
VPN User Authentication Using Centralized
Identity Providers

Duarte Mortágua
IEETA, University of Aveiro

Aveiro, Portugal
email: duarte.ntm@ua.pt

André Zúquete, Paulo Salvador
DETI / IEETA, University of Aveiro

Aveiro, Portugal
email: {andre.zuquete,salvador}@ua.pt

0000-0002-9745-4361, 0000-0001-6832-9417

Abstract—The online access to an always growing set of ser-
vices requires users to manage credentials to identify themselves
to all of them. The reduce this burden on users, centralized
authentication systems, ordinarily known as Identity Providers
(IdPs), and Single Sign-On (SSO) protocols where developed and
are often deployed. IdPs and SSO were mainly developed for
Web-based interactions, first in the scope of a set of federated
services belonging to one organization, later on wider scopes,
such as for virtually everyone (e.g., Google or Facebook users)
or for all citizens of a given country. The Portuguese national IdP,
Autenticação.gov, is an example of this later case. Today, many
adhering services, from both the public and the private sectors,
enable users to authenticate themselves using the functionalities
provided by Autenticação.gov. However, the use of this IdP, as
well as of similar ones, is mostly limited to Web applications. The
goal of this paper was to study the integration of IdP services
with Virtual Private Network (VPN) setup processes, namely for
the authentication of VPN users. To this end, we used a recent
VPN technology, WireGuard, which became popular amongst
vendors due to its speed, simplicity and adoption by the kernels
of the mainstream operating systems. We propose a method for
a WireGuard-based VPN client to connect to a VPN server and
negotiate cryptographic keys associated to a user authenticated
by a centralized, OAuth 2.0-enabled IdP. We implemented a VPN
server that enables users to use two different IdPs, namely Google
Identity and Autenticação.gov; they both support the OAuth 2.0,
but in different ways.

Index Terms—Identity Providers, Authentication, OAuth 2.0,
VPN, WireGuard

I. INTRODUCTION

Services provided by companies or public sector depart-
ments often require people to register themselves, i.e., to create
an account. Such registration usually involves the provisioning
of users’ authentication credentials (usually a passphrase) and
a recovery mechanism (usually an e-mail address or, more
recently, a phone number). Furthermore, and normally more
complex to validate, users associate extra identity data to their
account that may be useful in the future (e.g., a P.O. box
address, a payment method, etc.).

Centralized Identity Providers (IdPs) appeared to reduce the
users’ burden regarding account management. They permitted
to evolve from a so-called silo approach (where services do
not share accounts) to accounts that can be shared by a set
of federated services. Those services, often called Relying
Parties (RPs), trust on the user authentication implemented
by an IdP, and sometimes they can even enforce the use of

specific approaches, by specifying Level of Assurance (LoA)
indications. Furthermore, the RPs also receive, upon a user
authentication, a set of user identification attributes which they
assume that are accurate. Such accuracy is the responsibility
of a back-office service used by an IdP, the Identity Manager
(IdM).

Single Sign-On (SSO) is a concept that leverages centralized
IdPs. Besides the centralization of the authentication in an
IdP, SSO also enables users to remain authenticated during
a time lapse, defined by the IdP (an authenticated session).
Consequently, during that time they can access any federated
RP without having to be authenticated for each of them.

IdPs and SSO were first explored in the context of Web
interactions through the use of messages formatted with Secure
Assertion Markup Language (SAML) [14] exchanged between
an IdP and an RP through HTTP-based protocols, such as the
Web Browser SSO Profile [13]. More recently, IdPs and RPs
started to use OAuth 2.0, a protocol conceived to implement
access control delegation, to allow RPs to access user identity
resources maintained by an IdP. Nowadays, popular Internet
services, such as Google and Facebook, which authenticate
millions of people, an keep some relevant user identity at-
tributes in their accounts, are often used as IdPs.

In order to facilitate the online identification of people
in their interaction with services provided by the private or
public sectors, several countries deployed an IdP for their
citizens. This is the case of Autenticação.gov, created and
maintained by the Portuguese state. This IdP enables citizens
to authenticate themselves using two alternative methods,
both implementing a two-factor authentication: a personal
electronic identification device (Cartão de Cidadão, an eID
crypto token) with a secret PIN or a combination of a secret
PIN and a mobile phone number or e-mail address (Chave
Móvel Digital). Other European countries followed a similar
approach, for instance the ID Austria [3] or Cla@ve [9] in
Spain.

This growing use of centralized IdPs for authenticating
users and providing identification attributes about them to RPs
happens mainly in the context of Web-based interactions, and
considering that users use Web browsers to access the services
provided by RPs. In this paper, we describe how we can
explore an IdP for user authentication during a VPN setup, an
action that became more frequent upon the recent Covid-19

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

pandemic. We chose to use a VPN technology, WireGuard,
that uses as host (or user) authentication paradigm a set
of public keys that must be pre-shared between VPN client
and server. Then, we designed and implemented a protocol,
involving a user browser and an IdP, which enables a VPN
server to receive a trustworthy binding between a WireGuard
public key and a user identity attribute. The provisioning of
the identity attribute requires a user authentication by the
IdP within the VPN setup protocol. For IdP services, we
used Google Identity and Autenticação.gov. They both support
OAuth 2.0, in different ways, to allow RPs (our VPN servers)
to fetch a controlled set of identity attributes from the users
they authenticate. A proof of concept implementation of the
VPN client and server was successfully tested with those IdPs.

It is worth noting that we are not proposing a new au-
thentication mechanism. We are proposing to benefit from the
authentication mechanisms already explored by IdPs, and the
subsequent provisioning of identity attributes associated to the
authenticated person, during the setup of VPNs.

This paper is structured as follows. In Section II, we briefly
describe the OAuth 2.0 details that are relevant to understand
its use by IdPs and we detail how Google Identity and
Autenticação.gov use it. In Section III, we explain the setup of
a WireGuard VPN. In Section IV we describe the architecture
of our solution. In Section V, we describe the implementation
supporting two IdPs, Google Identity and Autenticação.gov. In
Section VI, we discuss the security and usability of the final
system. In Section VII, we present some related work. Finally,
in Section VIII, we conclude the paper.

II. OAUTH 2.0 IN THE CONTEXT OF IDPS

OAuth 2.0 is a protocol that can be used to authorize the
access to protected resources in many different way. Thus, it
can be explored differently by each IdP. In order to understand
the integration of Autenticação.gov and Google Identity with
our VPN setup process, it is therefore necessary to understand
how these IdPs explore it in the context of users’ identification.
We start by an initial presentation of OAuth 2.0 concepts, and
then we show how Autenticação.gov and Google Identity use
it for user identification.

A. OAuth 2.0 concepts

OAuth 2.0 [10] enables an application (client) to access
resources owned by a person (resource owner) kept by a
resource server. In a nutshell, the client leads the resource
owner (through their browser) to interact with the resource
server in order to get an authorization grant to the client
for accessing a set of resources. This interaction is conducted
by the authorization server component of the resource server,
which requires the authentication of the resource owner, shows
the client identification and asks for permission to grant an
access authorization to the set of resources listed by the
client. This interaction ends successfully with the upload of an
authorization grant to the client, which then uses it to get an
access token from the authorization server. Finally, the client

uses the access token as a bearer token to access the intended
resources, kept by the resource server.

In the context of the centralized provisioning of personal
identity attributes to federated services (RPs), the client is the
RP, the resource owner is a person known by the IdP, and
which the IdP knows how to authenticate, and the resource
and authentication servers are parts of the IdP.

OAuth 2.0 was conceived for providing authorizations for
clients wishing to access any kind of resource kept by a
resource server. Thus, identity attributes are just a subset of
those resources. There is an identity layer, called OpenID
Connect (OIDC), that operates over OAuth 2.0, which uses
ID tokens as resources. The knowledge of this layer is not
fundamental to understand our system, and, in fact, we did not
use it, because Autenticação.gov does not use it and Google
Identity can be used without it. Consequently, we are not going
to detail how it works.

B. OAuth 2.0 grant types

An OAuth 2.0 authorization grant can be obtained with 4
different approaches, which also define different interaction
flows. Two of them, resource owner password credentials
and client credentials grants, are not relevant, because they
are meant to be used in special cases (when the client belongs
to the resource owner and when the client is the resource
owner, respectively) that are not suitable for our scenario.

The two grants that are of interest are authorization code
and implicit. In the first case, the client receives an autho-
rization code grant that it later uses to fetch an access token
for accessing the resources of interest. The provisioning of the
access token requires the client authentication by the resource
server. In the second case, the client receives directly the
access token. This approach is intended to be used by clients
that are not meant to be authenticated by the resource server.

C. Registration of clients

The use of OAuth 2.0 implies a previous registration of the
client in a resource server of interest. The registration requires
the provisioning of the following items:

• Client type, either confidential or public. A confidential
client is able to protect from disclosure a secret that can
be used to get authenticated by the resource server (or its
authorization server). A public client, on the other hand,
cannot ensure the protection of such secret.
In our case, the client will be an instance of a VPN
server. It can be confidential, but in that case it requires a
registration of each VPN server instance in the resource
server. Or it can be public, if no secret is used or if the
same secret is embedded in the code of all VPN server
instances.

• Client identifier. This is a value that uniquely identifies
the client in the scope of the resource server. It is provided
by the later upon accepting the registration.

• Client authentication credentials. The resource server de-
fines the alternatives (usually a password). Public clients
may be required to make this registration, although not

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

enforcing a trustworthy identification (since they cannot
protect the secrecy of the credentials).

• Redirection endpoint. This is a Universal Resource Iden-
tifier (URI) that is used by the resource server (or,
more specifically, by its authorization server) to send the
authorization grant to the client.
In our case, we have several alternatives for defining
this URI. We could have a URI per VPN server in-
stance, but that would require a registration on each
VPN server setup. Alternatively, since the URI is used
in a communication initiated by a user browser (through
HTTP redirection), the URI can contain an IP address
that represents the browser host (e.g., 127.0.0.1). This
solution is more appropriate for an exploitation scenario
where there is a single registration for all VPN server
instances (created by the VPN developers).

• Client identification items, such as application name,
website, description, logo image, etc. Those items will
allow users to recognize the client when it requires their
identity attributes.

D. Autenticação.gov

Autenticação.gov uses the implicit grant flow with pub-
lic clients without a shared secret. The registration of an
OAuth 2.0 client in Autenticação.gov requires a manual agree-
ment between the two parties, and the requester is naturally
assumed to be an organization with an online portal. The
registration includes 4 items: request issuer (portal URL), or-
ganization (the client identification to be presented to users), a
contact e-mail (for technical issues) and a redirection endpoint
domain (an IP address or a DNS domain). From this agreement
results a client ID, which the client uses to identify itself in
Autenticação.gov.

According to the public technical documentation of
Autenticação.gov [1], the client needs to follow 3 steps re-
garding the user authentication and attribute provisioning:

1) Obtain an access token upon a successful user authen-
tication by Autenticação.gov. This implies sending, to
be presented to the user, the set of identity attributes the
client wants to receive (scope). This step is initiated with
a GET redirection of the user browser from the client
to a specific Autenticação.gov authorization endpoint
(see Table I). Upon a successful user authentication and
authorization (to convey the indicated attributes), the
browser is redirected to the client’s redirection endpoint
with an access token as a URL fragment.
The client can specify how it wants the IdP to au-
thenticate the user by means of an extra field in the
initial request (authentication_level). If absent,
the IdP will present to the user any available method.

2) Obtain an identifier of the authentication process
(authenticationContextId) by presenting the
access token and an optional subset of the attributes
in the identification scope to Autenticação.gov with a
JSON body.

3) Obtain the needed attributes by presenting the ac-
cess token and the authenticationContextId to
Autenticação.gov.

In our work we used a pre-production instance of
Autenticação.gov. However, it is essentially a mirror of the
production instance.

E. Google Identity

Unlike Autenticação.gov, the usage of the Google Identity
IdP can be configured in an automated way through Google
Cloud. This service allows the creation of Google Cloud
projects, which may expose APIs and services to users. One
of those services is Credentials, which allows the creation of
OAuth 2.0 clients that may interact with Google APIs. The
OAuth 2.0 consent screen presented to the users must also
be configured, alongside the needed Google APIs that the
OAuth 2.0 client may access, i.e., the OAuth 2.0 scopes.

The Credentials service allows the creation of multiple types
of OAuth 2.0 clients [8], depending on the nature of the client
application (Web App, JavaScript App, mobile App, etc.).
In our case, the Desktop App was chosen, due to the fact
that it allows the redirection of the Google’s authorization
server responses to a localhost-based redirection URI, with
an arbitrary port, i.e., our VPN client running on the user’s
machine.

When a Credential is created, it generates a Client ID and a
Client Secret, that can then be used by the client to implement
the OAuth 2.0 flow. As opposed to Autenticação.gov, which
uses the implicit grant flow, Google Identity uses the autho-
rization code grant flow, which imposes client authentication
towards the IdP.

In this case, there are also 3 steps for obtaining the attributes
of a user:

1) Obtain an authorization code upon successful user
authentication by Google Identity. Similar to the
Autenticação.gov first step, this step implies making a
GET request to Google’s authorization endpoint (see Ta-
ble I) that carries the OAuth 2.0 mandatory authorization
parameters, such as the Client ID, the scopes and the
redirection URI. After a successful user authentication,
the user browser is redirected to the client’s redirection
endpoint with an authorization code in the URL query
parameters.

2) Obtain an access token upon successful client authenti-
cation. In our case, this means the VPN server authenti-
cation with its Client ID and Secret, alongside with the
authorization code. For this, one needs to use the Google
Identity OAuth 2.0 token endpoint with URL encoded
body).

3) Obtain the needed attributes upon presenting the access
token to a Google API endpoint which the token is al-
lowed to access, which is one of the token’s scopes with
the Authorization header as Bearer followed by
the access token).

In the case of Google Identity, it was possible to publish
the registered OAuth 2.0 client in production, which means

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

TABLE I
ENDPOINTS AND ACCESS METHODS FOR AUTENTICAÇÃO.GOV (TOP) AND GOOGLE IDENTITY (BOTTOM)

Endpoint HTTP method and URL
Authorization GET https://autenticacao.gov.pt/oauth/askauthorization?redirect uri=...&client id=...&response type=token&scope=...
Client’s redirection GET redirect uri#token type=bearer&expires in=...&access token=...
Authentication identifier request POST https://autenticacao.gov.pt/oauthresourceserver/api/AttributeManager
Attribute request GET https://autenticacao.gov.pt/oauthresourceserver/api/AttributeManager?token=...&authenticationContextId=...

Endpoint HTTP method and URL
Authorization GET https://accounts.google.com/o/oauth2/v2/auth?redirect uri=...&client id=...&response type=code&scope=...
Client’s redirection GET redirect uri?code=...
Access token request POST https://oauth2.googleapis.com/token
Attribute request GET https://www.googleapis.com/oauth2/v3/userinfo

that our VPN server was able to authenticate anyone with a
Google account.

III. WIREGUARD VPN SETUP

A WireGuard VPN is essentially a secure IP tunnel between
two or more peers implementing WireGuard network inter-
faces [6]. These implement the concept of Cryptokey Routing,
where each interface only needs to know its peer interfaces
public keys and tunnel IPs [7].

In Linux systems, the WireGuard interfaces are configured
using command line tools and configuration files. In order to
connect a VPN client to a VPN server, we first need to create
asymmetric key pairs for each one of them. To do so, we can
run
wg genkey > privkey
wg pubkey < privkey > pubkey

on each machine, generating two pairs of keys. These are
Curve25519 key pairs, which are used to run Elliptic Curve
Diffie-Hellman key distribution protocols [2].

A configuration file for a WireGuard server (e.g.,
wg0.conf) would have a structure as follows:

[I n t e r f a c e]
P r i v a t e K e y = server private key
L i s t e n P o r t = UDP port to listen for clients
Address = server VPN IP address / netmask bits

[Pee r]
Pub l i cKey = client public key
AllowedIPs = traffic to tunnel to/from the peer

This configuration essentially declares that the WireGuard’s
VPN server interface will have the indicated private key and
tunnel IP address, and will use a given UDP port to interact
with the peers.

Several peers can be indicated for each interface, and each
is identified by its public key. The peers’s tunnel UDP/IP
addresses are not fixed, they can even vary over time (peers can
roam). The tunneled traffic from peers, however, must come
from the allowed IP addresses. Similarly, the interface should
be used to tunnel all traffic to those IP addresses. The list of IP
addresses in AllowedIPs is a routing table when choosing
an interface for outbound traffic, and an access control list for
filtering inbound traffic.

For the client, the configuration file would be:

[I n t e r f a c e]
P r i v a t e K e y = client private key
Address = client tunnel IP address / netmask

[Pee r]
Pub l i cKey = server public key
E n d p o in t = server initial t unnel UDP/IP port
AllowedIPs = traffic to tunnel to/from the peer

This configuration declares that the WireGuard VPN client
interface will have the indicated private key and tunnel IP
address and will communicate with a peer (server) with the
provided public key and tunnel UDP/IP endpoint. It also
declares, through the AllowedIPs parameter, which traffic
should be routed to that peer (destination addresses matching
the parameter) and, vice-versa, which traffic from the peer can
be accepted (source addresses matching the parameter).

WireGuard can be used in scenarios where both hosts can
act like client and server to each other, thus peers. In that
case, they both should have a configuration similar to the
server’s one. However, that is not our case; we are considering
a scenario where a user (client) establishes a VPN to a server.
In this case, they are not peers stricto sensu.

In Linux, the WireGuard interfaces can be set up by storing
the configuration files on the folder /etc/wireguard and
running the command

wg-quick up wg0

This means that the set up of WireGuard VPN endpoints can
be done in a simple way, just by running a few commands,
upon knowing some of its peers attributes, namely their public
keys and tunnel IPs and UDP ports.

In our approach, we start from a minimum of shared
knowledge to initiate a VPN: the VPN server hostname and a
certified public key, for the server, and a user identity attribute,
for the client. Note that this information is not related with the
identification elements that WireGuard uses. It is during our
setup protocol that we exchange, in a trustworthy way, the
public keys of both WireGuard endpoints. Once exchanged,
the keys (and the IP addresses being used so far) are stored
in configuration files and both sides initiate the VPN.

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

IV. PROPOSED APPROACH

The architectural approach that we propose to instantiate
WireGuard-based VPNs with an IdP-based user authentication
and identification is briefly summarized in Figure 1, and
described in more detail along the rest of this section.

A. Exploitation of different IdPs

Our main goal was to create a VPN upon an OAuth 2.0
user authentication with one external IdP. Therefore, we need
to adapt our proposal to the way existing IdPs deal with
OAuth 2.0.

As we saw in Section II-B, the two OAuth 2.0 flows that
can be used by IdPs are authorization code flow and implicit
flow. And they are both used, in fact. Therefore, we looked
for a solution that could work with both flows, while keeping
the system flexible to evolution.

Since some IdPs are very bureaucratic for the registration of
new OAuth 2.0 clients (notably Autenticação.gov), we decided
that, in the worst case, we could have to have a single client
registration for all our VPN server installations. Therefore, we
decided to take the OAuth 2.0 for Native Apps approach [4]
and use an universal IP address, a localhost address (e.g.,
127.0.0.1), for the OAuth 2.0 redirection endpoint for all IdPs.
This endpoint is handled by the VPN client (see Figure 1),
but it is not the real OAuth 2.0 client (it is the VPN server).
Consequently, the VPN client forwards all the data received
in that endpoint to the VPN server.

The use of a localhost address for an OAuth 2.0 redirec-
tion endpoint requires acceptance by the IdP on the client
registration. However, both the IdPs that we have used
(Autenticação.gov and Google Identity) accept it. Therefore,
it may not be an architectural limitation.

The VPN server is able to work with several IdPs, and
presents their list for the user upon an initial VPN setup request
(through the Web browser). This list can vary for different
VPN servers, and grow with time, and the server’s code may
have to be updated for dealing with new IdPs. The VPN client,
on the contrary, is completely agnostic about the IdPs used.
Thus, it can deal with different evolutions of VPN servers
regarding the IdPs supported by them.

The user identification by the VPN server depends on the
IdP selected by the user, from a list provided by the server.
Different IdPs may provide different identity attributes, there-
fore the VPN server needs to maintain a list of attributes to be
requested per IdP, and also a list of attributes known by each
IdP for each enrolled user. For example, for Autenticação.gov
we used the user Portuguese Civil Identifier, whilst for Google
Identity we used the user e-mail address.

B. Exploitation of WireGuard

Since we chose to explore WireGuard VPNs upon a IdP-
based user authentication and identification, our architecture
necessarily involves a trustworthy exchange of the Wire-
Guard’s client public key within the protocol used to authen-
ticate the VPN server host and the VPN user.

VPN Provider
IdP

HTTPS

Oauth Redirec�on
Endpoint

Configura�on
and ac�va�on

1

2

WireGuard
Interface

VPN Server

X.509
Cer�ficate

Per-IdP User

Iden�fiers

2

User’s computer

VPN Client

Web
Browser

WireGuard
Interface

IdP
Authen�ca�on

1

2

HTTPS

HTTPS

VPN

Fig. 1. High-level architecture and communication of our VPN solution

Furthermore, since our architecture requires the VPN server
to handle HTTPS session, and these require a server-side
X.509 public key certificate, we decided to separate the
WireGuard’s server side public key from the HTTPS certified
public key. The first can be created on a needed basis (e.g., one
per client), and are exchanged during the VPN setup, while the
second, the certified public key, is expected to remain constant
during the lifetime of its certificate.

Thus, our VPN client and server are applications that run
a Web-based protocol that we partially designed, involving
a user Web browser and an external IdP, which are able to
configure WireGuard interfaces from scratch and initiate them
to create a VPN. Figure 1 illustrates this approach.

C. Architecture overview

Our VPN client uses a (local) Web browser to initiate the
VPN setup protocol for the current user (see Figure 2); this is
required because of the way IdPs are normally explored. It also
has a Web API (on localhost) to receive HTTP requests from
external entities (IdPs and VPN server), redirected by the Web
browser, in order to receive data required for the WireGuard
setup. It does not participate on the user authentication; that
is a responsibility of the IdP, and involves only the user and
their Web browser.

The VPN server has a Web API accessible through HTTPS.
The certificate used in the HTTPS server endpoint is the
element that enables users to confirm that they are dealing
with the right VPN server host. The certificate verification is
performed by the users’ Web browser.

VPN
Client IdP

Web
Browser

VPN Server

2. IdP selec�on

5. OAuth2.0 response
To 127.0.0.1:{port}

3. Redirect to
OAuth2.0 /authorize

6. Redirect

1. Open
login page

4. Authen�ca�on

port

User

Fig. 2. Sequence of interactions for authenticating a user with an IdP

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

The user identification phase, which follows the user au-
thentication by an IdP, requires the cooperation of the VPN
client and server, and also uses the user’s Web browser (for
HTTP redirections). However, the VPN server is the sole entity
responsible for retrieving the user’s identity attributes from
the IdP chosen by the user. Only upon the user identification,
and the necessary authorization verification, the VPN server
sends the server-side WireGuard interface parameters (public
key and IP address) to the VPN client, allowing it to initiate
the setup the intended WireGuard client interface.

All the communication between the VPN client and server is
mediated through the user browser, and every communication
between the user browser and the VPN server uses HTTPS.
Therefore, no sensitive information (authorization codes, ac-
cess tokens, keys, etc.) is sent in clear through the Internet.

D. VPN client Web API
The VPN client handles two HTTP endpoints in a single,

variable TCP port, associated to a localhost IP address (see
Figure 3).

The first endpoint is the OAuth 2.0 redirection endpoint
(URL with path /login_callback). This endpoint is the
one that receives the result of the user authentication on the
selected IdP (through an HTTP GET redirection). The VPN
client redirects the HTTP request to a VPN server endpoint
(URL with path /login_callback), possibly with some
parameters received in the request as part of a query string.
The public key of the VPN client WireGuard interface is also
provided as a parameter in the redirection to the VPN server.

When the IdP uses the access code grant flow is used, the
URI contains the access code in one parameter of the URI
query string (code [10, §4.1.2]). This parameter is added to
the query string used for the VPN server redirection.

When the IdP uses the implicit flow, the access token is
conveyed as a URL fragment [10, §4.2] (the last part of a URL,
initiated by a # character). Since URL fragments are retained
by browsers, and not conveyed to HTTP servers, the VPN
server cannot immediately get the access token from the VPN
client redirection. In this case, the VPN server needs to provide
the user browser with a JavaScript-enabled resource that could
read the fragment contents from the URL and upload them to
the VPN server.

The second endpoint is used by VPN servers to add them-
selves, as WireGuard peers, to the a client WireGuard interface
(URL with path /vpn_parameters). Upon a successful
user identification, the VPN server makes a GET request to
this local endpoint (through an HTTP redirection) carrying in
the URL query string all the parameters required to set up a
peer to an existing WireGuard interface: the server public key,
the server UDP/IP port and the traffic to route to the server.

E. VPN server Web API
The VPN server handles three HTTP endpoints in a single,

public HTTPS port (see Figure 3).
The first is the initial login endpoint, with a URL path

/login. The VPN client launches a browser with this end-
point to allow the user to chose an IdP to authenticate with. As

Client HTTP endpoints
login_callback[?code=...]
vpn_parameters?pubkey=...&endpoint=...&ips=...

Server HTTPS endpoints
login?port=...
IdP-specific login (e.g., login/<IdP name>)
login_callback?pubkey=...[&code=...]

Fig. 3. Web API of the VPN client and server. The parameters within square
brackets are optional.

a query string parameter, the VPN client provides its localhost
TCP port, so it can be included in the request to the IdP as part
of the redirection URI. The response includes an HTTP cookie,
which contains that port. This is done in order to retrieve the
port later when the user actually chooses the IdP.

The second is the IdP-specific login endpoint. This is the
endpoint which is requested when the user chooses a particular
IdP. VPN servers can choose them freely, since they include
them in the HTML resource presented to the user as result of
the call to the generic login endpoint. The VPN server uses this
endpoint, alongside with the port encapsulated in the cookie,
to redirect the user browser to the chosen IdP Authorization
endpoint, allowing the user to authenticate. The response also
includes a new cookie with the name of the chosen IdP.

The third is login callback endpoint, with the URL path
/login_callback (already referred in the previous sec-
tion). This endpoint is where the VPN client redirects the
response given by the IdP, possibly an authorization code as
an URL query parameter. The cookie containing the IdP that
was used will help the VPN server to select the appropriate
approach to take in order get an access token from that
authorization code or from the URL fragment that was kept
in the user browser. Once having the access token, and
knowing the IdP being used, the VPN server can request the
necessary user identity attributes from the IdP, finalizing the
user identification process.

V. IMPLEMENTATION

The focus regarding the implementation of the above ap-
proach was the IdP-based user authentication and identifica-
tion, since the WireGuard VPN tunneling setup is trivial as
long as the peers know each others public keys and IPs.

This section will start by explaining the implementation of
the VPN client and server, followed by their interaction with
the users, with their Web browser and with external IdPs.

A. VPN client

The VPN client is a Flask [15] application that runs in
an arbitrary localhost TCP port (127.0.0.1:port). It starts
by firing up a browser and opening the VPN server’s
login page, through HTTPS, with the query argument
?port=port. It then listens to requests from the remaining
entities in its two HTTP endpoints (login_callback and
vpn_parameters).

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

B. VPN server

The VPN server is a Django [5] application. Its code is
mostly generic for all IdPs. The handling of different IdPs
happens when the user browser is redirected to the IdP
selected by the user (each IdP has a specific URL for this
purpose) and when the VPN server needs to get the user
identity attributes from an IdP upon receiving a request on
the login_callback endpoint.

In the last case, the code needs also to handle different
OAuth 2.0 flows. When handling OAuth 2.0 implicit grant
flows, in which an access token is directly provided by the
IdP, the only thing to do is to build the specific request for
the IdP to retrieve the user’s identity attributes. When handling
OAuth 2.0 access code grant flows, in which an authorization
code is first provided by the IdP, these require the VPN
server (OAuth 2.0 client) authentication by the IdP (using
the registered credentials) to get an access token, first, and
then a request with the access token to get the user’s identity
attributes.

However, it is not possible to provide an abstraction for
the retrieval of the user’s identity attributes, not even per flow
type, since each IdP implements that process in their own
particular way, within the OAuth 2.0 framework boundaries.
Therefore, the VPN server must know each IdP particular way
to implement the respective OAuth 2.0 flow. Furthermore, the
user identity attributes provided by each IdP are also different.

C. Detailed communication

When the user wants to login on a VPN server, they execute
the VPN client with the hostname (and possibly a port) of the
server’s login endpoint. The VPN client fires up the user’s
browser with the VPN server login endpoint plus with the
VPN client’s localhost port as a URL parameter. This port
is returned encapsulated in a cookie of the server’s response,
in order to be maintained along the following browser-server
HTTP interactions (cookie1 in Figure 4).

VPN Client
127.0.0.1:{port}

Web Browser IdPVPN ServerUser

Login ac�on

Launch browser
w/ VPN Server URL

Chose IdP idp_x

GET /login
URL:{port}

set cookie
cookie1=port

Web page with
mul�ple possible IdPs

Cookies:{cookie1}

Choose random
port

GET /login/idp_x 1. Get port from cookie1
2. Build idp_x authoriza�on
request with callback
to 127.0.0.1:{port}
3. set cookie
cookie2=idp_xRedirect to idp_x

authoriza�on page

Authen�ca�on page

User authen�cates

Fig. 4. VPN setup initial phase: IdP-based user authentication

VPN Client
127.0.0.1:{port}

VPN Server
Web

Browser
IdP

GET /login_callback
URL: {wg_pub_key}

?{AC} or #{AT}
Cookies: {cookie1,

cookie2}

serve page with JS code
that automa�cally
retrieves idp_x token
from URL fragment

1. Get port from cookie1
2. Get idp_x from cookie2

Page with JS code

AT

OAuth2.0 AT or AC
to 127.0.0.1:{port}

OAuth2.0 AT or AC

to 127.0.0.1:{port}

Redirect to VPN Server
URL: {wg_pub_key}

opt 1

IGF

Grab #{AT} and
POST back to VPN
Server

POST /login_callback/
URL: {wg_pub_key}
Form content: {AT}
Cookies: {cookie1,

 cookie2}
1. Get port from cookie1
2. Get idp_x from cookie2

Present client secret + AC
in idp_x specific way

opt 2

ACGF

Fig. 5. OAuth 2.0 access token (AT) retrieval by the VPN server. The AC
acronym stands for access token. The first optional interactions take place
when the implicit grant flow (IGF) is used. The second optional interaction
take place when the authorization code grant flow (ACGF) is used.

The VPN server response contains a Web page with all the
possible IdPs that the user can use to authenticate with. Ac-
cording to the user’s choice, a new request is made to the VPN
server, which builds the appropriate OAuth 2.0 authorization
redirection. Alongside with that redirection, another cookie is
set in the user browser (cookie2 in Figure 4), which contains
the name of the chosen IdP. The user then authenticates with
the chosen IdP. Figure 4 illustrates the protocol until this point.

The next phase is illustrated by Figure 5. After the user
authentication, the IdP responds with an HTTP redirection to
the redirection endpoint provided by the VPN server (which
must conform with the registered one). This endpoint is a
URL which is always uses the localhost IP address 127.0.0.1,
combined with the port indicated by the VPN client. The
parameters in the IdP response, together with the public key
of the VPN client WireGuard interface, are then redirected to
the VPN server.

If the VPN server receives a request to the
login_callback endpoint, it expects that request to
be a redirection from an IdP. The IdP is identified by
cookie2, which makes it possible to the VPN Server to
know which type of OAuth 2.0 flow that IdP implements
(IGF or ACGF). If the VPN Server identifies an IdP that
implements the IGF (optional block 1 in Figure 5), it returns
a page containing JavaScript code that retrieves that specific
access token, since URL fragments do not leave the browser.
That JavaScript code will automatically run when the page
is loaded, and will place the URL fragment token inside a

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

Form, which will be automatically submitted back to the
VPN server.

If, on the contrary, the VPN server identifies an IdP that
implements ACGF, and if the request contains an authorization
code, it uses it, with the appropriate HTTP client authentica-
tion, to receive an access token (optional block 2 in Figure 5).

VPN Client
127.0.0.1:{port}

VPN Server
Web

Browser
IdP

Ask for ID of U
with AT

U iden�ty {u_id}

Register u_id if doesn't exist
and assign address pool

Cretate new WG interface
with {u_id, wg_pub_key}

Redirect to
127.0.0.1:{port}/vpn_parameters

URL containing all the
required VPN connec�on

parameters

VPN parameters

Fig. 6. User identity retrieval and configuration of the peer information in
the user’s WireGuard VPN endpoint

The final phase of the protocol deals with the user’s identity
attributes and with the setup of the WireGuard VPN, and is
illustrated by Figure 6.

Once having the access token and knowing the IdP selected
by the user (from cookie2), the VPN server retrieves the user
identity attributes predefined for that IdP. When the identity
attributes are received, the VPN server checks if they belong
to an authorized user (registered with a set of attributes per
IdP).

If the user is properly registered, the VPN server sets a
peer to its WireGuard interface with the public key provided
by the client and activates its WireGuard interface. Then, the
VPN server sends a response with an HTTP redirection to the
user’s VPN Client containing the WireGuard setup information
regarding its new peer (the server’s WireGuard interface). This
information includes the server WireGuard public key and IP.
Once the configuration made, the VPN client can activate its
WireGuard interface, allowing the peers to connect.

D. Testing

The solution underwent a timing analysis to evaluate its per-
formance. The analysis focused on measuring the redirection
delays between the VPN client and server, and the time to
perform a login and create a WireGuard interface by the VPN
server. The delays associated with the mandatory steps of the
OAuth 2.0 framework and the user’s authentication with the
IdP were excluded as they are arbitrary and vary according
to the IdP used. However, due to the lack of space in this
document to present the results, and also due to the fact that the
observed time figures are all less than a second, thus irrelevant
in a login operation, we do not provide further details.

VI. DISCUSSION

This section is dedicated to a discussion regarding the
security and usability of the proposed solution. As the main
goal is to have a VPN between a user host and a server (or
network gateway), at the expense of having identity attributes
involved, every confidentiality and trust aspect must be taken
into account. Also, the solution should be easy, simple and
secure for the user to benefit, and for the VPN server provider
to implement and deploy.

A. Security

Our threat model excludes attacks against to and from the
IdPs, because they are assumed to be trustworthy for the
service they provide.

The threat model also excludes attacks against the VPN
server from its host, because, when comparing with other
solutions, we mainly remove the user authentication from
it, therefore we reduced its attack surface. Furthermore, the
OAuth 2.0 client credentials that it holds for all the registered
IdPs are not critical for itself and for the VPN users, since
they only allow it to fetch attributes from an IdP for a given
user upon a proper interaction between that user and the IdP
(therefore, with the consent of the former).

Finally, we also exclude attacks against the VPN client
from its host, because otherwise, we would have to ultimately
assume that user authentication credentials could be stolen and
used by attackers to impersonate them.

Therefore, we assume that the threat model includes attacks
against the exchanged messages (eavesdropping, tampering, or
replaying) or against the communication endpoints. And we
also assume that attackers may try to impersonate legit users
or legit VPN servers. Finally, we assume that malicious VPN
servers may attempt to steal user-related OAuth 2.0 data items
provided by browsers in order to impersonate the associated
users.

Confidentiality and integrity is assured between the VPN
client and the VPN server, since every communication between
the two entities is done over HTTPS (HTTP over TLS,
mediated by the browser). The same happens between the
VPN server and the external IdP. Thus, every communication
regarding the VPN setup process between these three entities
is properly ciphered, its integrity is assured and the server
endpoints are authenticated with X.509 certificates.

Since HTTPS security is built upon using X.509 certificates,
which provide a trustworthy binding between host names and
public keys, the VPN client can be sure it is dealing with
the intended VPN server. Thus, both VPN client and server
can trust on the WireGuard configuration elements provided
to each other, namely their interfaces’ public keys.

Similarly, the VPN server can verify it is interacting with
the correct IdPs, selected from a list that it provides and in
which it trusts.

Regarding the correctness of the authorization code grant or
access token received by the VPN server, that depends on the
way the client registered on each IdP. In particular, they can
only be fully trusted if the VPN server has a unique client ID

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

and client secret shared with the IdP. Otherwise, if there is no
client secret (implicit grant flow) or if the same client secret
is used by all VPN server instances, then the credentials the
VPN server receives from the IdP via the user browser may
have been stolen from previous, similar interactions.

The steeling of IdP-provided credentials can occur in dif-
ferent ways.

When the IdP uses the implicit grant flow, the VPN server
trusts on the correctness of the client user solely based in
the presentation of a OAuth 2.0 access token, which is a
bearer token. These tokens can be stolen inside the user’s
machine (e.g., by another application running locally [4]) or
by an malicious agent running a server for which a similar
access token was fetched by the user. For instance, with
Autenticação.gov, from which we require the provisioning of
a user’s unique identifier (Portuguese Citizen Identifier), any
malicious server requiring a similar access token from the user
can use it later to impersonate the user in an access to an
instance of our VPN server during a period of time defined
by the IdP. However, this is not a problem of our solution,
this is a problem of the way the IdP works.

This problem is similar when the authorization code grant
flow is used with a well-known client secret (all VPN server
instances use the same). In this case, stealing the authorization
grant code from a similar interaction with the IdP (one
involving the same client ID) allows its reuse in another
instance of the client with the same client ID. Thus, a tampered
version of our VPN server deployed by a malicious agent
could reuse the access code grants received from users to
impersonate them in the access to other similar VPN server
deployments. Alternatively, the authorization code grant can be
stolen in the user host by some malicious software and reuse
to impersonate the user in the access to similar VPN server
instances (they need to use the same client ID, otherwise the
authorization code is useless).

The usage of the Proof Key for Code Exchange (PKCE)
protocol [17] mitigates this last problem, since it implements
a proof-of-possession extension to OAuth 2.0 that protects the
authorization code from being used when stolen. It works by
adding a code challenge to the first request to the IdP. This
challenge results from the hashing of a random code verifier.
The IdP stores the code challenge together with the provided
authorization code. The client, then, sends the code verifier
when requesting the access token, and the IdP verifies if
hashing it produces the code challenge. Since hashing function
are one-way functions (not invertible), only a legit client, with
the original code verifier, can get the access token.

Google Identity supports PKCE [8], and we used it in
our prototype, although we did not describe that step in
Section V-C because the previous discussion was necessary
to understand its relevance. The code verifier is generated by
the VPN server prior to redirecting the control to the IdP, and
stored in a ciphered cookie that it sends along with cookie2
(see Figure 5). The cookie encryption uses a secret key known
only by the VPN server, created each time it is launched. This
cookie will later be received along with the authorization code,

and the embedded code verifier can then be used to request
the access token.

Wrapping up, our VPN server can have more trust in the
identity of the user when the authorization code grant is used,
either with a client ID and secret per VPN server instance
(possible with Google Identity, for instance) or with a client
ID and secret shared by many VPN server instance, provided
that PKCE could be used. On the other hand, when the implicit
flow is used, there is more room for user identity stealing.
In that case, the user identification by an IdP could be used
mainly as a second factor authentication, in order to reduce
the chances of impersonation.

B. Usability

In this field, we can discuss the usability of the proposed
solution for both the users of the VPN client and for the VPN
server provider.

Regarding the users, this solution is an advantage since it
does not require learning a new authentication interface. In
this case, the users will authenticate themselves using a Web
interface which they already know and trust, while other VPN
solutions rely on their own custom made interfaces, which are
unknown to the users and always require some learning.

The proposed solution also provides a simple and scalable
deployment strategy to the VPN server provider, since the
VPN server requirements regarding user’s identity are dele-
gated in the possession of OAuth 2.0 credentials from the
external IdPs. Redirect URLs do not need to be previously
established with the IdPs, since they are always local to the
VPN client. Regarding the VPN client instances, these just
need to know a priori the VPN server domain.

VII. RELATED WORK

In [11], the authors propose to authenticate VPN users with
a X.509 certificate containing a SAML assertion as extension.
This assertion contains the identity attributes required by the
VPN server to authorize the user to create the VPN [12].
This solution requires a custom Certification Authority to
issue those special certificates. Those certificates must also
be obtained prior to instantiate the VPN.

A solution that supports VPN authentication using IdPs is
Tailscale. With Tailscale, users can create VPNs that allow
them to securely access resources on remote networks, as
well as share files, printers, and other resources with other
users on the network [16]. It is essentially a VPN software
based on WireGuard that allows user authentication with some
existing OIDC-based IdPs out of the box (Google Identity,
Azure AD and GitHub) and with two SAML and OIDC IdPs
(Okta and OneLogin). It also allows the integration of custom
OAuth 2.0, SAML or OIDC providers [18]. This integration
requires manual work and configuration and is only available
through their paid Enterprise subscription [19].

VIII. CONCLUSIONS

This paper describes a VPN solution that resorts to ex-
ternal IdPs to authenticate client users. For the low-level

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

VPN implementation, we chose WireGuard, which supports
a manual setup of the peers. The protocol designed for user
authentication also distributes the critical elements (public
keys and tunneling UDP/IP ports) that should be used for
creating a WireGuard VPN. The majority of the user interface
is handled by a Web browser, which is the usual tool the users
use when they are authenticated by an IdP.

Our VPN solution was implemented with two IdPs,
Autenticação.gov and Google Identity. They both support the
use of OAuth 2.0 to authenticate people and fetch some of
their identity attributes. However, they explore OAuth 2.0 in
different ways, which were all considered in our architecture
and tackled in the implementation.

Since each IdP can explore OAuth 2.0 in a different way,
the code of our solution needs to be modified. Currently, we
do not have a modular approach that could be used to add
new IdPs while keeping the core system stable, but that can
be done.

The security of IdP-based user identification depends on the
way IdPs explore OAuth 2.0. We discussed some strategies
and saw that some are weaker, namely the implicit grant
flow. In that case, the user authentication by an IdP should
be complemented with another authentication mechanism, to
implement a two-factor authentication.

As a proof of concept, we implemented the system using
Flask (for the client) and Django (for the server) and we
deployed a VPN for tunneling all traffic from a user laptop to
a VPN server deployed in the cloud, which would later route
it to the Internet.

ACKNOWLEDGMENT

This research work was funded by Portuguese National
Funds through the FCT - Foundation for Science and Technol-
ogy, in the context of the research grant BI/DETI/9308/2022
within the project UIDB/00127/2020.

REFERENCES

[1] Agência para a Modernização Administrativa.
Documentação técnica relativa ao serviço de
autenticação do Autenticação.Gov e Chave Móvel
Digital. 2022. URL: https://github.com/amagovpt/doc-
AUTENTICACAO (visited on 01/23/2023).

[2] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman
Speed Records”. In: Public Key Cryptography (PKC
2006, LNCS 3958). Ed. by Moti Yung et al. Springer,
2006, pp. 207–228. ISBN: 978-3-540-33852-9. DOI: 10.
1007/11745853\ 14.

[3] Bundesministerium für Finanzen. ID Austria: Mein
Ich-organisiere-das-von-überall-Ausweis. URL: https://
www . oesterreich . gv . at / id - austria . html (visited on
01/23/2023).

[4] W. Denniss and J. Bradley. OAuth 2.0 for Native Apps.
RFC 8252 (Proposed Standard). Oct. 2017. DOI: 10 .
17487/RFC8252.

[5] Django Software Foundation. Django: The web frame-
work for perfectionists with deadlines. URL: https : / /
www.djangoproject.com/ (visited on 01/23/2023).

[6] Jason A. Donenfeld. WireGuard: fast, modern, secure
VPN tunnel. URL: https://www.wireguard.com (visited
on 01/23/2023).

[7] Jason A. Donenfeld. “WireGuard: Next Generation
Kernel Network Tunnel”. In: Network and Distributed
System Security Symposium (NDSS’17). San Diego, CA,
USA, Feb. 2017, pp. 1–12. DOI: 10.14722/ndss.2017.
23160.

[8] Google. Using OAuth 2.0 to Access Google APIs. URL:
https://developers.google.com/identity/protocols/oauth2
(visited on 01/23/2023).

[9] Government of Spain. Get to know Cl@ve: Electronic
Identity for the Administration. URL: https://clave.gob.
es/clave Home/en/clave.html (visited on 01/23/2023).

[10] D. Hardt (Ed.) The OAuth 2.0 Authorization Framework.
RFC 6749 (Proposed Standard). Oct. 2012. DOI: 10 .
17487/RFC6749.

[11] Eva Hladka et al. “Transparent security for collabo-
rative environments”. In: Int. Conf. on Collaborative
Computing: Networking, Applications and Worksharing
(CollaborateCom 2007). 2007, pp. 79–84. DOI: 10 .
1109/COLCOM.2007.4553814.

[12] Petr Holub et al. “Secure and pervasive collabora-
tive platform for medical applications”. In: Studies in
Health Technology and Informatics 126 (2007). PMID:
17476065, pp. 229–238.

[13] John Hughes et al. Profiles for the OASIS Security
Assertion Markup Language (SAML) 2.0. Mar. 2005.
URL: http: / /docs.oasis- open.org/security/saml/v2.0/
saml-profiles-2.0-os.pdf.

[14] OASIS (Organization for the Advancement of
Structured Information Standards). Security Assertion
Markup Language (SAML) V2.0 Technical Overview.
Committee Draft 02. Mar. 2008. URL: https : / / www.
oasis-open.org/committees/download.php/27819/sstc-
saml-tech-overview-2.0-cd-02.pdf.

[15] Pallets Projects. Flask web development, one drop at the
time. URL: https://flask.palletsprojects.com/en/2.2.x/
(visited on 01/23/2023).

[16] Avery Pennarun. How Tailscale works. Mar. 2020. URL:
https://tailscale.com/blog/how-tailscale-works/ (visited
on 01/23/2023).

[17] N. Sakimura (Ed.), J. Bradley, and N. Agarwal. Proof
Key for Code Exchange by OAuth Public Clients. RFC
7636 (Proposed Standard). Sept. 2015. DOI: 10.17487/
RFC7636.

[18] Tailscale. Custom SSO providers using SAML or OIDC.
July 2022. URL: https://tailscale.com/kb/1119/sso-saml-
oidc/ (visited on 01/23/2023).

[19] Tailscale. Pricing. URL: https: / / tailscale.com/pricing/
(visited on 01/23/2023).

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-052-0

ICNS 2023 : The Nineteenth International Conference on Networking and Services

