
Real-time Component Labelling with

Centre of Gravity Calculation on FPGA

Abdul Waheed Malik, Benny Thörnberg
Department of Information Technology and Media

Mid Sweden University,

Sundsvall, Sweden

{waheed.malik | benny.thornberg}@miun.se

Xin Cheng, Najeem Lawal
Department of information Technology and Media

Mid Sweden University,

Sundsvall, Sweden

{xin.cheng | najeem.lawal}@miun.se

Abstract—In this paper, we present a hardware unit for real

time component labelling with Centre of Gravity calculation.

The main targeted application area is light spots, used as

references for robotic navigation. Centre of Gravity calculation

can be done in parallel with a single pass component labelling

unit without first having to resolve merged labels. We present

a hardware architecture suitable for implementation of this

Centre of Gravity unit on Field Programmable Gate Arrays.

As a result, we get high frame speed, low in power and low in

latency design. The device utilization and estimated power

dissipation are reported for the Xilinx Virtex II pro device

simulated at 86, Video Graphics Adaptor (VGA), sized frames

per second. Maximum speed is 410 frames per second at 126

MHz clock.

Keywords- Centre of Gravity (COG); Component Labelling;

Position Measurement

I. INTRODUCTION

Object detection and measurement of an object’s position
are important aspects for many image processing problems
and machine vision systems. In medical image processing,
we can see it in marker recognition and leukocyte tracking
[1]. We can see the same requirement for automatic target
recognition delineation and for light spots used as references
for robot navigation [2]. In all those applications, it is really
important to measure the object’s positions correctly. When
using light spots for robotic navigation, it is also necessary
for the processing of video frames to be fast. High frame
speed and low latency becomes important performance
measures. Field Programmable Gate Arrays (FPGAs) are the
preferred computational platform to reach this high
performance. FPGAs offer massive parallelism, on-chip
memories and arithmetic units and are therefore found to be
most suitable for front end video processing [5]. This has
motivated us to develop a FPGA based hardware unit for
component labelling and COG calculation.

This is the most aggressive implementation of

component labelling with feature calculation with minimum

latency. It is shown that calculation of COG can be done

without first resolving the complex chains of labels. The

resolving of labels is done after the whole frame is labelled,

avoiding any dependency on horizontal synchronization as

described in [6], [10], thus maximizing the frame speed.

Only one pass labelling is used as compared to classical two

pass labelling, and no need to store image as described in

[9]. Thus, the latency for our implementation is much lower

than the previous implementations.

The developed architecture is suitable for smart cameras

with a built in computational platform and having a low

bandwidth output communication channel [3].

The smart camera only sends the processed and refined

information, rather than sending large amount of video data.

Machine vision algorithms are often divided into the

following steps [4]. Video is acquired from the image sensor

at Image acquisition. Image objects are extracted from the

pre-processed video data at Segmentation, as shown in

Figure 1A. During labelling, pixels belonging to the same

image component are assigned a unique label. At Feature

extraction an image component is described, for example in

terms of region features such as area, ellipse, square or

circle parameters. Components can also be described in

terms of gray value features such as mean gray value or

position. This feature information can then be used for

Classification of image components. Information about

recognized objects in the camera’s observation area can be

transmitted to the camera output using typically a very low

bandwidth.

Higher data
abstraction

Communi-
cation

Computational
platform

Memory

Lens

Image sensor

A B

Image acquisition

Preprocessing

Segmentation

Feature extraction

Classification

Higher data

intensity

Labeling

Figure 1. A) Smart camera. B) Fundamental steps of machine vision

39

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

P9 P8 P7

P6 P5

C

R

Figure 2. Neighbourhood for eight connectivity labelling.

Binary pixel
stream input

O/E

En

Data
table A

Data
table B

Data table

COG calculation

P7 P8 P9 P6

Labeller

Equivalence table

O/E A B EW

En En

Table A Table B

Mux

Resolver

Eq. read port

Gray scale- or colour
pixel stream input

Codes

Equivalences

COG data of

labelled objects

Table ready

En

Figure 3. Kernel for labelling and COG computation

In this work, we focus on the COG calculation along
with the image component labelling. Eight connectivity
labelling process has been used, and labels are resolved after
every frame. As shown in Figure 2, P5 is the current pixel for
labelling, and it is labelled depending on labels P6 to P9. If
the labeller finds two different labels in the neighborhood, it
assigns the smaller label to the current pixel and marks that
those two labels are equivalent and should be merged.

The equivalent labelled pair (A, B) is sent to the

Equivalence table for merging. Label merging is targeted to

either Table A or B, depending on odd or even frames (O/E)

[7]. Resolving of linked lists of labels is thus frame

interleaved with the labelling process. The architecture is

shown in Figure 3. We assign a label to the current binary

pixel depending on the previously labelled pixels from P6 to

P9. At the same time as we are assigning a label to the

current pixel, we are also accumulating pixel data in Data

table A or B for the COG calculation without first having to

resolve linked lists of labels. This method has previously

been analyzed for COG in [7]. We have found published

results on high speed, low latency hardware component

labeller [6], but no results on how such a labeller can be

efficiently combined with calculation on image component

features such as COG.

The COG calculation method will be discussed in
Section II. We discuss hardware architecture in Section III,
while memory requirement is discussed in Section IV.

Performance and device utilization are discussed in Section
VI.

II COG CALCULATION

The COG for an image component O in an image is

calculated as

∑

∑

∑

∑

∈

∈

∈

∈
=

O,cr

ii

O,cr

iii

O,cr

ii

Ocr

iii

oo

ii

ii

ii

ii

,crI

,crIc

,
,crI

,crIr

),c(r
)(

)(

)(

)(
,

(1)

In the Equation 1, (ro,co) is the mass centre of the object.

I(ri,ci) is intensity of pixels and ri, ci are the row and column

count respectively. Let us assume that an object region is

divided into two sub regions, S and T, as a result of the first

pass of labelling. S and T belonging to the single object SUT

are resolved at the end of first pass and in parallel with

labelling of the next frame. The numerator and denominator

according to Equation 2 are accumulated in to Data table A

or B, at the same time as the first labelling pass. At the end

of the first labelling pass, when the codes are resolved in

equivalence table, the data stored in Data table A or B will

be merged into numerator and denominator for the region

SUT. This data merging for regions S and T is illustrated in

Equation 2 for row the dimension. Thus we add the

numerator data from different codes of same image

component, and the same is true for the denominator. The

subsequent step will be to perform the final division to

conclude the COG computation. Since, COG is computed in

parallel with the first pass of the image component labelling,

there is no need for a second labelling pass [6][7].

D

N

,crI,crI

,crIr,crIr

,r

T,cr

ii

S,cr

ii

T,cr

iii

Scr

iii

o

iiii

iiii =
+

+

=
∑∑

∑∑

∈∈

∈∈

)()(

)()(
,

 (2)

It can be seen that we perform the multiply and

accumulate (MAC) operation along with the labelling

process depending on different codes. Before applying the

COG algorithm to a video frame, objects of interest must

first be separated from the background at an image

segmentation step [4]. This image segmentation is at its

simplest form a threshold applied globally on the grey levels

of the image.

III. PROPOSED ARCHITECTURE

In this section, we will describe the hardware architecture
for calculating the COG from labelled pixel data. The COG
calculation shown in Figure 3 is further divided into two
main modules: Sequencer and Multiply & Accumulate
(MAC) unit. As shown in Figure 4, The Sequencer is
controlling all the data merging and computation and is also
responsible for sending computed COG data to an arbitrary
communication controller. The MAC unit accumulates the

40

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

nominators and denominators and performs serial divisions
for final COG output. This accumulation of pixel data in the
MAC unit is done in parallel with the labelling process.
When the equivalence table is resolved, the Table ready
signal becomes active and the sequencer starts merging data
from regions belonging to same image objects. The
sequencer is able to do this data merging based on the
resolved equivalences read from the equivalence table, as
shown in Figures 3 and 4. After merging, the numerators and
denominators are ready for the division. At completion of the
division, a Compute done signal is sent back to Sequencer,
which then enables Feature Strobe to send the COG value to
the communication device. In our experiment, we used an
asynchronous serial port. The sequencer scans the
equivalence table for all image objects until all objects are
computed and transmitted. Two data tables, A and B, are
used for numerators and denominators, as shown in Figure 5.

Figure 4. Architecture for COG computation.

Figure 5. MAC unit for row centre computation.

Figure 6. Worst case scenario for storage requirement.

One table accumulates the values after MAC operations
and at the same time the other table is used for merging the
data used for COG calculation. It will be shown in the next
section, the memory storage requirement for the data tables
are dependent on the maximum allowable object size, the
maximum number of objects, and maximum pixel intensity.

IV. STORAGE REQUIREMENT

In this section, we will analyse the memory storage

requirement for the COG calculation. According to Section

II and Equation 2, numerators N and denominators D are

accumulated in memory storage. The worst case scenario

will be when a large image component of size BxB pixels is

present at the right down most corner of the video frame, as

shown in Figure 6. The frame size is R, C number of rows

and columns. The maximum pixel intensity Imax is assumed

to be a power of two, and we assume that the worst case

object has maximum intensity for all its pixels. First, we

calculate the maximum integer value INum for numerator row

centre assuming that the row dimension is the largest. From

Equation 2 we can conclude that,

∑∑ ∑
+−=+−= +−=

=≤
R

BRr

R

BRr

C

BCc

Num rBIrII
1

max

1 1

max

,

(3)

)21(
1

BBRBRBRr
R

BRr

+−+++−++−=∑
+−=

K

(4)

∑∑
=+−=

+−=
B

r

R

BRr

rBRBr
11

)(

(5)

2

)1(
)(

1

+⋅
+−=∑

+−=

BB
BRBr

R

BRr

(6)

Substituting Equation (6) into log2 of Equation (3)

gives,
















 −
+=

2

1
log max

2

2

B
RIBSNum

(7)

SNum is thus the number of bits required to store one single

numerator. For our experiments, we have used the following

values for R, C, B and Imax: R=640, C=480, B=170,

Imax=255. For these values, SNum ≤ 32. This means that for

the maximum image component of size 170x170, we need

32 bits for accumulating the numerator in one single memory

cell. For the maximum allowable number of labels, L=1024,

we then conclude that two block RAMs with word length of

sixteen bits and depth of memory equal to L are needed. As

we use interleaving for memory access, a total of four block

RAMs are required. The above expression for row centre is

also valid for column centre, so four block RAMs also

required for column centre. Equation 9 shows the storage

requirement for the denominators.

41

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

Figure 7. Input stimuli

TABLE I. DEVICE UTILIZATION AND POWER CALCULATION

Slices RAMB16 Slice

flip-flop

4 input LUT

3876

(28%)

17

(12%)

 936

 (3%)

7589

(27%)

a)

Dynamic

power(mW)

Clock

Signals

Logic

IOs

Mult

 30 0.5 0.2 0.6 0.7

Dynamic

Power

 32.0 mW (at 27Mhz clock)

Quiescent

Power

 103 mW

Total

Power

 135 mW (at 27MHz clock)

Frequency Max 126 MHz

Latency 313584 clock cycles

 11.6 ms (at 27 MHz clock and 86 fps)

b)

∑∑ ∑
+−=+−= +−=

=≤
R

BRr

R

BRr

C

BCc

Den BIII
1

max

1 1

max
 (8)

()max

2

2log IBSDen = (9)

For the values of B and Imax chosen above, SDen=23 so four

block rams of 1024x16 is required for frame interleaved

storage of L number of denominators. These denominators

are the same for both row and column dimensions. Four

additional block RAMs are used in the labelling process for

maintaining equivalence tables A and B in Figure 3. One

block ram is allocated for the line buffer used to maintain the

neighbourhood shown in Figure 2. We now summarize the

number of required block RAMs used for storage of

numerators in both row and column dimensions (8),

denominators (4), equivalence tables (4) and line buffer (1).

This means that a total of (17) block RAMs are required for

the combined labeller and COG calculator presented in this

paper.

V. FUNCTIONAL VERIFICATION

The proposed hardware architecture for the calculation of

COG was captured in VHDL. The model was simulated at

register transfer level using two different input stimuli as

shown in Figure 7. A frame size of R=640 and C=480 pixels

was used for the experiment. Simulation output showed the

correct number of objects and correct COG values for all

objects shown in Figure 7.

VI. PERFORMANCE AND DEVICE UTILIZATION

The COG computation along with labelling as explained

in section III was captured in VHDL and synthesized for

implementation on the Xilinx VirtexII Pro device having

speed grade 6. Post route and placement simulations were

performed and design files were analyzed by the Xpower

tool included in the Xilinx ISE Foundation toolset [8]. The

pixel clock frequency was set to 27 MHz and at a frame

speed of 86 fps. The input stimuli are shown in Figure 7. The

power consumption, maximum clock frequency, latency and

device utilization are results as reported by the toolset after

synthesis and simulation, as shown in Table 1. We define

latency as the time from the first pixel in a frame arriving at

the input of the hardware unit until COG data of the first

image object in the same frame starts to transmit on the

output.

VII. DISCUSSION

The work presented in this paper shows the most

efficient parallelization of the first pass of labelling along

with COG calculation.

The performance of the labeller along with COG

calculation is shown in Table 1a and 1b. One block RAM is

used for the delay of previously assigned labels. Two triple

port memories are used for the equivalence table, two read

ports and one write port. The synthesis tool duplicates the

ram in order to implement single write and dual read port

memory. Twelve block RAMs are used for storing the

numerators and denominators used for COG calculation.

The static power dissipation is dominant, and we can see

that only 28% of the available slices are active. The

Maximum clock frequency reported by the toolset is 126

MHz. This clock frequency corresponds to 410 frames per

second for a video format of 640 by 480 pixels, assuming no

synchronisation overhead. This is a relevant assumption for

a FPGA based smart camera having a high speed CMOS

sensor connected directly to it. The latency is only 11.6 ms

for the simulation at 86 fps. This latency is almost exactly

the time of one frame with addition of the clock cycles

needed for the serial divisors to conclude COG computation

for the first object.

From Section IV, it is obvious that the memory storage

requirement depends on the maximum allowable image

component size BxB, as well as maximum number of labels

L. These parameters must be set at system synthesis time

and with a margin with respect to the expected video input.

More efficient use of the block RAMs will thus require a

hardware centric dynamic memory management.

VIII. CONCLUSION

In this paper, we presented a hardware architecture for

computation of connected component labelling along with

42

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

COG calculation. This implementation is suitable for

embedded machine vision systems and smart camera

applications having high demands on frame speed, power

and latency. We have reason to believe that this work can be

extended with computation of additional image object

features such as area, bounding box or ellipse parameters.

REFERENCES

[1] H. C. Van Assen, H. A. Vrooman, M. Egmont-Petersen, J. G.
Bosch, G. Koning, E. L. Van Der Linden, B. Goedhart, and J. H.
C. Reiber, "Automated calibration in vascular X-ray images using

the accurate localization of catheter marker bands", invest.
Radiol, vol. 35, no. 4, pp 219-226, April 2000.

[2] X. Cheng, B.Thörnberg, A.W. Malik and N. Lawal, “Hardware

centric machine vision for high precision center of gravity

calculation”, Proc. of world academy of science, engineering and

technology, Vol. 64, pp. 736-743, Rome, Italy, 2010.

[3] W.WOLF, B.Ozer and T. Lv, “Smart cameras as embedded

systems”, IEE computer, vol.35, No. 9, pp. 48-53, Sept, 2002.

[4] C. Steger, M. Ulrich and C. Wiedemann, Machine vision

algorithems and applications, Wiley-VCH 2008.

[5] M. Wnuk, “Remarks on hardware implementation of image

processing algorithms”. Journal of applied mathematics and

computer science. Vol. 18, No. 1, pp105--110 (2008).

[6] C.T. Johnston and D.G. Bailey, “FPGA implementation of a single

pass connected component algorithm”, Proc. Of 4th IEEE symp.

On electronic design test & applications, pp 228-231, Hong Kong,

China 2008.

[7] B. Thörnberg and N. Lawal, “Real-time component labelling and

feature extraction on FPGA”, Proc. of International Symposium

on Signals, Circuits and Systems, pp1-4, Iasi, Romania 2009.

[8] www.xilinx.com, last accessed, 14 November 2010.

[9] D.K. Kim, D.R. Lee, T.C. Pham, T.T. Nguyen and J.W. Jeon,

“Real- time component labeling and boundary tracing system

based on FPGA”, Proc.2007 IEEE Int. Conf. on Robotics and

Biomimetics (ROBIO '07), pp 189-194, 15-18 Dec. 2007 , Sanya,

China

[10] D.G. Bailey and C.T. Johnston, “Connected component analysis

of streamed images”, Proc. 2008 Int. Conf. on Field

Programmable Logic and Applications (FPL), pp 679-682, 8-10

Sept. 2008, Heidelberg, Germany.

43

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

