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Abstract—In this paper, we present a hardware unit for real 

time component labelling with Centre of Gravity calculation. 

The main targeted application area is light spots, used as 

references for robotic navigation. Centre of Gravity calculation 

can be done in parallel with a single pass component labelling 

unit without first having to resolve merged labels. We present 

a hardware architecture suitable for implementation of this 

Centre of Gravity unit on Field Programmable Gate Arrays. 

As a result, we get high frame speed, low in power and low in  

latency design. The device utilization and estimated power 

dissipation are reported for the Xilinx Virtex II pro device 

simulated at 86, Video Graphics Adaptor (VGA), sized frames 

per second. Maximum speed is 410 frames per second at 126 

MHz clock. 

 
Keywords- Centre of Gravity (COG); Component Labelling;  

Position Measurement 

I. INTRODUCTION 

Object detection and measurement of an object’s position 
are important aspects for many image processing problems 
and machine vision systems. In medical image processing, 
we can see it in marker recognition and leukocyte tracking 
[1]. We can see the same requirement for automatic target 
recognition delineation and for light spots used as references 
for robot navigation [2]. In all those applications, it is really 
important to measure the object’s positions correctly. When 
using light spots for robotic navigation, it is also necessary 
for the processing of video frames to be fast. High frame 
speed and low latency becomes important performance 
measures. Field Programmable Gate Arrays (FPGAs) are  the 
preferred computational platform to reach this high 
performance. FPGAs offer massive parallelism, on-chip 
memories and arithmetic units and are therefore found to be 
most suitable for front end video processing [5]. This has 
motivated us to develop a FPGA based hardware unit for 
component labelling and COG calculation. 

This is the most aggressive implementation of 

component labelling with feature calculation with minimum 

latency. It is shown that calculation of COG can be done 

without first resolving the complex chains of labels. The 

resolving of labels is done after the whole frame is labelled, 

avoiding any dependency on horizontal synchronization as 

described in [6], [10], thus maximizing the frame speed. 

Only one pass labelling is used as compared to classical two 

pass labelling, and no need to store image as described in 

[9]. Thus, the latency for our implementation is much lower 

than the previous implementations. 

The developed architecture is suitable for smart cameras 

with a built in computational platform and having a low 

bandwidth output communication channel [3].  

The smart camera only sends the processed and refined 

information, rather than sending large amount of video data. 

Machine vision algorithms are often divided into the 

following steps [4]. Video is acquired from the image sensor 

at Image acquisition. Image objects are extracted from the 

pre-processed video data at Segmentation, as shown in  

Figure 1A. During labelling, pixels belonging to the same 

image component are assigned a unique label. At Feature 

extraction an image component is described, for example in 

terms of region features such as area, ellipse, square or 

circle parameters. Components can also be described in 

terms of gray value features such as mean gray value or 

position. This feature information can then be used for 

Classification of image components. Information about 

recognized objects in the camera’s observation area can be 

transmitted to the camera output using typically a very low 

bandwidth.  

 

 

Higher data 
abstraction 

Communi-
cation 

Computational 
platform 

Memory 

Lens 

Image sensor 

A B 

Image acquisition 

Preprocessing 

Segmentation 

Feature extraction 

Classification 

Higher data 

intensity 

Labeling 

Figure 1. A) Smart camera. B) Fundamental steps of machine vision 
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Figure 2. Neighbourhood for eight connectivity labelling. 
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Figure 3. Kernel for labelling and COG computation 

In this work, we focus on the COG calculation along 
with the image component labelling. Eight connectivity 
labelling process has been used, and labels are resolved after 
every frame. As shown in Figure 2, P5 is the current pixel for 
labelling, and it is labelled depending on labels P6 to P9. If 
the labeller finds two different labels in the neighborhood, it 
assigns the smaller label to the current pixel and marks that 
those two labels are equivalent and should be merged. 

The equivalent labelled pair (A, B) is sent to the 

Equivalence table for merging. Label merging is targeted to 

either Table A or B, depending on odd or even frames (O/E) 

[7]. Resolving of linked lists of labels is thus frame 

interleaved with the labelling process.  The architecture is 

shown in Figure 3. We assign a label to the current binary 

pixel depending on the previously labelled pixels from P6 to 

P9. At the same time as we are assigning a label to the 

current pixel, we are also accumulating pixel data in Data 

table A or B for the COG calculation without first having to 

resolve linked lists of labels. This method has previously 

been analyzed for COG in [7]. We have found published 

results on high speed, low latency hardware component 

labeller [6], but no results on how such a labeller can be 

efficiently combined with calculation on image component 

features such as COG. 

The COG calculation method will be discussed in 
Section II. We discuss hardware architecture in Section III, 
while memory requirement is discussed in Section IV. 

Performance and device utilization are discussed in Section 
VI. 

II COG CALCULATION 

 

The COG for an image component O in an image is 

calculated as 
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In the Equation 1, (ro,co) is the mass centre of the object. 

I(ri,ci) is intensity of pixels and ri, ci are the row and column 

count respectively. Let us assume that an object region is 

divided into two sub regions, S and T, as a result of the first 

pass of labelling. S and T belonging to the single object SUT 

are resolved at the end of first pass and in parallel with 

labelling of the next frame. The numerator and denominator 

according to Equation 2 are accumulated in to Data table A 

or B,  at the same time as the first labelling pass. At the end 

of the first labelling pass, when the codes are resolved in 

equivalence table, the data stored in Data table A or B will 

be merged into numerator and denominator for the region 

SUT. This data merging for regions S and T is illustrated in 

Equation 2 for row the dimension. Thus we add the 

numerator data from different codes of same image 

component, and the same is true for the denominator. The 

subsequent step will be to perform the final division to 

conclude the COG computation. Since, COG is computed in 

parallel with the first pass of the image component labelling, 

there is no need for a second labelling pass [6][7]. 
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It can be seen that we perform the multiply and 

accumulate (MAC) operation along with the labelling 

process depending on different codes. Before applying the 

COG algorithm to a video frame, objects of interest must 

first be separated from the background at an image 

segmentation step [4]. This image segmentation is at its 

simplest form a threshold applied globally on the grey levels 

of the image. 

III. PROPOSED ARCHITECTURE 

In this section, we will describe the hardware architecture 
for calculating the COG from labelled pixel data. The COG 
calculation shown in Figure 3 is further divided into two 
main modules: Sequencer and Multiply & Accumulate 
(MAC) unit. As shown in Figure 4, The Sequencer is 
controlling all the data merging and computation and is also 
responsible for sending computed COG data to an arbitrary 
communication controller. The MAC unit accumulates the 
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nominators and denominators and performs serial divisions 
for final COG output. This accumulation of pixel data in the 
MAC unit is done in parallel with the labelling process. 
When the equivalence table is resolved, the Table ready 
signal becomes active and the sequencer starts merging data 
from regions belonging to same image objects. The 
sequencer is able to do this data merging based on the 
resolved equivalences read from the equivalence table, as 
shown in Figures 3 and 4. After merging, the numerators and 
denominators are ready for the division. At completion of the 
division, a Compute done signal is sent back to Sequencer, 
which then enables Feature Strobe to send the COG value to 
the communication device. In our experiment, we used an 
asynchronous serial port. The sequencer scans the 
equivalence table for all image objects until all objects are 
computed and transmitted. Two data tables, A and B, are 
used for numerators and denominators, as shown in Figure 5. 

 
Figure 4. Architecture for COG computation. 

 

Figure 5. MAC unit for row centre computation. 

 

Figure 6. Worst case scenario for storage requirement. 

One table accumulates the values after MAC operations 
and at the same time the other table is used for merging the 
data used for COG calculation. It will be shown in the next 
section, the memory storage requirement for the data tables 
are dependent on the maximum allowable object size, the 
maximum number of objects, and maximum pixel intensity. 

IV. STORAGE REQUIREMENT 

In this section, we will analyse the memory storage 

requirement for the COG calculation. According to Section 

II and Equation 2, numerators N and denominators D are 

accumulated in memory storage. The worst case scenario 

will be when a large image component of size BxB pixels is 

present at the right down most corner of the video frame, as 

shown in Figure 6. The frame size is R, C number of rows 

and columns. The maximum pixel intensity Imax is assumed 

to be a power of two, and we assume that the worst case 

object has maximum intensity for all its pixels. First, we 

calculate the maximum integer value INum for numerator row 

centre assuming that the row dimension is the largest. From 

Equation 2 we can conclude that, 
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Substituting Equation (6) into log2 of Equation (3) 

gives, 
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SNum is thus the number of bits required to store one single 

numerator. For our experiments, we have used the following 

values for R, C, B and Imax:  R=640, C=480, B=170, 

Imax=255. For these values, SNum ≤ 32. This means that for 

the maximum image component of size 170x170, we need 

32 bits for accumulating the numerator in one single memory 

cell. For the maximum allowable number of labels, L=1024, 

we then conclude that two block RAMs with word length of 

sixteen bits and depth of memory equal to L are needed. As 

we use interleaving for memory access, a total of four block 

RAMs are required. The above expression for row centre is 

also valid for column centre, so four block RAMs also 

required for column centre. Equation 9 shows the storage 

requirement for the denominators. 
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Figure 7. Input stimuli 

TABLE I.   DEVICE UTILIZATION AND POWER CALCULATION 

Slices RAMB16 Slice 

flip-flop 

4 input LUT 

3876 

(28%) 

17 

(12%)  

 936 

 (3%) 

7589 

(27%) 

a) 

 

Dynamic 

power(mW) 

 

Clock 

 

Signals 

 

Logic 

 

IOs 

 

Mult 

 30 0.5 0.2 0.6 0.7 

Dynamic 

Power 

        

        32.0 mW (at 27Mhz clock) 

Quiescent 

Power 

       103 mW 

Total 

Power 

      135  mW (at 27MHz clock) 

Frequency       Max 126 MHz 

Latency       313584 clock cycles 

      11.6 ms (at 27 MHz clock and 86 fps) 

b) 
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For the values of B and Imax chosen above, SDen=23 so four 

block rams of 1024x16 is required for frame interleaved 

storage of L number of denominators. These denominators 

are the same for both row and column dimensions. Four 

additional block RAMs are used in the labelling process for 

maintaining equivalence tables A and B in Figure 3. One 

block ram is allocated for the line buffer used to maintain the 

neighbourhood shown in Figure 2. We now summarize the 

number of required block RAMs used for storage of 

numerators in both row and column dimensions (8), 

denominators (4), equivalence tables (4) and line buffer (1). 

This means that a total of (17) block RAMs are required for 

the combined labeller and COG calculator presented in this 

paper. 

V. FUNCTIONAL VERIFICATION 

The proposed hardware architecture for the calculation of 

COG was captured in VHDL. The model was simulated at 

register transfer level using two different input stimuli as 

shown in Figure 7. A frame size of R=640 and C=480 pixels 

was used for the experiment. Simulation output showed the 

correct number of objects and correct COG values for all 

objects shown in Figure 7. 

VI. PERFORMANCE AND DEVICE UTILIZATION 

The COG computation along with labelling as explained 

in section III was captured in VHDL and synthesized for 

implementation on the Xilinx VirtexII Pro device having 

speed grade 6. Post route and placement simulations were 

performed and design files were analyzed by the Xpower 

tool included in the Xilinx ISE Foundation toolset [8]. The 

pixel clock frequency was set to 27 MHz and at a frame 

speed of 86 fps. The input stimuli are shown in Figure 7. The 

power consumption, maximum clock frequency, latency and 

device utilization are results as reported by the toolset after 

synthesis and simulation, as shown in Table 1. We define 

latency as the time from the first pixel in a frame arriving at 

the input of the hardware unit until COG data of the first 

image object in the same frame starts to transmit on the 

output. 

VII. DISCUSSION 

The work presented in this paper shows the most 

efficient parallelization of the first pass of labelling along 

with COG calculation. 

The performance of the labeller along with COG 

calculation is shown in Table 1a and 1b. One block RAM is 

used for the delay of previously assigned labels. Two triple 

port memories are used for the equivalence table, two read 

ports and one write port. The synthesis tool duplicates the 

ram in order to implement single write and dual read port 

memory. Twelve block RAMs are used for storing the 

numerators and denominators used for COG calculation. 

The static power dissipation is dominant, and we can see 

that only 28% of the available slices are active. The 

Maximum clock frequency reported by the toolset is 126 

MHz. This clock frequency corresponds to 410 frames per 

second for a video format of 640 by 480 pixels, assuming no 

synchronisation overhead. This is a relevant assumption for 

a FPGA based smart camera having a high speed CMOS 

sensor connected directly to it. The latency is only 11.6 ms 

for the simulation at 86 fps. This latency is almost exactly 

the time of one frame with addition of the clock cycles 

needed for the serial divisors to conclude COG computation 

for the first object. 

From Section IV, it is obvious that the memory storage 

requirement depends on the maximum allowable image 

component size BxB, as well as maximum number of labels 

L. These parameters must be set at system synthesis time 

and with a margin with respect to the expected video input. 

More efficient use of the block RAMs will thus require a 

hardware centric dynamic memory management. 

VIII. CONCLUSION 

In this paper, we presented a hardware architecture for 

computation of connected component labelling along with 
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COG calculation. This implementation is suitable for 

embedded machine vision systems and smart camera 

applications having high demands on frame speed, power 

and latency. We have reason to believe that this work can be 

extended with computation of additional image object 

features such as area, bounding box or ellipse parameters. 
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