
New Approach to Mitigating Distributed Service Flooding Attacks

Mehmud Abliz∗ Taieb Znati∗†
∗Department of Computer Science
†Telecommunication Program

University of Pittsburgh
Pittsburgh, Pennsylvania 15260 USA
{mehmud, znati}@cs.pitt.edu

Abstract—Distributed denial of service (DDoS) attacks pose
great threat to the Internet and its public services. Various
computation-based cryptographic puzzle schemes have been
proposed to mitigate DDoS attacks when detection is hard or
has low accuracy. Yet, existing puzzle schemes have shortcom-
ings that limit their effectiveness in practice. First, the effective-
ness of computation-based puzzles decreases, as the variation
in the computational power of clients increases. Second, while
mitigating the damage caused by the malicious clients, the
puzzle schemes also require the benign clients to perform
the same expensive computation that doesn’t contribute to
any useful work from the clients’ perspective. In this study,
we introduce guided tour puzzles, a novel puzzle scheme that
addresses these shortcomings. The guided tour puzzle scheme
uses latency — as opposed to computational delay — as a
way of forcing sustainable request arrival rate on clients. We
evaluate the DoS mitigation effectiveness of the scheme in a
realistic simulation environment, and show that guided tour
puzzle scheme provides a strong mitigation of request flooding
DDoS and puzzle solving DDoS attacks.

Keywords- denial of service; availability; tour puzzles; proof
of work; client puzzles; cryptography.

I. INTRODUCTION

A Denial of Service (DoS) attack is an attempt by mali-
cious parties to prevent legitimate users from accessing a ser-
vice, usually by depleting the resources of the server which
hosts that service. DoS attacks may target resources such
as server bandwidth, CPU, memory, storage, or any combi-
nation thereof. These attacks are particularly easy to carry
out if a significant amount of server resource is required
to process a client request that can be generated trivially.
Cryptographic puzzles have been proposed to defend against
DoS attacks with the aim of balancing the computational
load of the server relative to the computational load of the
clients [1] [2] [3] [4] [5].

In a cryptographic puzzle scheme, a client is required to
solve a moderately hard computational problem, referred
to as puzzle, and submit the solution as a proof of work
before the server spends any significant amount of resource
on its request. Solving a puzzle typically requires performing
significant number of cryptographic operations, such as
hashing, modular multiplication, etc. Consequently, the more
a client requests service from the server, the more puzzles
it has to compute, further expending its own computational

resources. Puzzles are designed so that their construction
and verification can be achieved with minimum server
computational load in order to avoid DoS attacks on the
puzzle scheme itself (attacks aimed at the puzzle scheme
itself are thereafter referred to as puzzle solving attacks.).

Originally, cryptographic puzzles were proposed to com-
bat spams [6]. They have then been extended to defend
against other attacks, including DoS [1] [2] [5] [7] [8]
and Sybil attacks [9] [10]. Furthermore, different ways of
constructing and distributing puzzles have been explored [5]
[11] [12] [13] [14]. Unfortunately, existing puzzle schemes
have shortcomings that limit their effectiveness in defending
against DoS attacks.

First, the effectiveness of computation-based puzzles de-
creases, as the variation in the computational power of
clients increases. To illustrate this limitation, consider a
system composed of a server whose capacity is R requests
per second, Nl legitimate clients whose clock frequency
is f , and Nm malicious clients whose clock frequency is
a · f , where a is a disparity factor that represents the
degree of disparity between the CPU powers of malicious
and legitimate clients. Furthermore, assume that legitimate
clients can tolerate a maximum puzzle difficulty of Dmax,
expressed in terms of the number of instructions. The
maximum protection the server can achieve against a DoS
attack is by setting the puzzle difficulty to Dmax. During an
attack, the total load on the server is the sum of the loads
generated by the legitimate and malicious clients, which
can be expressed as Nl

f
Dmax

+ Nm
af

Dmax
(without loss of

generality, we assume that when solving puzzles clients use
their full CPU capacity). Therefore, to carry out a DoS
attack against the server, an attacker must at least induce
a load on the server that exceeds the server’s full capacity,
i.e. Nl

f
Dmax

+Nm
af

Dmax
≥ R. Using simple deductions, it is

clear that the minimum number of malicious clients required
to cause denial of service should satisfy the inequality
Nm ≥ RDmax−Nlf

af . Consequently, the minimum number of
malicious clients required to stage a successful DoS attack
against the server becomes smaller as the disparity factor
a increases, decreasing the effectiveness of a puzzle-based
defense in mitigating the DoS attacks.

Second, existing puzzle schemes may exact heavy compu-

13Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



tational penalty on legitimate clients, when the server load
becomes heavy and increasing the computational complexity
of the puzzle becomes necessary to prevent overloading the
server. The negative impact of such a penalty is further
compounded by the fact that the puzzle-induced computation
does not usually contribute to the execution of any task
that is useful to the client, thereby further wasting client
resources and limiting the client’s ability to carry out other
computational activities.

In this paper, we propose a novel, latency-based puzzle
scheme, referred to as guided tour puzzle, to address the
shortcomings of current cryptographic puzzle schemes in
dealing with DoS attacks. The guided tour puzzle scheme is
the first to use network latency to control the rate of client
requests and prevent potential DoS attacks on the server.

The rest of the paper is organized as follows. Section II
describes the system model and the threat model used.
Section III introduces the guided tour puzzle scheme. In
Section IV, we use analysis and measurement to show that
guided tour puzzles satisfy our requirements and design
goals. The effectiveness of the guided tour puzzles in miti-
gating DDoS attacks is evaluated in Section V. Future plans
for extending the guided tour puzzle scheme and conclusion
of the paper are presented in Section VI.

II. SYSTEM MODEL

A. System Overview

We consider an Internet-scale distributed system of clients
and servers. A server is a process that provides a specific
service, for example a Web server or an FTP server. A client
is a process that requests service from a server. The term
client and server are also used to denote the machines that
runs the server process and the client process respectively.
Clients are further classified as legitimate clients that do
not contain any malicious logic and malicious clients that
contain malicious logic. In the denial of service context,
a malicious client attempts to prevent legitimate clients
from receiving service by flooding the server with spurious
requests. An attacker is a malicious entity who controls the
malicious clients. We refer to a user as a person who uses
a client machine.

B. Threat Model

The attacker attempts to disrupt service to the legitimate
clients by sending apparently legitimate service requests
to the server to consume its computational resources. We
consider DoS attacks that flood the server with large amount
of requests and attacks that attempt to thwart puzzle defense
using massive computational resources. It is assumed that
network resources are large enough to handle all traffic, and
the resource under attack is server computation.

Our threat model assumes a stronger attacker than previ-
ous schemes do. First we assume the attacker may possess
the best commercially available hardware and bandwidth

resources. Meanwhile, the attacker can take maximum ad-
vantage of her resources by perfectly coordinating all of
her available computation resources. Next, the attacker can
eavesdrop on all messages sent between a server and any
legitimate client. We assume that the attacker can modify
only a limited number of client messages that are sent to
the server. This assumption is reasonable since if an attacker
can modify all client messages, then it can trivially launch
a DoS attack by dropping all messages sent by all clients to
the server. Finally, the attacker may launch attacks on the
puzzle scheme itself, including puzzle construction, puzzle
distribution, or puzzle verification.

III. GUIDED TOUR PUZZLE

A. Overview

When a server suspects that it is under attack or its load is
above a certain threshold, it asks all clients to solve a puzzle
prior to receiving service. In the guided tour puzzle protocol,
the puzzle is simply a tour that needs to be completed by
the client via taking round-trips to a set of special nodes,
called tour guides, in a sequential order. We call this tour a
guided tour, because the client does not know the order of
the tour beforehand, and each tour guide has to direct the
client towards the next tour guide for the client to complete
the tour in the correct order. Each tour guide may appear
zero or more times in a tour, and the term stop is used to
represent a single appearance of a tour guide in a tour.

Internet

Server

Client

Addr: Ax Guide 2

Guide 1

S4
S5 initial req

S1
S3

final req

S2

S6

Figure 1. Example of a guided tour; the tour length is 6, and the
order of visit is: G2 → G1 → G2 → G1 → G1 → G2.

The tour guide at the first stop of a tour is randomly
selected by the server, and will also be the last stop tour
guide, i.e., a guided tour is a closed-loop tour. The tour guide
at each stop randomly selects the next stop tour guide to
visit. Starting from the first stop, the client contacts the tour
guide at each stop and receives a reply. Each reply contains
a token that proves to the next stop and the last stop that the
client has visited this stop. Prior to sending its reply, the tour
guide at each stop verifies that the client visited the previous
stop tour guide, so that the client cannot contact multiple
tour guides in parallel. After completing L − 1 stops in a
L-stop tour, the client submits the set of tokens it collected
from all previous stops to the last stop tour guide (which is
also the first stop tour guide), which will issue the client a
proof that it completed the tour. The client then sends this

14Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



proof to the server, along with its service request, and the
server grants the client service if the proof is valid. Figure 1
shows an example of a guided tour with two tour guides and
6 stops.

B. Basic Scheme

We set up N tour guides in the system, where N ≥ 2. The
server keeps a secret kS that only it knows, and a set of keys
kS1, kS2, . . . , kSN are shared between the server and each
tour guide. Each tour guide Gi maintains a pairwise shared
key ki,j with every other tour guide Gj , where i 6= j and 1 ≤
i, j ≤ N . The total number of keys need to be maintained by
each tour guide or the server is N , and this key management
overhead is acceptable since N is usually a small number
between 2 and 20. The tour length L is decided by the server
to adjust the puzzle difficulty. Notations are summarized in
Table I. The four steps of the guided tour puzzle protocol is
described below.

Table I
NOTATION SUMMARY.

N Number of tour guides in the system
Gj j-th tour guide (1 ≤ j ≤ N )
kS Secret key only known to the server
kSj Shared key between the server and Gj

ki,j Shared key between Gi and Gj (i 6= j)
L Length of a guided tour
Ax Address of client x
is Index of the s-th stop tour guide (1 ≤ is ≤ N )
ts Timestamp at the s-th stop of the tour
Rs Client puzzle solving request at s-th stop
B Size of the hash digest in bits

1) Service request: A client x sends a service request to
the server. If the server load is normal, the client’s request is
serviced as usual; if the server is overloaded, then it proceeds
to the next step — initial puzzle generation.

2) Initial puzzle generation: The server replies to the
client x with a message that informs the client to complete a
guided tour. The reply message contains {L, i1, t0, h0,m0},
where i1 is the uniform-randomly selected index of the first
stop tour guide, t0 is a timestamp, h0 is a hash value, m0 is
a message authentication code (MAC). The value of h0,m0

are computed as follows:

h0 = hash(Ax || L || i1 || t0 || kS) (1)
m0 = hash(Ax || L || i1 || t0 || h0 || kSi1) (2)

where, || means concatenation, Ax is the address (or any
unique value) of the client x, and hash is a cryptographic
hash function such as Secure Hash Algorithm - 1 (SHA-
1) [15]. Since m0 is computed using the key kSi1 that is
shared between the first stop tour guide Gi1 and the server,
it enables Gi1 to do integrity checking later on.

3) Puzzle solving: After receiving the puzzle information,
the client visits the tour guide Gis at each stop s, where
1 ≤ s ≤ L, and receives a reply. Each reply message con-
tains {hs,ms, is+1, ts}, where is+1 is the uniform-randomly

selected index of the next stop tour guide, ts is the timestamp
at stop s, and hs, ms are computed as follows:

hs = hash(h0 || Ax || L || s || is || is+1 || kis,i1) (3)
ms = hash(ms−1||Ax ||L ||s ||is || is+1 || kis,is+1

) (4)

At each stop s, the client sends a puzzle solving request
message Rs that contains {h0, L, s, ts−1,ms−1, i1, is} to
the tour guide Gis , and the tour guide Gis replies to the
client only if ms−1 is valid. In other words, each stop
enforces that the client correctly completed the previous stop
of the tour.

At the (L−1)-th stop, the tour guide GiL−1
knows that the

next stop is the last stop, and replaces is+1 with i1 (recall
that the first stop i1 is also the last stop) when computing
hs and ms. After completing the (L− 1)-th stop, the client
computes hL as follows:

hL = h1 ⊕ h2 ⊕ . . .⊕ hL−1 (5)

where ⊕ means exclusive or, and submits
{h0, hL, L,mL−1, i1, i2, . . . , iL} to the first stop tour
guide Gi1 . Using these information, Gi1 can compute
h1, h2, . . . , hL−1 using formula (3), and subsequently hL

using formula (5). Note that only Gi1 can compute hash
values h1 to hL−1, since only it knows the keys ki1,i2 to
ki1,iL−1

that are used in the hash computations.
If the hL submitted by the client matches the hL computed

by Gi1 itself, then Gi1 sends back the client a value hsol that
can prove to the server that the client did complete a tour
of length L. The hash value hsol is computed as follows:

hsol = hash(h0 || Ax || L || tL || kSi1) (6)

4) Puzzle verification: The client submits to the server
{h0, hsol, t0, tL, i1} along with its service request, and the
server checks to see if h0 and hsol that it computes using
formulas (1) and (6) matches the h0 and hsol submitted by
the client. If both hash values match, the server allocates
resources to process the client’s request.

IV. ANALYSIS

In this section, we use analytical reasoning and experi-
mental results to demonstrate that guided tour puzzles are
not effected by the disparity in the clients’ computational
power and minimizes the useless work required for clients.

A. Minimize the Effect of Computational Power Disparity

The guided tour puzzle scheme is not effected by the
disparity in the computational power of clients. This is
because the round trip delays that consist the puzzle solving
time of a puzzle are mostly determined by the network(s)
between the client and the tour guides, and the clients’ CPU,
memory, or bandwidth resources have minimal impact on
them. As the data that needs to be transferred between client
and tour guides is trivial in size, the bandwidth of the end
hosts does not effect the round trip delay.

15Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



0 100 200 300 400
Client node index

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

to
ur

 d
el

ay
 (m

illi
se

co
nd

)

L=18
L=14
L=10
L=6
L=2

(a) Average tour delays of two-week period, N = 4.

Histogram of x

Guided tour delay (ms)

D
e

n
s
it
y

0 2000 4000 6000 8000

0
e

+
0

0
2

e
!

0
4

4
e
!

0
4

6
e
!

0
4

8
e
!

0
4

1
e
!

0
3

(b) PDF of tour delay (unit: millisecond) when N = 4

Figure 2. The tour delays of clients when 4 tour guides are used.

Since it is possible that the round trip delays from different
clients to a tour guide may have significant variation, it is
possible that the sum of round trip delays — referred to as
tour delay — for different clients differ significantly. Next,
we use experimental and analytical analysis to show that this
variation is small, compared to the variation in the puzzle
solving times of computation-based puzzles.

1) Experimental Analysis: We use a two-week long mea-
surement data collected from little over 400 machines on
PlanetLab [16] to show that the variation in tour delay across
clients is within a small factor for a large distributed system.

We first randomly chose 20 nodes, out of the 400 nodes,
as candidates for tour guides. The remaining nodes are used
as client nodes. The number of tour guides N is varied
from 4 to 20, and the tour length L is varied from 2 to
18. For each (N , L) setting, guided tours are generated for
all client nodes. The tour delay at a given time is computed
buy summing the corresponding round trip delays in that
time period. To find the average tour delay of a client for
a specific (N , L) setting, the two-week long tour delays of
that client for that setting is averaged. Next, the average tour
delays are sorted by least-to-most to provide a better view
of the delay variation across clients. Figures 2(a) shows the
average tour delays computed using this method for all client
nodes when N = 4. Results for other values of N are skipped
due to the space limitation, but they are very similar to the
results shown in Figures 2(a). The ratio of the largest and the
smallest tour delays is around 5, when 5% outliers are ex-
cluded. This disparity is several orders of magnitude smaller
when compared to the disparity in available computational
power (which can be in thousands [11] [12]). Figure 2(b)
shows that majority of tour delays are clustered within a
small area of delay and the distribution of tour delays closely
reflect a normal distribution. The probability density curve is
concave around 1000 milliseconds, as fewer nodes complete
the tour in around 1000 millisecond compared to nodes that
do in about 500 and 1500 milliseconds.

2) Analytical Analysis: Since the majority of the Planet-
Lab machines are connected to the Internet through campus
networks, the delay data may not sufficiently reflect the
diverse access network technologies that are used for con-
necting end hosts to the Internet. Next, we use latency data
from the existing literature to show that even when clients
are connected to the Internet using access technologies that
provide very different delay properties, the disparity in their
end-to-end round trip delays is several times smaller than
the disparity in the computational power.

Let us take four very common access network technolo-
gies with very different delay characteristics: 3rd genera-
tion mobile telecommunications (3G), Asymmetric Digital
Subscriber Line (ADSL), cable, and campus Local Area
Network (LAN). The average access network delays are
200ms for 3G [17], 15 ∼ 20ms for ADSL and cable [18],
[19], and in the order of 1ms or negligible for campus LANs
(here, we refer to the access network delay as the round-
trip delay between the end host and the edge router of the
host’s service provider; this latency is usually measured by
measuring the round-trip delay to the first pingable hop).
Based on the measurement analysis of the Internet delay
space [20], the delay space among edge networks in the
Internet can be effectively classified into three major clusters
with average round trip propagation delays of about 45ms
for the North America cluster, 135ms for Europe cluster,
and 295ms for Asia cluster. Using these edge to edge
propagation delay values and the average access network
delay values, we can compute an average end to end round
trip delays of 245, 335, and 495 ms for 3G hosts, 65, 155,
and 315 ms for DSL & cable hosts, and 45, 135, and 295
ms for campus LAN hosts. The biggest disparity occurs
between the hosts in the Asia cluster that connect through
3G and the hosts in the US cluster that connects through
campus LAN, and the ratio of their round trip delays is
495ms/45ms = 11. This disparity is about 4 times smaller
than the low estimate of computational disparity provided in

16Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



[21]. The round trip delays may get higher than 495ms due
to congestion and high queuing delays in the intermediate
routers. However, these congestions and high queuing delays
effects all packets, regardless of whether they are from
malicious clients or legitimate clients.

B. Minimize Interference and Useless Work

In guided tour puzzle scheme, a client has to perform only
one type of operation: sending packets to tour guides. To
complete a guided tour puzzle with tour length L, a client
only needs to send and receive a total of 2 × L packets
with a data payload less than 100 bytes per packet. Since L
is usually a small number below 30, this creates negligible
CPU and bandwidth overhead even for resource-constrained
devices such as cellular phones.

V. STUDY OF DDOS DEFENSE EFFICACY

In this study, we focus our evaluation on the ability of
guided tour puzzles in preventing the application layer DDoS
(also referred to as distributed service flooding) attacks. We
show that the guided tour puzzle scheme provides an optimal
defense against request flooding attacks and a near optimal
defense against puzzle solving attacks.

A. Simulation Setup

We use Network Simulator 2 (NS-2) [22] to achieve a
practical simulation environment. A topology with 5, 000
nodes is generated using Inet-3.0 [23] to closely simulate
large-scale wide area networks, such as the Internet. The
bandwidth and the link delay values are calculated based
on the Inet-3.0 generated link distance values. The link
and queueing delays are set differently for different links,
therefore the round trip delays, and consequently the tour
delays, of different nodes will be very different.

As clients, tour guides, and server nodes will be located
in the edge in real networks, we use degree-one nodes in
the topology as the client, server, and tour guide nodes. The
topology contains a total of 1, 922 degree-one nodes. We
randomly choose a degree-one node as the server node and
another 20 degree-one nodes as candidates for tour guides.
The remaining 1, 901 degree-one nodes are all used as client
nodes, including legitimate and malicious client nodes. The
number of malicious client nodes is varied from 0% to 90%
with an increment of 10%, and the server load is increased
from 0.96 to 8.74 correspondingly.

A simulation model of the guided tour puzzle scheme
is developed in NS-2. As the Internet traffic is self-similar
and the self-similar traffic can be generated by multiplexing
ON/OFF sources that have fixed rates in the ON periods
and heavy-tail distributed ON/OFF period lengths [24] [25],
each client is implemented as an ON/OFF source with
ON/OFF period lengths are taken from a Pareto distribution
to simulate the Internet traffic. On average, each legitimate
client sends 1 request every 2 seconds, and each malicious

client sends 10 times the rate of a legitimate client. The
server capacity is set to 1, 000 requests per second, such
that the server’s full capacity can be reached when setting
all clients as legitimate. The server load increases by 96%
with each 10% increase of the percentage of malicious
clients. Using the average estimated client request rate of
0.5 request per second and the server CPU rate of 1, 000
requests per second, we can compute that the expected
utilization of the server is 0.5×1901

1000 = 0.9505 when all clients
are legitimate. We achieved a utilization of 0.9656 for this
setting in our experiments, which validates the correctness
of our simulation setup.

Three evaluation metrics are used: average completion
time per legitimate request, legitimate utilization of the
server, and legitimate request drop rate. The average comple-
tion time is calculated by averaging the time spent between
sending of a request and the receiving of its response,
including the time spent on solving puzzles, for all com-
pleted requests of all the legitimate clients. The legitimate
utilization of the server is computed as the fraction of the
time the server’s CPU is processing the requests of legitimate
clients. The legitimate request drop rate is computed by
dividing the total number of dropped legitimate requests by
the total number of legitimate requests sent.

We experimented with two types of attacks: the flooding
attack and the puzzle solving attack. In a flooding attack, a
malicious client sends requests at a high rate and ignores the
server’s request for solving puzzles; whereas in the puzzle
solving attack, a malicious client solves puzzles as fast as
they can to send requests at the maximum speed possible.

B. Simulation Results

The first set of simulations are conducted with a fixed tour
length of 8 and using 4 tour guides. The results are reported
in Figure 3.

1) Server CPU utilization: Figure 3(a) illustrates the
improvement in the legitimate utilization of the server.
As the curve “No GTP (), flooding attack” (GTP stands
for Guided Tour Puzzle) indicates, the legitimate clients’
share of the server’s CPU capacity drops rapidly as the
percentage of attackers increases when no guided tour puzzle
is used. The legitimate utilization of the server in this case
is predominantly decided by the ratio of total number of
legitimate requests to the total number of requests. This
can be validated by computing the percentage of legitimate
requests for different settings using the following formula:

r × (1− x)×Nc

r × (1− x)×Nc + 10× r × x×Nc
=

1− x

1 + 9x
(7)

where, r denotes the request rate of legitimate clients,
Nc is the total number of client nodes, x is the percentage
of malicious nodes, and 10 × r is the malicious request
rate. The curve “Analytic (no GTP, flooding attack)” is then

17Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1
%

 o
f s

er
ve

r C
PU

 a
llo

ca
te

d 
to

 le
gi

tim
at

e 
cl

ie
nt

s

No GTP, flooding attack
Analytic (no GTP, flooding)
GTP, puzzle solver
GTP, flooding attack

(a) Legitimate utilization of the server

0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 o

f d
ro

pp
ed

 le
gi

tim
at

e 
re

qu
es

ts
 (%

) No GTP, flooding attack
GTP, flooding attack
GTP, puzzle solver

(b) Legitimate request drop rate

Figure 3. The effectiveness of guided tour puzzle against flooding attacks and puzzle solving attacks, N = 4, L = 8.

computed using Formula (7), and it overlaps perfectly with
the experiment results from the NS-2 simulation for the case
of “No GTP, flooding attack”.

The curve “GTP, flooding attack” in the Figure 3(a)
shows that using guided tour puzzle eliminates the impact
of flooding attackers entirely. In this scenario, the malicious
clients do not solve any puzzle, but send requests that
include fake puzzle solutions at a high rate in an attempt
to consume as much server CPU capacity as possible. The
slight decrease in the legitimate clients’ utilization of the
server CPU as the percentage of attackers increases is due
to the increase in the percentage of server’s CPU capacity
allocated to verifying puzzle solutions. We intentionally used
a low estimate of 106 hash operation per second as the
server’s hash computation rate to protrude the cost of puzzle
solution verification.

The last curve “GTP, Puzzle solver” in Figure 3(a) is
corresponding to the attack targeted at the guided tour puzzle
scheme itself. It shows that, when the guided tour puzzle
scheme is used, the legitimate utilization of the server is
roughly equal to the percentage of legitimate clients in
the system. We argue that without being able to identify
malicious clients, the best a DoS mitigation scheme can
achieve is to treat every client equally and fairly allocate
the server’s CPU to all clients that are requesting service.

2) Request drops: Figure 3(b) shows the legitimate re-
quest drop rate. When no guided tour puzzle is used, the
flooding attack caused legitimate clients to drop most of their
requests as the curve “No GTP, flooding attack” indicates.
When the percentage of attacker is increased to 90%, near
100% of legitimate requests are dropped as a result of the
flooding attack. After switching to use guided tour puzzles
(curve “GTP, flooding attack”), the percentage of dropped
requests becomes zero under the flooding attack, including
when the 90% of the clients are malicious. In the puzzle
solving attacks, guided tour puzzle scheme reduces the
legitimate request drops by more than half in all cases and

to zero in some cases. This legitimate request drops can be
eliminated entirely by optimally adjusting the tour length,
as the simulation results in the next section show.

3) Effect of tour length: The tour length in guided tour
puzzles is critical for the optimality of the guided tour puzzle
defense, especially for the legitimate clients’ utilization of
server CPU in the case of puzzle solving attacks. The next
set of simulation experiments are conducted to measure the
effect of tour length on utilization, request completion time,
and request drops in the case of puzzle solving attacks. These
experiments are conducted using 4 tour guides and 40% and
80% of malicious clients respectively.

The response of various metrics to the change in tour
length is illustrated in Figure 4. As the tour length increases,
the legitimate utilization of the server (curve “Legitimate
utilization”) and the request completion time (curve “Req
completion time”) increase, while the legitimate request drop
rate (curve “Request drop”) decreases. After increasing the
tour length to 12, the legitimate request drop rate becomes
zero, and the legitimate utilization of the server becomes
optimal in both cases of 40% and 80% malicious clients.
Here “optimal” means legitimate clients are granted the
amount of server CPU capacity that is equal to the percent-
age of legitimate clients in the system. Further increasing
the tour length does not improve the utilization and request
drop metrics and decreases the total utilization of the server
CPU, as well as increases the request completion time. The
increase in the request completion time is evident since
larger tour length means more round trips between clients
and tour guides. These observations show that choosing the
right tour length is important in achieving optimal DDoS
mitigation results and providing better trade-off between
mutually restricting performance metrics.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed that existing cryptographic
puzzle schemes become less effective as the variation in
the computational power of clients increases, and that they

18Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems



4 6 8 10 12
Tour length

0

0.2

0.4

0.6

0.8

1
Le

gi
tim

at
e 

ut
iliz

at
io

n 
(%

)  
/  

R
eq

ue
st

 D
ro

p 
(%

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n 

tim
e 

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(a) 40% clients are malicious, N = 4

4 6 8 10 12
Tour length

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e 
ut

iliz
at

io
n 

(%
)  

/  
R

eq
ue

st
 D

ro
p 

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n 

tim
e 

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(b) 80% clients are malicious, N = 4

Figure 4. The effect of the tour length on the effectiveness of the guided tour puzzle defense.

require benign clients to perform the same expensive com-
putation that doesn’t contribute to any useful work. To this
end, we introduced the guided tour puzzle scheme, and
showed that it addresses the shortcomings of the existing
puzzle schemes and achieves better protection against DDoS
attacks. Meanwhile, using extensive simulation studies, we
showed that guided tour puzzle is effective in mitigating
distributed service flooding attacks and that it is a practical
solution to be adopted.

As future work, we would like to further improve the
guided tour puzzle scheme in terms of the following. First,
we would like to eliminate the need for the server’s in-
volvement in the puzzle generation process. Second, further
investigation is needed to find out optimal ways to position
tour guides in the network. Last but not least, we would like
to devise an optimal strategy for adjusting the tour length.

REFERENCES

[1] A. Juels and J. Brainard, “Client puzzles: A cryptographic
countermeasure against connection depletion attacks,” in
NDSS ’99, San Diego, CA, 1999, pp. 151–165.

[2] W. Feng, E. Kaiser, and A. Luu, “The design and implemen-
tation of network puzzles,” in IEEE INFOCOM ’05, 2005.

[3] T. Aura, P. Nikander, and J. Leiwo, “DoS-resistant authenti-
cation with client puzzles,” in 8th International Workshop on
Security Protocols, vol. 2133, 2000, pp. 170–181.

[4] D. Dean and A. Stubblefield, “Using client puzzles to protect
TLS,” in 10th USENIX Security Symposium, 2001, pp. 1–8.

[5] X. Wang and M. K. Reiter, “Defending against denial-of-
service attacks with puzzle auctions,” in IEEE Symposium on
Security and Privacy, Oakland, 2003, pp. 78–92.

[6] C. Dwork and M. Naor, “Pricing via processing or combatting
junk mail,” in CRYPTO ’92, 1992, pp. 139–147.

[7] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion
attacks using congestion puzzles,” in CCS ’04, 2004.

[8] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New
client puzzle outsourcing techniques for dos resistance,” in
11th ACM CCS, 2004, pp. 246–256.

[9] N. Borisov, “Computational puzzles as sybil defenses,” in the
6th IEEE International Conference on Peer-to-Peer Comput-
ing, 2006, pp. 171–176.

[10] H. Rowaihy, W. Enck, P. Mcdaniel, and T. L. Porta, “Lim-
iting sybil attacks in structured p2p networks,” in the IEEE
INFOCOM ’07, 2007, pp. 2596–2600.

[11] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Mod-
erately hard, memory-bound functions,” in NDSS ’03, 2003.

[12] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound
functions for fighting spam,” in CRYPTO ’03, 2003.

[13] M. Ma, “Mitigating denial of service attacks with password
puzzles,” in International Conference on Information Tech-
nology, vol. 2, Las Vegas, 2005, pp. 621–626.

[14] B. Groza and D. Petrica, “On chained cryptographic puzzles,”
in 3rd Romanian-Hungarian Joint Symposium on Applied
Computational Intelligence, Timisoara, Romania, 2006.

[15] Secure Hash Standard, National Institute of Standards and
Technology (NIST) Std., 1995.

[16] “About planet lab,” Planet Lab. [Online]. Available: http:
//www.planet-lab.org/about

[17] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl, “Anatomizing application performance differences on
smartphones,” in MobiSys ’10, 2010, pp. 165–178.

[18] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu,
“Characterizing residential broadband networks,” in IMC ’07,
2007, pp. 43–56.

[19] M. Yu, M. Thottan, and L. Li, “Latency equalization as
a new network service primitive,” Networking, IEEE/ACM
Transactions on, vol. PP, no. 99, p. 1, May 2011.

[20] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel,
and G. Wang, “Measurement-based analysis, modeling, and
synthesis of the internet delay space,” IEEE/ACM Trans.
Netw., vol. 18, no. 1, pp. 229–242, 2010.

[21] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y. Hu, “Portcullis: Protecting connection setup from denial-
of-capability attacks,” in SIGCOMM ’07, 2007, pp. 289–300.

[22] VINT, “The network simulator - ns-2,” 2009.
[23] J. Winick and S. Jamin, “Inet-3.0: Internet topology genera-

tor,” Univ. of Michigan, Tech. Rep. CSE-TR-456-02, 2002.
[24] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,

“On the self-similar nature of ethernet traffic,” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, pp. 1–15, 1994.

[25] V. Paxson and S. Floyd, “Wide-area traffic: The failure of
poisson modeling,” IEEE/ACM Transactions on Networking,
vol. 3, pp. 226–244, 1995.

19Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems


