

Mobile RFID Mutual Authentication and Ownership Transfer

Ming Hour Yang

Information Computer Science

Chung Yuan Christian University

mhyang@cycu.edu.tw

Jia-Ning Luo

Information and Telecommunication

Ming Chuan University

deer@mail.mcu.edu.tw

Abstract — In this paper, we propose an ownership

transfer scheme that applies in mobile RFID networks.

The scheme includes a mutual authentication protocol

and a role-based ownership transfer protocol. A tag will

decide what actions are allowed for a reader according

to the reader’s role class, and the back-end server will

send to the reader the requested information about the

tag. Keyed-hash functions are used to secure the

protocols. Last, we prove that our protocol can do

against the threats of replay attacks, distributed denial

of service (DDoS), Man-in-the-Middle (MITM) attacks

that change users’ data, interception of data and

location privacy, and tracking of tags’ ownership

transfer.

Keywords-RFID;authentication; ownership transfer

I. INTRODUCTION

RFID features mass identification, large data

size, modifiable identification and data, and effective

scanning of tags by batch processing at long distance.

Nowadays, mobile RFID [1][11] integrating reading

chips, passive RFID tags and mobile phones enables

users to access information. Mobile RFID can be

applied in business transaction; through the transfer

of tagged products’ ownership, each transaction can

be done with mobile RFID. The transfer of a tagged

product’s ownership suggests whoever is registered

in the tag is the one entitled to the item.

To protect the privacy of both the former and

current owners of a tagged item, RFID protocol

designers have to make sure that when the item’s

ownership changes, its tag’s ownership has to change

accordingly and simultaneously. Former owners,

therefore, will no longer be able to access the tag,

whereas the current owners have no way to track the

privacy history that was kept in the tag, either.

Due to the limitation of tags, there are only

2000 logic gates in a passive tag to do security

functions [4][7]. In 2006, John Ayoade[5] proposed

an authentication-control framework, creating a table

on back-end authentication server (AS) to control the

reader-tag authentication. When a reader accesses a

tag, the tag will send out its identifier and encrypted

messages to the reader, and the reader sends a

reading request to the AS. The AS checks the

reader’s identity and gives a key to the reader to

decrypt the message and grant the ownership of the

tag.

The authorization and ownership transfer

process, the delegation, should be done securely to

protect the owner and the tags [3][8][9][10]. If the

delegation process is incomplete, the former owner

could still access the tag [2]. Fouladgar proposed a

delegation protocol to deal with incomplete

ownership transfer [8][9][10]. In the protocol, the

delegated reader can verify the digital certificate of a

current owner’s reader through a certificate authority

(CA) during the ownership transfer process, and the

key stored in the tag is updated by the AS to ensure

only the current owner can access the tag.

Although delegated readers reduce the

computation load of the AS, the reader’s computation

resources such as CPU and memory are limited.

When a reader has too many delegated tags, it can no

longer afford the authentication task because it does

not have enough memory to keep tags’ information.

Fouladgar’s protocol uses counters to limit delegated

readers seemed to fail to take good control of reading

limits.

When malicious users sent a large number of

queries to the tags, the tags will keep asking AS to

update the keys. If the update message was lost or

abandoned by attackers, Foudladgar’s protocol will

fail and the owner’s reader will lost the tag. To

prevent this kind of DoS attack, Osaka[6] proposed

another ownership transfer scheme. In Osaka’s

scheme, the tag confirms the ownership transfer is

completed with AS in every session. However, in

Osaka’s scheme, a reader should have large memory

to keep the tags’ keys, and it is suffer from man in

the middle attack.

In this paper, we propose a protocol for

ownership transfer and reader-tag mutual

authentication in a mobile RFID environment. Unlike

traditional RFID, mobile readers are usually put

under the presupposition that they might be

malicious devices and their communication with

back-end server is not secured. In our protocol, the

ownership of a tag is transferred to the new reader by

updating the tag’s key after a mutual authentication

process between the read and the tag. Our protocol

can not only reduce tags’ computational load

effectively but also allow readers to access tags

without storing any shared keys. Furthermore, our

protocol provides location privacy, data privacy and

forward security. Our protocol can prevent replay

attacks, man in the middle attack, the DoS attack,

and protects the tag location and the ownership

transfer history.

This paper is organized as follows: in the next

section, we proposed a Mobile Access Control and

88

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

mailto:mhyang@cycu.edu.tw

Ownership Transfer protocol (MACOT) to deal with

mutual authentication and ownership transfer in

mobile RFID environment. Section 3 deals with the

security analysis of our protocol. Section 4 analyzes

the protocol’s performance. Conclusion is drawn in

the Section 5.

II. MOBILE ACCESS CONTROL AND OWNERSHIP

TRANSFER

In this section, we propose a Mobile Access Control

and Ownership Transfer (MACOT) protocol to deal

with mutual authentication and ownership transfer in

mobile RFID. Our ownership transfer scheme

consists of three stages. The first one is mobile

mutual authentication procedure (MMAP), the

second ownership transfer procedure (OTP), and the

third RC-Action Table update procedure.

The mutual authentication protocol requires the

readers obtain the corresponding information of a tag

from back-end authentication server according to

reader’s authority. The ownership transfer protocol

updates the tag’s key with the authorized owner after

the mutual authentication process. And the

RC-Action table update procedure is used by a

current owner to grant control of a tag.

A. Preliminary

 With the high mobility, a mobile reader has

wide-range accessibility. Subsequently, tags within

its access range could probably belong to a different

authority. An authentication scheme is required to

identify tags and locates their corresponding

back-end servers. According to H. Lee and J. Kim’s

mobile RFID infrastructure [11], the authentication

process with 7 steps is shown in Figure 1. :

Figure 1. Mobile RFID infrastructure

Step 1. A mobile reader sends a reading request

to the tag, and gets a responding message

from it.

Step 2. The reader forwards the message to AS to

verify the identity of the tag.

Step 3. AS verifies tag’s identity and queries

Object Name Server (ONS) to get the

detailed information of the tag.

Step 4. ONS sends the tag’s URL of EPC IS to

AS.

Step 5. According to the URL, AS requests the

tag’s information from EPC IS, which is

the back-end database of tags.

Step 6. EPC IS sends the tag’s information to AS.

Step 7. AS sends the tag’s information to the

reader.

 Because a passive tag’s computation resources

is limited, the packets uses a keyed-hash function

hx(), generated with the key x shared by the tag and

the authentication server to prevent eavesdropping.

The traffic between the readers and the AS is

protected by traditional symmetric encryption

algorithm Ek(). Back-end server, including AS, ONS

and EPC IS, are trusted by tags and readers.

 To manage a reader’s authority over a specific

tag, AS and the tag must store the authorizing

information. Figure 2(a) stored the corresponding

actions of readers of different role classes (RCs) to

the tag TID 80 in a RC-Action table. In the table, the

tag owner has the highest privileges to modify the

actions of each RC. The role in an upper row has

higher privileges. As shown in Figure 2(a), readers

with an owner-level RC are entitled to Action 3,

which means they are also authorized to do Action 1

and Action 2. In addition, the relevant information of

tags is stored in different EPC ISs, as in Figure 2(b):

(1) Readers’ Access Control List: each row

indicates each reader’s RC class. For

example, the reader RID 312’s authority

over TID 80 is B-class RC.

(2) Action Table: the AS decides what

command could be send from the reader to

the tag. For example, the reader with RID

312 can access TID 80’s public (general)

data and private (personal) data.

Figure 2. Data stored in (a) tag (b) back-end server

 We assume all readers are not trusted and they

do not need to store any tags’ keys. In the

initialization stage, the keys and secret of back-end

server, readers and tags are shown in Figure 3. The

1

2

Read_pubilc

Read_private

B

1 Read_pubilc

RID

312

214

666

TID
79 80 730

A

Owner

Action

2

Command Data

Reader’s Access Control List

Ownership

transfer

Action Table

(b) Information Table in Back-End Server

A

AA C

3
Ownership

transfer

1

2

Read_pubilc

Read_private

3
Ownership

transfer

TID

79

80

730

B 2

RC Action

A

C

Owner

1

3

RC-Action Table

for TID 80

(a) Information Table in Tag

2

89

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

server stored each tag’s identifier TID, two shared

keys Kx and Ky between tags and the server, a PIN

shared with a tag and the owner’s reader, and a

shared secret C.

The tag’s owner, the reader, which owns a tag, stored

the TID of the tag, and it’s PIN and C values. In each

tag’s memory, stored the Kx, Ky, PIN and C.

Figure 3. Shared keys and secret values stored in (a) Server (b)

Reader (c) Tag

B. Mobile Mutual Authentication Procedure

(MMAP)

We assume the back-end server can verity the

reader’s identity and exchange a session key Kdr

between them. When a reader read a tag, the

Mobile Mutual Authentication Procedure

(MMAP) is preforms with 8 steps:

Step 1. When a reader queries a tag, the tag

generates a random number r1 and creates

a secret value S by XOR-ing r1 and its

own identifier TID, and

computes)rTID(hS 1xK  . The tag sends

S and r1 to the reader.

Step 2. The reader generates another random

number r2, and sends

)Command,RID,r,r,S(E 21drk to the server.

Step 3. The server decrypts the message with Kdr

and computes)(1rTIDh
xK  for all tags

to obtain TID.

Step 4. The server looks up Reader’s Access

Control List to find out the reader’s RC,

access level, and generate a random

number r3. It computes

),,(321 CommandRCrrrTIDhT
yK 

and)TIDr(hp 3yK  . The server encrypts

T, p, r2 and r3 with a session key Kdr, i.e.

)r,r,p,T(E 32drK , and sends the result to

the reader.

Step 5. The reader decrypts the message with the

session key Kdr and verifies r2. If it’s

correct, the reader forwards T, r2 and r3

to the tag.

Step 6. The tag verifies T by searching all the

possible values of RC and commands. It

computes)TIDr(hp 3yK  ,

)ActrTID(hG 3xK  and sends them to

the reader.

Step 7. The reader verifies p, and forwards G and

r3 to the server by computing

)r,G(E 3drK
.

Step 8. The server verifies G to find a matched

Act, and searches the action table in

Figure 2. to find a matched Command. If

the Command matches the Act, the reader

is authorized, and the server sends the

requested tag’s data to the reader.

The complete mutual authentication protocol is

illustrated in Figure 4:
Back-End Server

Mobile

Reader Tag
interchage session key Kdr

1. Request

Generate r1

S = hKx(TID r1)2. S, r13. EKdr(RID, S, r1, r2, Command)

 S = hKx(TID r1), generate r3

 T = hKy(TID r1 r2 r3, RC, Command)

 p = hKy(TID r3)
4. EKdr(T, p, r2, r3)

?

5. T, r2, r3

T = hKy(TID r1 r2 r3, RC, Command)

 G = hKx(TID r3 Act)

 p = hKy(TID r3)

?

6. G, p

Reader verify p7. EKdr(G, r3)

G = hKx(TID r3 Act)
?

 8. EKdr(Data)

Generate r2

Figure 4. Mobile Mutual Authentication Procedure

C. Ownership Transfer Procedure (OTP)

After the server, the reader and the tag

authenticate themselves to each other, the

Ownership Transfer Procedure (OTP) is

performed to transfer the ownership between the

former owner and the current owner, as shown in

Figure 5. The two owners should authenticate

each other through a trust third party before

perform the OTP.

 The OTP is divided into two parts:

Figure 5. Diagram of Ownership Transfer

TID

80

730

79

Tag’s Information Table

(a) Keys and Secret Values

Stored in the Server

Kx Ky PINi C

11 22 33 44

55 66 77 88

99 96 94 90

(c) Keys and Secret

Values Stored in the Tag

88

77

TID

Kx

Ky

PIN

C

730

55

66

90

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

1) Part 1

 In Part 1, the server authenticates the former and

current owners and tag. The two owners have to

exchange session keys Kdr and Kdr’ with the server.

Next, the current owner encrypts his identifier RIDnew

with Kdr’ and send it to the former one. The former

owner uses the MMAP protocol to authenticate him

with the tag, as shown in messages 2-7 of Figure 6. .

The former owner encrypts EKdr’(RIDnew), r3 and G to

back-end server in message 8. The server adds the

current owner RIDnew into the Access Control List of

the current owner’s reader into the tag and marks

RIDnew’s RC as Owner.

Figure 6. The First Part of OTP

2) Part 2

 The second part of the OTP is shown in Figure 7.

After receiving)RID(E new'drK
 from the server, the

current owner verifies the derived RIDnew. The

current owner uses the MMAP protocol to

authenticate him with the tag, as shown in messages

2-6 in Figure 7. The rest of the protocol (steps 7-13)

is as follows:

Step 7. The tag generates

)PIN,ActrTID(hG i3K
'

x
 and sends it

to the server via the reader.

Step 8. The reader encrypted G’ with the random

number r3’, and sends it to the server.

Step 9. The server verifies G’ and updates the tag’s

PIN and secret value C. the server

computes)C,r(h
'

1PIN i
, and sends it to the

reader

Step 10. The reader forward the message to the tag.

Step 11. The tag verifies r1’ and C, and generates a

new)'r,KPIN(hPIN 3yiK1i x
 and

)'r,KC(hC 3yK
'

x
 . The tag computes

)'C,'r(h 3PIN 1i
 with the new PIN and C,

and sends it to the reader.

Step 12. The reader forwards the message to the

server. The server uses the same function to

generate the new PIN and C and

verifies)'C,'r(h 3PIN 1i
. If the comparison

is the same, the server modifies the

reader’s Access Control List to change or

delete the former owner’s tag identifier and

reader’s RC.

Step 13. The server sends the new PIN and C to the

current owner.

Figure 7. The Second Part of OTP

 The missing of message 10 and 11 could lead to

asynchronous update of data between back-end

server and the tag. Our protocol is designed to tackle

such asynchrony in OTP and requires that the reader

re-access the tag after it sends G’ to the server.

Meanwhile, the server uses PINi for computation to

generate G’ and check if this is the same as the G’

from the reader. If they are different, the server will

compute again with other secret values to generate

PINi+1 and re-queries G’. If the two G’s are the same,

it means PINi+1 is the key of the tag and it has

updated its key. Therefore, the server no longer needs

to update the tag, and will send PINi+1 and C’ to the

current owner directly. If the G’ that the server

generates with PINi is identical to the one from the

reader, the tag has missed message 10 in the

communication and has not yet updated PINi.

Consequently, back-end server begins to generate

hPINi(r1’,C) and update the tag’s key with it. If the tag

returns hPINi+1(r3’,C’), the update has been completed.

After verification, the server will send PINi+1 and C’

to the current owner. The procedure is illustrated as

below:

The Second Part

of OPT

Asynchrony in

Update When

Messages 10 & 11

Missing

N

Back-End Server

Getting Tag’s PIN

from G’

Y

Back-End

Server Sending

PINi+1 and C’ to

the New Owner

Back-End

Server and Tag

Having Updated

PIN and C

PINi

PINi+1

New Reader

Re-Accessing

Tag

Figure 8. Diagram of OTP When Messages Missing

91

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

 In mobile RFID, tag owners can transfer a tag’s

ownership to others through OTP. The following is

an instance to exemplify OTP. Figure 2 outlines the

initiation stage, the owner of reader RID 312

transferring his ownership over the tag TID 730 to a

current owner of reader RID 666. First, mutual

authentication is achieved between back-end server

and RID 312. Then the server looks up the reader’s

Access Control List (ACL) and confirms RID 312’s

RC to TID 730 is Owner. Next, the server generates p

and T before sending them to RID 666 and TID 730

respectively. For the server now, RID 666’s RC to

TID 730 has been updated as Owner, as the ACL in

Figure 9 (b) indicates. Following these steps, the

server will begin its mutual authentication with RID

666 and accordingly verifies it as the data receiver of

TID 730. Subsequently, the server encrypts T and p

with a key shared with RID 666 and then sends the

encrypted T and p to RID 666. Now, the mutual

authentication between TID 730 and RID 666 must

be achieved before TID 730 generates G’ with its

PIN 77 and sends it to the server. Next, the server

generates new PIN with 77 (see Figure 3 (b)) and a

new shared secret C with the old one 88 (see Figure 3

(b)), and sends them to RID 666 and TID 730

respectively. As a result, both the tag and back-end

server update TID 730’s PIN and C in their own

information tables, as illustrated in the highlighted

cells of Figure 9. Ownership, therefore, is transferred

to the reader RID 666.

h55(88 66,15)

h55(77 66,15)

(a) Table in Tag

TID

Kx

Ky

PIN

C

730

55

66

h55(88 66,15) Ownerh55(77 66,15)

RID

312

214

666

TID
56 80 730

A

B

TID

80

730

79

Reader’s Access Control ListTable for Tags’ Information

(b) Tables in Back-End Server

A

A

A

Kx Ky PINi C

11 22 33 44

55 66 C

99 96 94 90

Figure 9. After Ownership Transfer, Tables in (a) Tag (b)

Back-End Server

D. RC-Action Table Update Procedure

 As the ownership is transferred, the current

owner, with the PIN and C from back-end server, is

able to renew the tag’s RC-Action Table to set the

allowed actions for other readers. The steps are as

follows:

Step 1. The current owner’s reader generates a

random number r1, sends it to the tag and

begins to update the RC-Action Table. The

tag receives r1 and generates r2 and then

XORs them. Further, it computes a hash

with PIN and C before sending it to the

reader.

Step 2. The reader queries the hash function. If it is

valid, this message is sent by a legal tag.

Next, the reader uses r2 and C to compute a

hash with PIN)C,r(h 2PIN
 before sending it

to the tag.

Step 3. The tag queries)C,r(h 2PIN
. If it is not valid,

the reader does not belong to the owner. If

valid, then the reader does. Next, the tag

puts the values of RC and its corresponding

Act into a keyed-hash function for

computation one row after another before

sending it to the owner. Receiving the

message, the owner computes the hash

values one after another and therefore is

able to restore the RC-Action Table. r2 here

is used to prevent MITM attacks on one

hand, and for the owner to query whether

the message is sent by the tag on the other.

Step 4. The owner XORs the RC and its

corresponding Act in the RC-Action Table

one row after another, then put each of them

into a keyed-hash function with r1 for

computation, and finally sends them to the

tag. In addition, the tag computes the hash

values one by one and updates its

RC-Action Table.

Figure 10. RC-Action Table Update Procedure

 Since a tag owner can modify its RC-Action

Table at will, we will take the following example to

show how an owner updates a tag’s RC-Action Table,

enabling the RC-A users to access private data. Its

initial state is shown in Figure 11 (a) and the tag’s

identifier TID is 730. After the reader-tag mutual

authentication, TID 730 verifies this reader as Owner.

Now, the reader is able to modify TID 730’s

RC-Action Table, updating RC-A’s Action from 1 to

2. That is to say, users authorized as RC-A can access

not only public data but also private one.

92

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

2

2

1

RC Action

A

B

C

Owner 3

RC-Action Table

(a) Before Update

2

2

2

RC Action

A

B

C

Owner 3

RC-Action Table

(b) After Update
Figure 11. TID 730’s RC-Action Table (a) Before Update (b)

After Update

 By controlling the RC-Action Table, a tag

owner is also able to decide what level of data is

accessible to what readers, according to their RCs.

Thus, readers with lower authority is not entitled to

the data that requires high authority, while readers

with higher authority can fully access the tag at will.

III. SECURITY ANALYSIS

 In this section, we will prove that our OTP is

able to secure ownership transfer against replay

attacks, DoS from asynchronous update and MITM

attacks that change messages; to achieve mutual

authentication; and to protect the privacy of tags’

data and location, even though the valid readers have

been attacked. Since we have assumed that the

communication between a reader and AS is secured,

we will just focus on the security of the reader and

tag.

A. Against MITM Attacks’ Modification of

Messages

 In our protocol, messages between a reader and

tag are protected by keyed-hash functions. For

instance, a tag generates S and sends it to the

back-end server. The server uses TID and Kx,

shared with the tag, to verify S.

B. Against DoS from Asynchronous Update

We use PIN to synchronously update the keys and

secret values between a tag and back-end server,

that is included in G’, as sent by the tag in the

message 7 in Figure 7, is used for the server to

verify a tag’s keys. If message 11 is abandoned

by malicious users, which could lead to only a

tag’s update of PIN and C unilaterally, the server

can derive PINi+1 from PINi found in this tag’s

information table and from G’ sent by the tag so

as to query whether the key PINi+1 is exactly

identical to that stored in the tag. This scheme can,

therefore, prevent DoS attacks that result from

asynchronous update of keys.

C. Against Replay Attacks

 As every query between a tag and reader

carries a random number in each session, attackers

are not able to launch replay attacks by simply

coping the last verified message and resending it to

back-end server. Our authentication scheme will

fail their attempts in this style. For example, if

attackers resend to a tag a verified message that

contains the value T consisting of r1 generated by

the tag, such as the message 6 in Figure 7. , the tag

will query T with current r1 in the current session.

If the two are different, the authentication

procedure will not go further and attackers cannot

access any data from the tag, either.

D. Security of the Data Privacy of Tags

 We secure the messages between a reader and

tag with keyed-hash functions hKx and hKy.

If attackers launch replay attacks or try

interception, they can only get hashed values sent

by a tag, e.g. hKx(TID  r1). They cannot obtain a

tag’s identifier TID from those hashed values. Thus,

the privacy of tags’ data is secured.

E. Security of the Location Privacy of Readers and

Tags

 Normally, if attackers record a couple of

messages between a reader and tag, they can

probably find the connection in these messages

and accordingly are able to track the location of the

reader and tag. In our OTP, a tag sends out three

messages, i.e. S’ in the message 3, G’ and p’ in the

message 7 and hPINi+1(r3’,C’) in the message 11, as

illustrated in Figure 7. Because the three messages

all contain random numbers, their results change in

every session. In doing so, attackers can no longer

track a tag’s location from these messages and its

location privacy is secured. Similarly, the

messages 6 and 7 in Figure 7, which are forwarded

to back-end server by a reader, also change in

every session because of the random numbers that

the three messages (3, 7 and 11) carry along.

Consequently, attackers cannot find the connection

between these messages that the reader forwards

and track its location.

F. Security of Ownership Transfer

 To secure ownership transfer, back-end server

sends and updates a tag’s secret values PIN and C

via the current owner, who then encrypts them

with a symmetric key Kx. Because of the

keyed-encryption, owners’ privacy is protected and

the former owner can no longer modify a tag’s

RC-Action Table with the old PIN and C.

Therefore, with the deprivation of former owners’

access authority and the protection from the threats

mentioned above, we can say the ownership

transfer is secured.

IV. PERFORMANCE

 The performance of our schemes will be

analyzed in this section and their results will be

illustrated in detail in Table 1. TH represents the time

that a hash function takes in one computation; TXOR,

the time that an XOR takes in one computation; TRNG,

the time it takes to generate a random number; N, the

total tags that back-end server stores; L, the levels of

a RC; M, the actions of a tag; P, the actions that a tag

is entitled to.

93

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

TABLE I. PERFORMANCE OF TAG, READER AND BACK-END

SERVER IN EACH SCHEME

Table 1 indicates that the performance of the three

items (tag, reader and back-end server) is based on

the numbers that users design for L, M and P,

whereas a reader does not need to store any keys to

access a tag, e.g. in mobile mutual authentication and

ownership transfer, except in the update of

RC-Action Table.

V. CONCLUSION

 In the foreseeable future, RFID readers will not

be confined by locations anymore. The combination

of reading chips and mobile devices has made mobile

readers come true and paved the way for the

development of mobile RFID. However, security

issues remain a pain for RFID engineers, traditional

and mobile alike. As for mobile RFID, the security is

even at more serious stake because malicious users

might take unauthorized readers to access people’s

tags and this could endanger the privacy of users and

their data. For this reason, we propose a mutual

authentication scheme for mobile RFID, using

back-end server to verify readers and then find out

their RCs. Besides, we require that back-end server

send RCs via readers so that a tag can always obtain

the current reader’s RC before being accessed. Tag

owners subsequently look up the information tables

stored in tags and decide what actions are allowed for

a reader. Eventually, following a tag’s final decision,

back-end server sends to a reader the requested

information of this tag. Apart from these, this scheme

is also capable of ownership transfer by updating

tags’ keys. We use keyed-hash functions in the

messages between tags and readers and therefore

secure the tag-reader mutual authentication and

ownership transfer against replay attacks, DoS from

asynchronous update, MITM attacks’ modification of

messages and malicious users’ tracking of tags’

location and ownership transfer history, and, last but

not least, enhance the privacy of tags’ data and

location.

ACKNOWLEDGEMENT

This work was supported by the National Science

Council (NSC 99-2219-E-033-001 and NSC

99-2221-E-130-007), Republic of China.

REFERENCE

[1] M. H. Yang, “Lightweight authentication protocol for mobile
RFID networks,” International Journal of Security and
Networks, vol.5, no.1, pp. 53-62, 2010.

[2] B. Toiruul and K. Lee, “An advanced mutual-authentication
algorithm using AES for RFID systems,” International

Journal of Computer Science and Network Security, vol.6,
no.9, pp. 156-162, September 2006.

[3] D. Molnar, A. Soppera, and D. Wagner, “A scalable,
delegatable pseudonym protocol enabling ownership transfer
of RFID tags,” Selected Areas in Cryptography, pp. 276-290,
2006.

[4] H. Y. Chien, “Secure access control schemes for RFID
systems with anonymity,” Mobile Data Management, 2006.
MDM 2006. 7th International Conference on, pp. 96-96,
2006.

[5] J. Ayoade, “Security implications in RFID and
authentication processing framework,” Computers &
Security, vol. 25, no.3, pp. 207-212, 2006.

[6] K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi, “An
efficient and secure RFID security method with ownership
transfer,” Proceedings of the 2006 International Conference
on Computational Intelligence and Security, vol. 2, pp.
1090-1095, 2006.

[7] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels,
“Security and privacy aspects of low-cost radio frequency
identification systems,” The First International Conference
on Security in Pervasive Computing, pp. 201–212, March
2003, Revised Papers, 2004.

[8] S. Fouladgar, F. Evry, and H. Afifi, “An efficient delegation
and transfer of ownership protocol for RFID tags,”
Proceedings of the First International EURASIP Workshop
on RFID Technology, September 2007.

[9] S. Fouladgar and H. Afifi, “A simple delegation scheme for
RFID systems (SiDeS),” RFID, 2007. IEEE International
Conference on, pp. 1-6, 2007.

[10] S. Fouladgar and H. Afifi, “A simple privacy protecting
scheme enabling delegation and ownership transfer for RFID
tags,” Journal of Communications, vol. 2, no. 6, pp. 6-13,
2007.

[11] N. Park, H. Lee, H. Kim and D. Won “A security and
privacy enhanced protection scheme for secure 900MHz
UHF RFID reader on mobile phone,” IEEE International
Symposium on Consumer Electronics, pp. 692–696, 2006.

94

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

