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Abstract—This paper considers human body motion analysis
as local changes of orientations in hierarchical skeleton parts
over time. Possible approaches by applying multiresolution
analysis in form of a second generation wavelet transform
directly on quaternion signal are shown. Quaternions in terms
of motion analysis are a more efficient representation of
rotation than Euler angles. This paper presents that the lifting
scheme can be efficiently applied directly to quaternions.
Lifting scheme building blocks for the quaternion Haar and
linear transformation are presented.

Keywords-quaternions; multi-resolution analysis; wavelet
transform; lifting scheme; quaternion interpolation; motion anal-
ysis.

I. I NTRODUCTION

Human body motion synthesis and analysis are very
challenging tasks and a very popular research domain. The
most precise measurements of motion data are obtained by
motion capture systems. We cooperate with a high tech mo-
tion capture laboratory having dedicated hardware capable
of performing motion acquisition. It can acquire motion
data through simultaneous and synchronous measurement
and recording of motion kinematics, muscle potentials by
electromyography, ground reaction forces and video streams
in high definition format and the HML supporting system
which allows for storing, playing and browsing data. The
data from the above mentioned subsystems are large and
accurate, allowing for a thorough analysis of motion. Tech-
niques of analysis of such data can be potentially applied
in:

• Medicine - diagnosis and verification of a medical
treatment;

• Entertainment - realistic animations;
• Sport - new training techniques;
• Security - people recognition based on their body

movement.

In this paper, we present our approaches in performing
motion analysis with multi-resolution techniques based on
rotations of joints over time written in the form of quaternion
signal. For this reason, we are trying to use a second gen-
eration wavelet transform constructed by the lifting scheme
for quaternion rotation representation. Using the quaternion
lifting scheme based on the quaternion algebra we can work

directly on correlated motion data. This is in opposition to
the methods presented in the literature where the filters work
on Euler angles as three non-correlated components. Also,
the example application of multi-resolution for denoising
data is presented.

Section II describes the main assumptions of multi-
resolution wavelet analysis of motion data and presents a
short review of solutions presented in literature. SectionIII
presents general information about the second generation
wavelets and the lifting scheme as a simple construction
tool of such wavelets. Section IV focuses on quaternion
interpolating methods. Section V describes the construction
of the lifting schema blocks for Haar and linear quater-
nion transformation and presents some results. Section VI
presents example application of result quaternion multi-
resolution representation. The last section is a conclusion.

II. M ULTI -RESOLUTION WAVELET ANALYSIS OF MOTION

DATA

The main idea of the multi-resolution transformation is to
represent a signal coarse to fine hierarchy. The input signalis
decomposed into coarse base data (global pattern of signal)
and a hierarchy of detail coefficients. The result multi-
resolution representation can be based of many algorithms
such as [10], [14]: denoising, filtering (smoothing, enhance-
ment), compression, feature detection and multi-resolution
editing.

Most of the solutions are based on processing orientation
data as three non-correlated signals defined by Euler angles.
In [1], spatial filters for orientation data are proposed. A
similar solution based on a digital filter bank technique is
in [2]. In [3], the cubic interpolating bi-orthogonal wavelet
basis, implemented as lifting scheme blocks, are used to
compression skeletal animation data. Temporal coherence is
exploited by this wavelet transform. The B-spline wavelet
for unit quaternion is used for smoothing motion data in
[4].

Quaternion wavelets are also proposed for phase based
stereo matching for uncalibrated images [5]. This solution
is based on a bi-orthogonal filter bank, where the real
valued image signal is convolved with an analytic quaternion
wavelet filter, to construct the 2D analytic signal.
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In [6] and [7], the quaternion multiplier of plane rota-
tions, inspired by a factorization algorithm, is implemented.
This proposition considers the factorization of a quaternion
multiplication matrix into lifting scheme steps. Our work is
different because we work directly on quaternion signal as
representing orientation changes over time and we design
lifting scheme blocks using the convention of second gener-
ation wavelets. Our main task is to analyze human motion.

III. SECOND GENERATION WAVELETS AND LIFTING

SCHEME

The lifting scheme [8], [9] is a simple but powerful tool to
construct a wavelet transform. The main advantage of this
solution is the possibility of building wavelet analysis on
non-standard structures of data (irregular samples, bounded
domains, curves, surfaces) while keeping all powerful prop-
erties as speed and good ability of approximation [10],
[11], [12], [13]. This generalization are called as second
generation wavelets [14]. They are not necessarily trans-
lated and dilated of one function (mother function). In this
meaning, the lifting scheme also considers non-linear and
data-adaptive multi-resolution decompositions.
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Figure 1. The forward lifting scheme

A general lifting scheme (Figure 1) consists of three types
of operations:

• Split: splits input dataset into two disjoint sets of even
and odd indexed samples. The definition of the lifting
scheme does not impose any restriction on how the data
should be split nor on the relative size of each subsets.

• Predict: predicts samples with odd indexes based on
even indexed samples. Next the odd indexed input value
is replaced by the offset (difference) between the odd
value and its prediction.

• Update: updates the output, so that coarse-scale coeffi-
cients have the same average value as the input samples.
This step is necessary for stable wavelet transform [14].

These calculations can be performed in-place. In all stages
input samples can be overwritten by output samples of that
step. The inverse transform (Figure 2) is easy to find by
reversing the order of operations and flipping the signs.

IV. I NTERPOLATING QUATERNIONS

Quaternions [15]–[17] are structures allowing descriptions
of vectors relations. They are commonly used (mainly in
computer graphics) for performing rotations.
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Figure 2. The reverse lifting scheme

Quaternionq is denoted as:q = [s, v], s ∈ R, v ∈ R3.
Here, s represents thescalar part and v is the imaginary
part of the quaternion. In more details this representation
can be given as:

q = xi+ yj + zk + w,

x, y, z, w ∈ R, i2 = j2 = k2 = ijk = −1.

Now, w is the scalar part and[x, y, z] is the imaginary
part. The space of quaternions is denoted asH .

We are working with unit quaternions; therefore, all
interpolated quaternions are assumed to be unit quaternions.
Interpolation steph is in range[0; 1]. Based on [18], the
following quaternion interpolation methods can be distin-
guished:

• lerp - Computationally the most efficient from pre-
sented those but gives poor quality in generated rotation
quaternions and does not guarantee unit quaternions as
a result. Normalization is required. Generated move-
ments have sharp ending motion so the movement of
the body is not considered to be smooth.

lerp(qi, qi+1, h) = qi ∗ h+ qi+1 ∗ (1 − h)

• slerp - Ensures unit quaternion as a result. Unfortu-
nately on the endings moves are still sharp.

slerp(qi, qi+1, h) = qi(q
∗

i qi+1)
h

• squad - Computational very demanding but gives very
smooth movement after interpolation. No rapid changes
in movement are noticeable at the interpolation range
endings. This method is inspired by splines.

squad(qi, qi+1si, si+1, h) = slerp(slerp(qi, qi+1, h),

slerp(si, si+1, h), 2h(1− h))

si = qi exp

(

−
log(q−1

i qi+1) + log(q−1

i qi−1)

4

)

• shoemake-bezier - Interpolation method is based on the
De Castlejau algorithm. More details might be found
in [19].
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bezier(qi, qi+1, si, si+1, h) = slerp(slerp(q11, q12, h),

slerp(q12, q13, h), h)

q11 = slerp(qi, si, h)

q12 = slerp(si, si+1, h)

q13 = slerp(si+1, qi+1, h)

si = qi exp

(

−
log(q−1

i qi+1) + log(q−1

i qi−1)

4

)

V. QUATERNION LIFTING SCHEME

Using the quaternion lifting scheme based on the quater-
nion algebra we can work directly on correlated motion
data. This is in opposition to the methods presented in the
literature where the filters work on Euler angles as three
non-correlated components.

A short comment about the interpretation of details for
the lifting scheme must be given here, as currently the
coefficients are represented by quaternions. The goal of the
prediction step is to produce values as close as possible to
the given data. It means the smaller the difference (detail
coefficient), the better the prediction step is. For quaternions
this difference should tend to a zero rotation quaternion
- [1, [0, 0, 0]]. If all coefficients are close to this value it
means we have found a closed form description of the
analyzed movement and this function might be used for such
movement reproduction and analysis. Additionally small
detail values suggest that the data is strongly correlated.On
the other hand, if all coefficients have similar, but rather
large values it is also possible that either the prediction step
poorly describes data correlation or mean signal value is not
maintained in the next resolutions.

Input motion signal with length2n is a set of normalized
quaternions. In the split block this signal is divided into even
and odd indexed samples:..., o

j
i , e

j
i , o

j
i+1

, e
j
i+1

, .... The upper
index j indicates the step scheme (the level of resolution).

In this paper, we give two propositions for the quaternion
lifting schemes, which are fully and easy reversible and
allow in-place computations. Those schemes also preserve
the average signal at each resolution level.

A. Motion data

Data for analysis are obtained from the Human Motion
Laboratory of the Polish-Japanese Institute of Information
Technology in Bytom (Poland). The data (Figures 3 and 4)
represent knee joint motion sampled at 100Hz. To better
visualize the motion data, we have chosen the three Euler
angles plots.

B. Quaternion Haar lifting schema

In literature the most basic lifting scheme is the Haar
wavelet transformation. It predicts odd indexed samples with
corresponding even indexed samples. The lifting scheme
steps are the following:
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Figure 3. The Euler angles of knee joint motion data obtainedfrom the
Human Motion Laboratory of the Polish-Japanese Institute of Information
Technology in Bytom (Poland).
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Figure 4. The quaternion curve of knee joint motion data obtained from the
Human Motion Laboratory of the Polish-Japanese Institute of Information
Technology in Bytom (Poland).

• Prediction step:

o
j
i = o

j+1

i ·SLERP (ej+1

i , o
j+1

i , 0.5)−1

• Update step:

e
j
i = o

j
i · e

j+1

i

The reverse lifting scheme steps:

• Undo prediction step:

o
j+1

i = o
j
i · e

j
i

• Undo update step:

e
j+1

i = SLERP (oj+1

i , e
j
i , 2)

The results of the Haar transformation are presented in
Figure 5 and 6. These are plots of Euler angles at the first
and forth level of resolution (after first and forth step of
the lifting schema) and details for such levels (differences
between removed quaternions and predicted by the lifting
schema).
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Figure 5. The first level of resolution computed by the Haar lifting schema: data (left plot) and details (right plot).
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Figure 6. The forth level of resolution computed by the Haar lifting schema: data (left plot) and details (right plot).

C. Quaternion linear lifting schema

The next common prediction step is the linear interpola-
tion between surrounding values. The lifting scheme steps
are the following:

• Prediction step:

o
j
i = SLERP (ej+1

i , e
j+1

i+1
, 0.5)−1

· o
j+1

i

• Update step:

e
j
i = e

j+1

i · (SLERP (oji−1
, o

j
i , 0.5))

0.5

The reverse lifting scheme steps are:
• Undo update step:

e
j+1

i = e
j
i · (SLERP (oji−1

, o
j
i , 0.5))

0.5

• Undo prediction step:

o
j+1

i = SLERP (ej+1

i , e
j+1

i+1
, 0.5)· oji

The results of the linear transformation are presented in
Figure 7 and 8. These are plots of Euler angles of data at the
first and forth level of resolution (after first and forth step
of lifting schema) and details for such levels (differences
between removed quaternions and predicted by the lifting
schema).

VI. EXAMPLE APPLICATION - DENOISING MOTION DATA

Denoising methods rely on removing the high frequency
component of a signal, which consists of noise. The simplest
method is to set to zero wavelet coefficients representing
high frequencies from the first few levels of decomposition.
In the quaternion lifting schema, details are set to unit
quaternion. Another method is based on threshold methods,
which change the wavelets coefficients selected on the basis
of some threshold value. Determining the value of threshold
for the quaternions domain requires further research.

Motion data with artificially added white Gaussian noise
(Figure 9) was decomposed by a lifting schema into two
levels of resolutions with detail quaternions coefficients.
Coefficients from the first levels of transformation are small
and mostly contain information about high frequency com-
ponent. We can see this in Figure 10. In the reverse lifting
scheme those coefficients were set to the unit quaternion.
The results of the Haar and linear lifting schemes are
presented in Figure 11. Because the prediction step in the
linear lifting schema is based on two adjacent samples, the
results of denoising for this schema are much better.

VII. SUMMARY AND FUTURE WORK

We have shown with results of our experiments that the
lifting scheme can be efficiently applied to quaternions. This
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Figure 7. The first level of resolution computed by the linearlifting schema: data (left plot) and details (right plot).
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Figure 8. The forth level of resolution computed by the linear lifting schema: data (left plot) and details(right plot).
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Figure 11. The motion data after removal of noise based on theHaar (left plot) and the linear lifting schema (right plot).

allows us to quickly and in place multi-resolution analysis
applied directly on quaternion signal, which is a description
of orientation changes over time. Using quaternion algebra
properly, following quaternion space laws, data correlation
would be captured at each level of resolution. This is more
efficient than analyzing changes in time of each angle as a
non-correlated signal.

Moreover, we are looking forward to creating proper
update and predict steps for more complex quaternion inter-
polation methods mentioned in this paper, but not included

in our research.

The results of multi-resolution representation can also
be a base for different motion processing algorithms as a
generalization of signal processing tools. Examples can be
filtering, feature detection and compression. As an example,
the very simple denoising algorithm was presented in this
paper.
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Figure 9. The signal with added white Gaussian noise.
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Figure 10. The Euler angles of the first level of details coefficients
computed by the linear lifting scheme.
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