line going from Implementation & Test-

ing back to Software Design. This part of the development
may well be a form of evolutionary prototyping. Especially
when fast innovation is crucial, evolutionary prototyping can
be useful for software development.

Electro-mechanical products are usually more limiting in
regard to incremental development. Developing a hardware
prototype typically involves the creation of a rather flexible
hardware structure based on hardware toolkits, (e.g., me-
chanic toolkits, or electronic development boards). However,
such toolkits are usually too expensive for mass produc-
tion and do not support appealing product designs. Thus,
developing a final product is even more resistive to incre-
mental development. Therefore, we distinguish prototype
development from final product development. The two parts
in the Hardware Development box in the figure show this
distinction.

The first activity, which we call Hardware Design, is
dedicated to the development of the mechanical structure of
the hardware according to its functionality and the design of
the electronic hardware. Such hardware design is both the
basis for prototype development built on hardware toolkits
and for designing the final product. Prototypes developed

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

here will probably have to be “thrown away”, i.e., it will
generally not be possible to evolve them to become the final
product. Hardware prototyping based on toolkits provides
more flexibility and supports multiple iterations with minor
increments. It is important to note that the architecture or
basic design of the prototype must support increments. It
is usually not possible to add major increments without a
redesign.

Hardware and software development have to be synchro-
nized in a way that increments added to software and hard-
ware complement each other to allow integration and test
of software and hardware components. The so-called anchor
point milestones defined for spiral development [8], defining
progress of development, may also serve for synchronization
of system and software development efforts.

After System Integration, which includes the integration
of subsystems into the complete system, there is System
Testing. After that, the process can go back to System
Requirements Engineering if some of the “planned features”
are not yet implemented. Results from product integration
and testing can also have other impact on the system
requirements, leading to their changes or adding further
requirements for the next iteration.

The Product Design activity creates a design of the final
product including an appealing look and taking into account
materials and guidelines for its manufacturing. Product De-
sign works with producing models and evaluating them with
stakeholders and users. Since these models have to give
an impression of the final product, iterations have almost
no increments. After having tested the functionality with
prototypes and evaluated the usability and look based on
models (Modeling and Evaluating), the product can be man-
ufactured and put into Operations. For the overall product
development life cycle, feedback from the product’s users
during Operations can lead to new stakeholder wishes and
thus to new requirements and major increments for the next
product release.

V. CONCLUSION

This paper argues that “agile” approaches to software de-
velopment cannot be simply transferred to general Systems
Engineering and development of systems involving hardware
as well. The reason is that IID cannot be utilized in the

same extensive manner as with software, since hardware
increments have inherent limitations. Currently, there is a
hype of agile software development. Thus it is important
to make these inherent limitations clear, so that no naive
expectations in “Agile Systems Engineering” may manifest
themselves.

This paper also presents a proposal for an iterative and
incremental life cycle for general Systems Engineering that
takes the limitations of hardware increments into account. Of
course, it will yet have to be shown how such an approach
can be applied successfully in Systems Engineering practice,
and its generality will also have to be investigated yet.

REFERENCES

[1] R. Haberfellner and O. de Weck, “Agile SYSTEMS ENGI-
NEERING versus AGILE SYSTEM engineering,” in Proceed-
ings of the Fifteenth Annual International Symposium of the
International Council On Systems Engineering (INCOSE), July
2005, pp. 10–15.

[2] P. Deemer, G. Benefield, C. Larman, and B. Vodde, “The
Scrum primer,” 2010, version 1.2.

[3] E. Stelzmann, “Contextualizing agile systems engineering,” in
Proceedings of the IEEE International Systems Conference
(SysCon), April 2011, pp. 163–167.

[4] M. R. Kennedy and D. A. Umphress, “An Agile Systems En-
gineering Process: The Missing Link,” CrossTalk: The Journal
of Defense Software Engineering, vol. 4, no. 3, pp. 16–20,
May/June 2011.

[5] L. Taxen and U. Pettersson, “Agile and Incremental Develop-
ment of Large Systems,” in Proceedings of the 7th European
Systems Engineering Conference (EuSEC 2010). Stockholm,
Sweden: INCOSE, April 2010.

[6] H. Kaindl, J. Falb, E. Arnautovic, and D. Ertl, “Increments in
an Iterative Systems Engineering Life Cycle,” in Proceedings
of the 7th European Systems Engineering Conference (EuSEC
2010), Stockholm, Sweden, April 2010.

[7] H. Kaindl, E. Arnautovic, D. Ertl, and J. Falb, “Iterative
requirements engineering and architecting in systems engineer-
ing,” in Proceedings of the Fourth International Conference on
Systems (ICONS ’09), March 2009, pp. 216–221.

[8] B. Boehm, “A spiral model of software development and
enhancement,” Computer, vol. 21, no. 5, pp. 61–72, May 1988.

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

