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Abstract — Interpolation and intersection methods are closely 
related and used in computer graphics, visualization, computer 
vision etc. The Euclidean representation is used nearly exclusively 
not only in computational methods, but also in education despite it 
might lead to instability in computation in many cases. The 
projective geometry, resp. projective extension of the Euclidean 
space, offers many positive features from the computational and 
educational points of view with higher robustness and stability of 
computation. This paper presents simple examples of projective 
representation advantages, especially from the educational point of 
view. In particular, how interpolation and intersection can be 
applied to fundamental algorithms, which are becoming more 
robust, stable and faster due to compact formulation. Another 
advantage of the proposed approach is a simple implementation on 
vector-vector architectures, e.g. GPU, as it is based on matrix-
vector operations. 

Keywords - Interpolation; intersection; principle of duality; 
barycentric coordinates; cross-product; linear systems of 
equations. 

I.  INTRODUCTION  
Algorithm efficiency and robustness are key points of 

research activities in computer graphics [7], [1], computer 
vision [6], [4], texture mapping [19] etc. Due to many items 
to be processed, a strong requirement for speed arises; also 
hardware architecture needs to be considered. However, 
speed and robustness requirements are usually in 
contradiction, especially if the Euclidean representation is 
used.  

Nevertheless, some other approaches like projective or 
conformal geometries can be used to overcome selected 
problems. As the projective representation is widely used in 
computer graphics, a simple modification of interpolation 
and intersection algorithms will be introduced and simple 
examples presented for demonstration. 

II. PROJECTIVE REPRESENTATION 
Projective representation uses homogeneous coordinates 

for computations and geometric transformations. A point 
ࢄ ൌ ሺܺ, ܻሻ in E2 (the Euclidean space) can be represented as 
࢞ ൌ ሾݔ, :ݕ ሿ்ݓ  in P2 (the projective extension of the 
Euclidean space).  Mutual conversion is defined as:  

ܺ ൌ ݔ ⁄ݓ     ܻ ൌ ݕ
ൗݓ ݓ     ് 0   (origin excluded) 
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Figure 1. Geometric interpretation of a dual space 
 

One parametric set of points in P2 representing a unique 
point in E2, see [14]. A significant advantage of the 
projective representation is a possibility to use principle of 
duality. In the above case, a point is dual to a line and vice 
versa, etc. which might lead to new algorithms [2], [13], 
[18]. 

Similarly, the concept of the projective extension of the 
Euclidean space can be extended to n-dimensional space, 
especially to E3 used in computer graphics and vision. 

This simple formulation shows, that many computations, 
not necessarily only geometric transformations, can be made 
using homogeneous coordinates.  

It means that “projective scalar”, i.e. ࢞ ൌ ሾݔҧ: ሿ்ݓ  or 
“projective vector” ࢞  ൌ ሾ࢞ഥ:ݓሿ் ൌ   ሾݔ, :ݕ ሿ்ݓ , where ࢞ഥ is a 
vector, can form an input or output of the processing 
pipeline, e.g. interpolation and intersection computation. 

Projective representation can also help to explain many 
geometrical problems in a simple way, e.g. line intersection 
[13], area or volume computation [14], solution of linear 
homogeneous systems and computation of barycentric 
coordinates [12]. 

III. PRINCIPLE OF DUALITY 
Principle of duality is an essential principle and 

especially in computer graphics and vision can bring quite a 
new way how to handle and solve non-trivial problems. The 
principle states that any theorem remains true when we 
interchange the words “point” and “line”, “lie on” and “pass 
through”, “join” and “intersection” and so on. Once the 
theorem has been established, the dual theorem is obtained 
as described above, see [5]. 
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The advantages of the projective geometry and principle 
of duality use can be demonstrated on very simple 
examples, e.g. a point as an intersection of two lines and a 
line as a join of two points.  

Let two points x1 and x2 be given in the projective space. 
Then the coefficients of the line p, which is defined by those 
two points, are determined as the  of their homogeneous 
coordinates. 

p = x1× x2 i.e.  1 1 1

2 2 2

det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
p  

where: p = [a,b:c]T 
If the principle of duality is used, it is possible to write 
computation of an intersection of two lines as: 

x = p1× p2 i.e. 1 2 1 1 1

2 2 2

 × det a b c
a b c

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x p p  

where: x = [x,y:w]T 
A computation of an intersection point of two lines or a 

computation of a line if two points are given is made by the 
same sequence using the principle of duality and no division 
operation is needed. 

In the case of E3 point is dual to a plane and vice versa, 
i.e. if three points are given a computation of a plane is the 
same, in the sense of duality, as intersection computation of 
three planes, i.e. a plane is computed by the generalized 
cross-product as: 

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
x y z w
x y z w
x y z w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

x x x  

and an intersection of three planes is computed as: 

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
a b c d
a b c d
a b c d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

ρ ρ ρ  

It should noted that a division operation is not needed and 
the computational sequence is the same for both the cases. 

IV. LINEAR INTERPOLATION 
Linear interpolation is frequently used method not only 

in computer graphics. Let us consider a simple case of linear 
interpolation, when we want to interpolate on a line  or on 
a surface ࣋ , i.e. 

ሻݐሺࢄ: ൌ ࢄ   or     ݐଵࡿ

,ݑሺࢄ:࣋ ሻݒ ൌ ࢄ  ݑଵࡿ   ݒଶࡿ

where: ࡿଵ ൌ ࢄ െ ଶࡿ    andࢄ ൌ ࢄ െ  ࢄ

These are well-known formulas, of course. But what 
happens if points are given in homogeneous coordinates? 

From the teaching experience, the approach is 
a conversion of points to the Euclidean space followed by 
the “standard” linear interpolation. It means that in the first 
case 6 divisions and in the second case 9 divisions are 
needed with all consequences, including precision and 
stability issues. 

However, there is a possibility to make a linear 
interpolation directly in homogeneous coordinates as: 

: ሻݐሺ࢞ ൌ ࢞        ݐଵ࢙

where: ࢙ ൌ ࢞ െ  ࢞
ൌ ሾݔ െ ,ݔ ݕ  െ ݓ :ݕ െ  ் ሿݓ

or 
,ߦሺ࢞ :࣋ ሻߟ ൌ ࢞  ߦଵ࢙   ߟଶ࢙

where:  ࢙ ൌ ࢞ െ  ࢞
ൌ ሾݔ െ ,ݔ ݕ  െ ,ݕ ݖ െ ݓ :ݖ െ  ሿ்ݓ

and 
࢙ ൌ ࢞ െ ࢞ ൌ   ሾݔ െ ,ݔ ݕ  െ ,ݕ ݖ  െ ݓ :ݖ െ  ்  ሿݓ

In both cases, the following conditions apply: 
ݓ  0, ݓ      0, ݓ  0 

As in the projective space the metric is not generally 
defined, there must be some different behavior of such 
interpolation. Note that there is a direct connection to 
interpolation and projection operation in the graphical 
pipeline. 

Basic property of the interpolation in the projective 
space is a non-linear monotonic parameterization, i.e. for 
߬ ൌ 1/2 the center of the segment ࢄࢄ  in the Euclidean 
space is not obtained in general. It is well known problem of 
determining z-coordinate after projection operation. It 
means that we have a linear interpolation with: 
• Linear parameterization in the Euclidean space 
• Non-linear parameterization, but with a monotonic 

parameterization, in the projective space. This 
fundamental property is needed when comparison 
of  ݐଵ ൏ ଶ, resp. ߬ଵݐ ൏ ߬ଶ , is required for a decision, e.g. 
which object is closer etc. 

In both cases,  division operation can be avoided by 
“hiding” denominator to the homogeneous coordinate, i.e. 

ሻݐሺ࢞ ൌ ሾݓ࢞ഥ  ሺݓ࢞ഥ െ :ݐഥሻ࢞ݓ  ሿ்ݓݓ
In this case, the parameterization is linear, of course. 

It should be noted that barycentric coordinates can be 
computed directly in homogeneous coordinates without 
division operations as well, see [12], using generalized 
cross-product. 

The above presented approach is quite simple for 
understanding projective space principles. 

V. BARYCENTRIC COORDINATES 
Barycentric coordinates are very often used not only in 

computer graphics, computer graphics and visualization. It 
is known that computation of barycentric coordinates leads 
to solution of linear system of equations (LSE). A solution 
of LSE is equivalent to the generalized cross-product. This 
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result to computation of the barycentric coordinates directly 
using generalized cross-product without use of division 
operation and therefore the computation is more robust in 
general. The barycentric coordinates are computed as    

× ×=b ξ η w   0T =τ b  

1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b  Txxxx ],,,[ 321=ξ   
T]1,1,1,1[=w  

Tyyyy ],,,[ 321=η ݐ݁݀     ቮ

߬ଵ ߬ଶ ߬ଷ ߬
ଵݔ ଶݔ ଷݔ ݔ
ଵݕ ଶݕ ଷݕ ݕ
1 1 1 1

ቮ ൌ 0 

The barycentric coordinates of the point x are then given as 

 1
1

4

b
a

b
= − , 2

2
4

b
a

b
= − , 3

3
4

b
a

b
= −  

The above formulas shows that the computation of the 
barycentric coordinates is quite simple. If hardware 
acceleration using matrix-vector operation is used, the 
computation is very fast. It is important to note that the 
similar scheme for the barycentric coordinates computation 
is valid for homogeneous coordinates as the determinant is 
multi-linear. 

VI. INTERSECTION COMPUTATIONS 

A. Line-plane intersection 
There is lot of algorithms based on line intersections, like 

ray-tracing, line clipping etc. Let us consider a simple case of 
intersection of a line in a parametric form with a plane, 
which is the fundamental principle of many algorithms, e.g. 
Cyrus-Beck’s (CB) line clipping, see Fig. 2 for E2 analogy 
(planes are “degenerated” to edges). 
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Figure 2. Line clipping by a convex polygon 

Let us consider two planes ࣋ଵ and ࣋ଶ and a line  in a 
parametric form given in homogeneous coordinates by two 
points ࢞ and ࢞.  

In many algorithms including CB algorithm the 
relation ݐଵ ൏  ଶ, needs to be evaluated, e.g. to get an order ofݐ
intersection points. For this only monotonic 
parameterization on the line  is needed.. It means that the 
linear interpolation with non-linear parameterization 
presented above can be used efficiently.  

The CB algorithm is based on an intersection solution of 
a line   given in a parametric form and a plane ࣋ in E3 (or a 
line in E2) given in the implicit form as follows: 

:࣋ ்࢞ࢇ ൌ :   0 ሺ߬ሻ࢞ ൌ ࢞   ࢙߬

It should be noted that all vectors are vectors of the 
projective space, i.e. they have homogeneous coordinates. 
Therefore, it is easy to compute the intersection point as 

்࢞ࢇ  ்࢙߬ࢇ ൌ 0 then ߬ ൌ െࢇ
்࢞

ൗ்࢙ࢇ  

The parameter can be represented by a “projective scalar” as  

߬ ൌ ሾെ்࢞ࢇ: ሿ்்࢙ࢇ ൌ ሾ ҧ߬: ߬௪ሿ் 

Then the CB’s algorithm can be modified as follows: 
߬ ൌ ሾെ∞: 1ሿ்;         ߬௫ ൌ ሾ∞: 1ሿ்  
for i:=1 to N_planes do 
ൌ:࣎ } ሾെ்࢞ࢇ: ࣎ #  ;ሿ்்࢙ࢇ ൌ ሾ߬ҧ: ߬௪ሿ் # 
 if ߬௪ ൏ 0 then ࣎ ؔ െ࣎; 
 # ߬௪ coordinate needs to be non-negative # 
 if ߬ҧ ൏ 0 then ࣎ ൌ max  ሺ߬, ߬ሻ  
  else ࣎௫ ൌ min ሺ߬௫, ߬ሻ 
} 
if NON-EMPTY (࣎, ࣎௫) = true then  
 #equivalent test to  ݐଵ ൏  # ଶݐ
_௪࢞ } ൌ ڮ . . _௪࢞ ;.. ൌ  {         ڮ

Algorithm 1 

The above shows that no division operation is needed. 
Experiments made proved a slight speed-up for the case 
when the points are given in the Euclidean space (the 
algorithm has been simplified as wA, wB = 1 of course) and 
significant speed-up for the case when the points of the 
clipped line are given in the homogeneous coordinates. As 
N_planes, the number of planes, is usually higher, the speed-
up will grow with the number of planes of the given convex 
polyhedron. 

B. Intersection of two planes 
Intersection of two planes is another case very often 

solved in computer graphics and vision. Unfortunately in 
many cases available solutions are not robust or formula are 
neither simple nor convenient for GPU use. 

 
Figure 3. Intersection of two planes 
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If the projective space is used, the solution is quite simple. 
Let us consider two planes ࣋ଵ and ࣋ଵ given as  

ଵ࣋ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ் 
It means that normal vectors of those planes are 

ଵ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ் 
It is obvious that a directional vector of a line is determined 
as an intersection of two planes ࣋ଵ and ࣋ଵ given as 

࢙ ൌ ଵ ൈ  ଶ
However, the “starting” point ࢞ of the line is determined in 
quite complicated ways, sometimes even not robustly 
enough and based on a user choice of some value, or 
proposes solution of a system of linear equations [Gol90], 
[20]. 

The following “standard” formula can typically be 
found: 

ଷ ൌ ଵ ൈ  ଶ

ݔ ൌ
݀ଶ ฬ ଵܾ ܿଵ

ܾଷ ܿଷ
ฬ െ ݀ଵ ฬ

ܾଶ ܿଶ
ܾଷ ܿଷ

ฬ

ܶܧܦ
 

ݕ ൌ
݀ଶ ቚ

ܽଷ ܿଷ
ܽଵ ܿଵቚ െ ݀ଵ ቚ

ܽଷ ܿଷ
ܽଶ ܿଶቚ

ܶܧܦ
 

ݖ ൌ
݀ଶ ฬ

ܽଵ ܾଵ
ܽଷ ܾଷ

ฬ െ ݀ଵ ฬ
ܽଶ ܾଶ
ܽଷ ܾଷ

ฬ

ܶܧܦ
 

ܶܧܦ ൌ อ
ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ 

The formula is quite “horrible” one and for students not 
acceptable as it is too complex and they do not see from the 
formula comes from. 

As outline below, there is a quite simple geometrical 
explanation and solution. So the first question is how to find 
the “starting” point ࢞ of the line  given by two planes ࣋ଵ 
and ࣋ଶ . If a robust solution is required a user should be 
prevented from a selection of some “parameters”.  

Let us imagine that there exists a plane ࣋  , whose 
normal vector is given as  ࢙ ൌ ଵ ൈ  .ଶ

It means that its position needs to be “fixed” in the 
space. As there is no other requirement on this plane, we can 
“fix” it so it passes through the origin of the coordinate 
system, i.e. the plane ࣋ is given as 

࣋ ൌ ሾܽ, ܾ, ܿ: 0ሿ்   
and the line   is orthogonal to the plane ࣋ – resulting in  a 
robust geometric position. 
Now, the intersection point of three planes is the point ࢞ 
we are looking for. Coordinates of the point ࢞   are 
determined by generalized cross-product as 

࢞ ൌ ଵ࣋ ൈ ଶ࣋ ൈ   ࣋
As this formula is very compact and the cross-product is a 
GPU instruction, it is suitable for GPU use. See the 
Appendix for the extended cross-product GPU 
implementation.  

From the formulation presented above, it can be seen 
that it is not only very simple, easy to understand and 
remember, but also easy to implement. It is obvious that the 
point ࢞ is also the closest point on the line to the origin, 
too. As a result the Plücker coordinates formulation of this 
problem solution is not needed when looking for such 
properties. 

VII. WINDOW CLIPPING 
Line or line segment clipping against rectangular window 

or convex polygon in E2 is a basic operation in computer 
graphics. There are well-known Cohen-Sutherland algorithm 
and many other algorithms. Some of these well-known 
algorithms are not easy to implement due to their 
complexity. However, there is a simple and effective solution 
based on projective representation and the line clipping 
algorithm can be described using 7 lines only.  

The algorithm is based on classification of the window 
vertices resulting in a binary code which is the address to 
TAB1 and TAB2 tables, where indices of intersected edges 
are stored. Coordinates of intersection points are computed 
as a cross-product of the given line and intersected edges. 

x0
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x2x3

e3

e0

e1

e2

x1

xB

F(x)<0

F(x)>0

 

Figure 4. Line clipping by a rectangular window 

procedure CLIP_L;    { input: xA , xB } 
# xA=[xA,yA:wA]T, xB=[xB,yB:wB]T # 
# xA , xB –in homogeneous coordinates # 
# the EXIT statement ends the procedure # 
{ p := xA x xB; { ax+by+c = 0; p = [a,b,c]T } 
 for k:=0 to N-1 do # xk=[xk,yk:wk]T # 
  if pTxk ≥ 0 then ck:=1 else ck:=0; 
 if c = [0000]T or c = [1111]T then EXIT; 
 i:= TAB1[c]; j:= TAB2[c]; 
 xA := p x ei ; xB := p x ej ; 
 DRAW (xA; xB) 
} 

Algorithm 2 

Where N is a number of edges of the clipping window TAB1 
and TAB2 are constant tables with window edges 
classifications, for details see [15].  
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For the situation at Fig. 4, CODE=[0011]=3, TAB1=1 
and TAB2=3. The algorithm itself is easy to explain and 
implement, too. 

The line segment clipping algorithm is a little bit longer, 
but still easy to implement, see [15], and to modify for line 
or line segment clipping by a convex polygon as well. It 
should be noted that due to the principle of duality, line 
clipping by a convex polygon is dual to a point-in-polygon 
test, which is of ܱሺ݈݃ܰሻ complexity. Line clipping algorithm 
of ܱሺ݈݃ܰሻ complexity is more complex, see [16]. 

VIII. CONCLUSION 
Application of projective geometry principles to the 

computational pipeline, especially in the field of geometry 
and computer graphics can bring new algorithms that are 
more robust and faster even for the Euclidean space. Due to 
the formulation, is very convenient for vector-vector or 
matrix-vector architectures, like GPU and a significant 
speed-up can be expected as well. Projective geometry can 
easily explain several methods in a more simple way and 
also provide new formula and geometric representation 
which contributes to students’ better understanding. 
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APPENDIX 
The cross-product in 4D defined as 

࢞ ൈ ࢞ ൈ ࢞ ൌ ݐ݁݀ ተ

   
ଵݔ ଵݕ ଵݖ ଵݓ
ଶݔ ଶݕ ଶݖ ଶݓ
ଷݔ ଷݕ ଷݖ ଷݓ

ተ 

 
can be implemented in Cg/HLSL on GPU as follows: 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3)  
{ 
 float4 a; 
 a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw)); 
 a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw)); 
 // or a.y=dot(x1.xzw, cross(x3.xzw, x2.xzw)); 
 a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw)); 
 a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz)); 
 // or a.w=dot(x1.xyz, cross(x3.xyz, x2.xyz)); 
 
 return a; 
} 
 
or more compactly 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ 
 return ( dot(x1.yzw, cross(x2.yzw, x3.yzw)),  
 -dot(x1.xzw, cross(x2.xzw, x3.xzw)),  
 dot(x1.xyw, cross(x2.xyw, x3.xyw)), 
 -dot(x1.xyz, cross(x2.xyz, x3.xyz)) ); 
} 
 

 

222Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems


