
Parallel Differential Evolution Meta-Heuristics and
Modeling for Network Slicing in 5G Scenarios

Rayner Gomes
Information System Department

Federal University of Piaúı (UFPI)
Picos, Brazil

email:rayner@ufpi.edu.br

Dario Vieira
Research and Innovation Department

Efrei Paris - France
Paris, France

email:dario.vieira@efrei.fr

Miguel Franklin de Castro
Computer Department

Federal University of Ceará (UFC)
Fortaleza, Brazil

email:miguel@ufc.br

Leonel Feitosa
Information System Department

Federal University of Piaúı (UFPI)
Picos, Brazil

email:leonelfeitosa@ufpi.edu.br

Francisco Airton Silva
Applied Research to Distributed Systems Lab - PASID

Federal University of Piaúı (UFPI)
Picos, Brazil

email:faps@ufpi.edu.br

Abstract—Network Slicing is the crucial component
to face the Internet’s ossification and support the het-
erogeneity of 5G scenarios. A slice is a virtual network
mapped over a real network. Mathematically, the map-
ping is known as Virtual Network (VN) Embedding
(VNE), which is the mapping of virtual nodes and links
to real nodes and links obeying the QoS parameters
present in the VN request and available resources.
Since this is an optimization and N P-hard problem,
multiple efforts have been made to create VNE algo-
rithms. Considering such efforts, this work presents:
(i) a fitness function regarding multiobjective optimiza-
tion to maximize the quantity of embedding; (ii) two
new parallel Differential Evolution (DE) approaches
to face the VNE problem; and (iii) a Stochastic Petri
Net to model our approaches. We designed these two
versions due to the lack of viable parallel solutions
in the 5G scenario. We compared three approaches
with two different infrastructure datasets and nine DE
setups. The results demonstrate that the better parallel
version reduced the runtime by 68.94% and 51.03%
using datasets 1 and 2, respectively, and kept the same
acceptance rate. The parallel performance decreases
the runtime in certain conditions, and we explain in
which scenarios the parallel approaches obtain advan-
tages and disadvantages.

Index Terms—network slicing; meta-heuristics; dif-
ferential evolution; parallelization; 5G; VNE.

I. Introduction
Intelligent connectivity for the smart world is presented

in the fifth-generation mobile networks (5G) envision. A
highly flexible 5G infrastructure is crucial to prevent the
ossification problem in which the Internet suffers. 5G
aims to support new markets such as device-to-device
communication, machine-to-machine communication, and
the Internet of Things (IoT). IoT is an excellent example of
market diversity, such as smart homes, smart cities, smart
grids, smart traffic, and other intelligent environments
diffused in modern society.

Over a “softwarerized” network composed of Software-
Defined Network (SDN), Network Function Virtualization
(NFV), and Cloud paradigms, the 5G provider can create
network slices, and each being is a portion of the network
configured to meet all tenant requirements, overcoming
the ossification problem [1]. The 5G provider seized by
the Network Slice as Service (NSaaS) allows each tenant
to require an end-to-end network, i.e., network slice. The
NSaaS waits for some Virtual Network Requests (VNRs)
that can arrive at any time. A VNR is a formal document
described by network topology, and QoS demands. The
NSaaS carries out the mapping as a primordial task to map
virtual networks to physical resources, mathematically
known as Virtual Network Embedding (VNE).

The VNE is a problem that has been receiving exhaus-
tive attention from researchers. Its N P-hardness can be
proven by reducing it to the multiway separator problem,
and [2] [3] have proved its complexity in different ways.
VNE is solved by adopting the use of meta-heuristics.
There are exact solutions in the literature; however, they
are only used with small networks, which is inappropriate
in 5G. As pointed out by [4], the heuristic solution aims to
find a good solution with low execution time when facing
realistic network scenarios. Another important point is
that the meta-heuristic solution can improve the quality
of the result by escaping from the local optimum.

The predominant evolutionary meta-heuristics ap-
proaches in Artificial Intelligence found in the literature
to deal with VNE problems are Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO). Our previous
work [5] presents a Differential Evolution (DE) approach
to the VNE problem facing how to: (i) apply the DE
heuristic to the VNE problem; (ii) map mathematical
operations to node and link operations; and (iii) design a
fitness function regarding different QoS parameters. Our
last work focused on evaluation for better placements

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

to each requisition, and, for that, it proposed two mea-
sures named node accuracy and accuracy gain. However,
this work seeks to enhance the runtime. Moreover, our
mentioned work examined that the DE approach takes
more time to be executed regarding the same number of
repetitions and population size when compared to the GA.
Hence, in this work, we extend our work [5] by presenting
two parallel versions to reduce the execution time of the
DE, and adopts two more complex network topologies.
Furthermore, to the best of our knowledge, we are the
first to present a Stochastic Petri Net (SPN) to model
and evaluate the NSaaS system.

Our work [5] is the first one to apply DE in VNE
problems. We demonstrated the capacity of its approach
to select the best places in the network to a VNR. The so-
lution is based on a measurement to describe the accuracy
of selection choices. The accuracy is calculated regarding
the best places in the network, considering the bandwidth,
delay, and reliability demands in a VNR. The measure
function returns the better places before the execution
and, for this reason, the network used in the simulations
is small, with about 20 nodes. Four points distinguish
this work from [5]: (i) it is not oriented to increase the
accuracy, but the quantity of requisitions mapped; (ii) the
evaluations use two large datasets, which is why we do
not know a priory what part of the network is better
for each requisition; (iii) it considers three DE versions,
called Sequential, Vertical and Horizontal; and (iv) the
main focus of this work is to reduce the runtime.

Finally, this work is organized as follows: Section II
compares this work to related works; the description of the
mathematical problem is modeled in Section III; Section
IV presents the possible ways to parallel DE. Section
V covers competitor approaches; Section VI explains the
structure of the fitness function. Sections VII presents the
crucial artifacts for carrying out the assessments; Section
VIII compares all the algorithms and analyzes the results;
and, finally, Section IX concludes this work by showing
some opportunities for future works.

II. Related Work
We are interested in the VNE-logic parallelization,

where the meta-heuristic divides the solution into com-
putation units to reduce the runtime. Fischer et al. [6]
did a detailed survey in the network embedding area,
and they proposed a taxonomy of embedding algorithms
regarding three different dimensions: static and dynamic,
centralized and distributed, and concise and redundant.
Despite the scope of work, there is only one work deal-
ing with parallelization, and that unique work considers
the parallelization of mapping one node in two different
substrates, and it is not about VNE-logic parallelization.

We have submitted a search on Scopus considering the
title, abstract, and keywords with values “virtual network
embedding and 5G” from 2018 to 2021. As a result, we
received 43 papers related to VNE and 5G. Out of 43

articles, only 10 applied a meta-heuristic, and only three
used parallelism.

One contribution of [7]–[9] is a solution to VNE based
on a GA updated with some paralleled steps to reduce
runtime. However, its non-parallelized step consists of
building a collection of paths for each virtual link (path-
pool) based on its source and destination pairs. As [10]
demonstrated when mapping the VNE problem to the
traveling sales, the path-pool formation is unfeasible in
large networks since the possible combinations of paths
are enormous in a vast infrastructure.

Regarding NSaaS’ envision for the 5G system, the map-
ping processing must consider different QoS parameters.
Our work is unique in that it considers the bandwidth,
delay, and reliability at once. Moreover, unlike [7]–[9] we
do not create a pool of paths. Instead, the path selections
result from the nature of the DE approach. Thus, our
solution is more scalable.

There are three approaches to dealing with VNE: exact,
heuristic, and meta-heuristic. The exact solution is the
optimal solution to the VNE problem, usually formulated
by the optimization theory. The exact solution is fixated
on the global optimum and can easily suffer from the
problem of being stuck in a local optimum, which is far
from the true optimum of the optimization theory. Finally,
the heuristic solution aims at finding a suitable solution
with low execution time under realistic network scenarios.

The meta-heuristic solution can improve the quality of
results by escaping from the local optimum [4] [6]. Based
on a review of 125 papers from [6], and our systematic
review of 43 documents, the most evolutionary meta-
heuristic used are GA, Ant-Colony, and PSO. In our
previous work [5], we presented the adaptation of the
DE to the VNE problem, and, in this work, we extended
the number of parallel approaches. To the best of our
knowledge, this work is the first to reveal two versions
of parallel DE approaches to the VNE problem regarding
5G scenarios and presents an NSaaS model following the
Stochastic Network Petri (SNP) modeling paradigm.

III. VNE Problem Description

A comprehensive modeling is presented in [5], which is
the same we followed in this work. A network infrastruc-
ture is represented by a non-directed graph denoted by
G = (V, E, β), in which G represents a physical network,
V is a set of vertex in which vi ∈ V and represents a
real device, an edge ei ∈ E, where E is a set of edges
and it represents a real link. Each vertex and edge is
characterized by capacities βvc

i ≥ 0 and βeb
i ≥ 0. In

the online operation of the network, βvres
i and βeres

i can
play the role of residual capacity, which is the remaining
resource of the vertices or edges after taking out the
current utilization. There is only one edge between two
vertices. The region/location is represented by βvre

i , which
can define a geographic localization.

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

A virtual network is denoted by an undirected graph
Hi = (N, L, δ) with virtual nodes ni ∈ N , and links
li ∈ L. Each access node has a total of δna

i capacities,
and they can be decomposed to CPU, memory, and other
device resources. Each virtual node ni can be embedded
in one physical node from a set of physical nodes V . A
virtual node is associated with a single physical node, and
a virtual link is associated with a single physical path,
which is a set of physical links.

The embedding of H into G consists of a mapping as
follows: (i) each virtual node n ∈ N to a physical node
v ∈ V ; (ii) virtual link (ni, nj) to a loop-free physical
path, connecting physical nodes vi and vj to which the
virtual nodes ni and nj have been mapped. A slice behaves
like a physical network for a slice user, and no difference
should be noticed. The VNE is a process to associate
each virtual node to a physical node and virtual links to
physical links respecting that the sum of the demanded
virtual resources is less than or equal to the available phys-
ical resources. The VNE must maintain control of used
resources. Moreover, VNE algorithms aim to find a feasible
embedding respecting all QoS parameters demanded by a
VNR. Duration d represents the time when a slice must
exist, and this information is relevant to online operations,
where each slice has a lifetime.

Let σ be a mapping function, G a substrate, and H a
set of VNRs where Hi is a request from H. The main goal
can be defined as (1), and this equation means we seek
to maximize the quantity of mapping (σ) in the current
cycle (c), thus, maximize the acceptance rate (AR). The
constraint variables and problem formulation can be found
in [5]; we have retained the same constraints.

AR =
H∑
i

σ(H
i
, G, c) | c ∈ [ci, ..., cj] (1)

IV. Parallel Differentiated Evolution to VNE
Problems

As explained in Section II, there is a gap in the literature
on parallel heuristics to tackle VNE problems. Hence, this
work details two ways to parallelize the VNE-DE approach
named the Vertical and Horizontal DE approaches. The
main goal of implementing the parallel solutions is to try to
reduce the execution time of the DE to perform the map-
ping. The nature of the heuristic/logic will determine how
to make a parallelization. The main advantage of creating
tasks/sub-processes to execute the mutation is that the
parallel version can carry the mutation out simultaneously.
The hypothesis is that the DE feature can allow creating
a subprocess to reduce runtime.

This article evaluates three approaches called Sequen-
tial, Vertical, and Horizontal. The Sequential approach
has the same logic as the VNE-DE approach presented in
our previous work [5], and it is considered the benchmark
algorithm. The difference between the last work and then
is related to fitness functions.

The Vertical approach (see Algorithm 1) is a modifi-
cation of our sequential algorithm presented in [5]. The
modified algorithm has the outermost loop (line 3) and
two internal loops (command for, line 4 e 8). The inner
loops are the code blocks for the mutation (lines 4-6) and
the selection phase (lines 8-10). In addition, DE has the
particularity of performing each mutation separately. This
feature favors the creation of parallel subprocesses. In the
original code, the Sequential approach, these two blocks
are sequential instructions. In the vertical parallelization
approach, the main code is kept non-parallelize. However,
it parallelized the inner codes in new tasks/sub-processes.
The selection phase starts after the mutation of all indi-
viduals and it can be parallelized too.

Algorithm 1: Parallel Differentiated Evolution
Algorithm

Input : fitness, lb, ub, Np, T, F, Pc

1 P ← initPopulation(P);
2 Vi ← createDonor();
3 for t = 1 to T do

/* Mutation block */
4 for i = 1 to Np do
5 Pi ← process (Ui, i, runCrossover);
6 end
7 join (P);

/* Selection block */
8 for i = 1 to Np do
9 Pi ← process (Ui, Vi, i, lb, ub, bound, fitness,

greedSelection);
10 end
11 join (P);
12 end

Population Mutation Selection

Sequencial Vertical Horizontal

Main Block

One process N sub-
processes

Figure 1: Difference in how the DE code blocks are processed.

The Horizontal approach divides the first population
into groups of the same size. Then, it creates new processes
to execute each group, in order that each group is tread
with a Sequential Approach. The possible advantage of
the Horizontal approach came from the aspect each sub-
group can be performed in simultaneous CPUs. In the final
process, the results from each sub-group are joined in one
final population, shorter than the original, and this final
population passes by the final sequential processing.

V. Fitness Function and its Behaviour
Our fitness function (2) is a special contribution. This

equation considers all the QoS parameters (bandwidth,

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

delay and reliability) required in VNRs. Fitness takes the
individual’s properties as its parameter. The return values
are between 0 and +∞. Zero means that an individual
does not meet all demands. The return value equals to
1 means that an individual fully meets a VNR. Return
values greater than 1 mean that an individual represents
a larger set of resources than needed.

Based only on the fitness, the DE can select more
adapted individuals. The selection does not exclude the in-
dividual whose score is less than 1. In the implementation,
all individuals whose score is less than 1 are maintained in
the population, and their score is updated with a value of
+∞, so it is maintained in the population, and it obtains
a lower chance to be selected in the offspring process.

The score is a value that expresses how efficient an indi-
vidual is, and its equation is defined in (2). The vMax(r)
denotes the maximum capacity of a specific-resource in
the whole infrastructure, R is a set of resources, such as
r ∈ R. The vGot(r) returns a value that denotes the
maximum capacity of resource r that the mapping process
found during its execution. The vDesired(i, r) returns a
demanded capacity of resource r which is required by
individual i. The variable r can assume three specific-
resources in this work: (i) bandwidth; (ii) delay; and (iii)
reliability. The score is a normalized measure, thus we can
carry out different resources at once. Each QoS parameter
present in the VNR has its own score. The individual’s
final score is the average of all scores plus the result
of the score logarithm based on the number of hops.
The symbol ⋄ is the addition operator when the variable
(r) represents the bandwidth or reliability and it is the
subtraction operator when the variable r represents the
delay parameter. Each individual i is associated to a VNR.

score(i) = vMax(r) ⋄ (vGot(i) − vDesired(i, r))
vMax(r) (2)

Equation (3) denotes the final score of an individual.
The function c(r) in (3) is the coefficient defined for
each QoS parameter in a VNR, the variable P denotes
a set of parameters from each type of slice. These values
result from the provider and tenant negotiation. They
are customized to meet the particularity of each tenant
demand, e.g., massive machine type communication, ultra-
reliable low latency, and enhanced mobile broadband. The
coefficients range [0,1], and the greater the number, the
higher the relevance. It is possible to create countless types
of slices using these coefficients.

total =
∑|P |

i c(P [i]) ∗ score(i)
|P |

+ log(hops, score(i)) (3)

VI. NSaaS Modeling
This section presents the Stochastic Petri Net (SPN)

model and the execution flows. Section VII presents two
substrate datasets in which we submit the model. As
described in Table II, each one has divergent properties.

The model is an essential artifact to compute the Mean
Time to Absorption (MTTA) [11]. We used the Mercury
Tool, version 5.0.1 [12] to design the Petri Net model, and
through it, it was possible to carry out the data analysis.
Mercury is a powerful tool and can be used to process
availability, reliability, and other analysis.

TABLE I: Places and transitions denotations

Name Denotation
P1 The repository of tokens, each token means a VNR.

Ti1
The immediate transition represents the entry of the
request into the system. All transitions are immediate,
and there is no delay associated with its execution.

T1 The preparation of the system to cope with the requisi-
tion.

T2 System obtaining infrastructure status.
Network This place means the network substrate.

VNR The repository of VNRs.
T3 Decoding the VNR.

T4 Creating the first population used in the VNE ap-
proaches.

Population The place means the population element used in the
approaches.

T5 Fitness calculation of each token.

P5[a,b,b,d]
There are specific places present in each approach. These
places represent positions or steps used in each DE ver-
sion (Sequential, Vertical e Horizontal).

T7a
They represent the flow of message processing after going
through the mapping process. In this flow, the resources
are allocated to the mapped VNR.

T7b Similar to T7a, but in this flow, the resources are not
allocated to the mapped VNR.

T8 Resources release to each VNR expired.

P13 Synchronization position, token means the system is
ready to deal with another VNR.

T5a Initialization of DE structures, trial, donor and target
vectors.

T5b Mutation of chromosomes.
T5c Selection of individuals.
T6a Checking if VNR can be meet.
T6b Checking if VNR cannot be meet.
T5a1 Population division.

T5b[1-5] Parallel mutation in each individual.
T5c[1-5] Parallel selection in each individual.

T5d Reordering individuals in the population when Vertical
Embedding case.

T5d Grouping sub-population in a new population when Hor-
izontal Embedding case.

T5a2 Creation of population sub-groups.

T5a3 Creation of processes to deal with each sub-group of
population.

The model has two main structures, named Base and
Embedding. Base and Embedding compound the NSaaS
system. The Base part, the blue rectangle in Figure 2,
involves the NSaaS steps related to accepting the VNRs,
the environment preparation to processing requests, and
allocation and release of resources. The Embedding part,
the red rectangle from the NSaaS rectangle, abstracts
three VNE algorithms used in our tests. Thus, the Sequen-
tial, Vertical, and Horizontal Embedding are interchanged
in the NSaaS. We have adopted this strategy to present the
model to not redraw the whole Base for each Embedding
due to space restrictions.

Table I describes the main places and transitions. We
used the initial letters P to places, but all transitions start
with the initial letter T.

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

Sequential Embedding

P5a P5b P5c P6T5a T5b T5c

T6a

T6b

T5

Initialization of
Vectors

Mutation Selection Check

NSaaS

BATCH

VNR PopulationNetwork

T1

T2 T3b T4

T5

T6a

T6b

T7a

T8a

T8b

Ti1P1

P15

P2 P3 P4 P5b P6

P7

P8

P9

P14

P13

P10

Ti2

Ti3

Embedding

P5 P5a

T3 T3a
T7b P11 T10 P12

P5a P5a2 P5b3 P5d1T5a1 T5a3

T6a

T6b

T5

Initialization of
Vectors

Mutation Selection Check

P5c3

P5c1

T5b3

Division Order

P5d T5dT5c3P5a1 T5a2

Subgroups

Horizontal
Embedding T

Figure 2: NSaaS (Base), Sequential, Vertical and Horizontal Embedding models.

VII. Artefacts and Scenarios for Evaluation
The datasets were created using the sequence of steps

presented in [5]. The sequence of tests was executed using
two different datasets, which differ from each other in
the variation of topology, bandwidth, delay and reliability
capacity. The existence of these datasets consists of an
attempt to make the solution search harder. Table II
presents the main properties of Datasets 1 and 2, which
have a different number of nodes and links and the latter
is more complex than the former. Our framework created
these datasets with random values of bandwidth, delay,
and reliability whose process is explained in [5].

TABLE II: Dataset properties used in the simulation.

Properties Dataset 1 Dataset 2
Nodes 112 2,138
Links 125 2,395
Degree 12 50

Bandwidth [103;1,640;9,881;2,807] [100;1,215;9,988;2,338]
Delay [1;121;294;103] [1;113;300;98]

Reliability [90;95.7;99;3] [90;95;99;3]
Values = [minimal; average; maximum; standard deviation]

There are four sets of VNRs and the number of requisi-
tions is: (i) set 1 has 20; (ii) set 2 has 50; (iii) set 3 has 100;
and (iv) set 4 has 150. Each set is kept the same for each
different mapping algorithm. One VNR is composed of (a)
VNR identification, (b) virtual nodes demands (vnd), (c)
links, (d) type of slice, (e) bandwidth demand, (f) delay
demand, and (g) reliability demand. The structure of the
VNR is presented in [5], and we kept the same in this work.

VIII. Results of executions
This section presents the actual results from the se-

quential, vertical, and horizontal DE implementations. It
is important to note that the number of VNRs mapped
must be the same before analyzing the approach runtimes.
There is no advantage in reducing the runtime if the
number of mapped VNRs decreases, i.e., if the derived
approaches do not sustain the mapping performance. We

do not expect any increment. What we desire is to reduce
the runtime with these two new versions of DE.

Figure 3 contains four plots in two lines; the first
and second one are the results using datasets 1 and 2,
respectively. Each plot contains the minimal, first quartile,
average, third quartile, and maximum quantity of VNRs
mapped regarding nine tuples ([(5, 25), (50, 25), (100,
25), (5, 50), (50, 50), (100, 50), (5, 100), (50, 100), (100,
100)]). Considering Dataset 1, the Vertical and Horizontal
obtained a slight advantage. Regarding Dataset 2, we can
set a large area of intersection. The standard deviation
(STD) of sequential, vertical, and horizontal are 3.8, 3.3,
and 3.3, respectively. The approaches behave similarly
while considering the number of mapped requisitions.

Figure 3: Quantity of VNRs Mapped using Dataset 1 and 2

The VNRs mapping results show one equilibrium in
the accepted rate, and now our interest is to analyze
the runtimes. Figure 4 presents the difference of runtime
between the Sequential and Horizontal approaches. We
excluded the Vertical approach because it reaches a high
runtime. The bottleneck of the process creation in the
Vertical approach causes these high values of the execution
time. One way to overcome this bottleneck is that the
Vertical approach should use Threads instead of Processes
to multitask. However, the Python language does not im-

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

plement real parallelism with Threads. Both figures show
the Horizontal approaches won in all sets of requisitions
and both datasets. Regarding the Setup with repetition
and population values equal to (5,50) and (50,50), the
Horizontal obtained a runtime about 68.94% and 51.03%
lower than Sequential.

Figure 4 presents how the parameter Repetition influ-
ences in the time. Each plot has four bars with Setup
(repetition, population) equals to (5,50) and (50,50). In
the tests, we keep the size of the population to 50. What
we want to show is how the parameter repetition influences
the runtime. Changing the repetition from 5 to 50, the
Horizontal obtained an advantage of 68.94% to 51.03%.
The advantage came from the system’s ability to deal
with up to the five processes simultaneously, and any
value higher than five will trigger a wait-time among
the processes. Therefore, the difference of 17.92% is due
to concurrency. In an infrastructure with more available
CPUs, e.g., in a Cloud, the Horizontal approach will
behave better with more CPU allocations.

5,50 50,50
Setup (Repetition, Population)

0

1000

2000

3000

4000

5000

Ru
nt

im
e

M
ea

n
(s

ec
s)

VNRs = 50

5,50 50,50
Setup (Repetition, Population)

Ru
nt

im
e

M
ea

n
(s

ec
s)

VNRs = 100

5,50 50,50
Setup (Repetition, Population)

Ru
nt

im
e

M
ea

n
(s

ec
s)

VNRs = 150

Approach
Sequential
Horizontal

Figure 4: Average Time to Map. Dataset 1 (above) and 2 (bellow).

Figure 5 shows four evaluations between the model and
the sequential and horizontal. Each evaluation considers
four sets of requisitions (20, 50, 100, and 150).

a) Sequential - Europe b) Sequential - US

c) Horizontal - Europe d) Horizontal - US
Figure 5: Difference between Model and Experiment runtime.

For the validation process, the T Test was performed for
two samples where the MTTAs values found in the sim-
ulations and experiments were compared. The P-Values
are greater than 0.05, implying that there is no evidence
that both means are statistically different. Due to the

limited space for writing in the article, the table with the
respective values will not be displayed.

IX. Conclusion
In this work, we evaluated three versions of the Dif-

ferential Evolution Meta-Heuristic (DE) applied in the
VNE problem. The first version is presented in detail in
our previous work [5]. The premise to adapt the DE in
VNE is because of its efficiency and nature that favor its
adaptation to parallel versions. We presented two ways
to parallelize the DE approach. Also, we showed the two
parallelization ways and their evaluations. Finally, we
focused on reducing the runtime. We demonstrated that
the two parallelized versions obtained, on average, the
same quantity of VNRs, and it is a prerequisite; there is no
reason for the provider to reduce the runtime if at least the
efficiency was maintained. Due to our process capacity, we
limited the quantity of sub-process to five, bottlenecking
the Horizontal performance; however, as demonstrated in
the results, it achieved the best results.

References
[1] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo,

and R. Jain, “Network Slicing for 5G: Challenges and Opportu-
nities,” IEEE Internet Comput., vol. 21, no. 5, pp. 20–27, 2017.

[2] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogian-
nakis, M. Qi, L. Shi, L. Liu, M. Debbah, and G. S. Paschos,
“The Algorithmic Aspects of Network Slicing,” IEEE Commu-
nications Magazine, vol. 55, no. 8, pp. 112–119, 2017.

[3] H. Wu, F. Zhou, Y. Chen, and R. Zhang, “On Virtual Network
Embedding: Paths and Cycles,” IEEE Transactions on Network
and Service Management, vol. 4537, no. c, pp. 1–14, 2020.

[4] H. Cao, L. Yang, Z. Liu, and M. Wu, “Exact solutions of VNE:
A survey,” China Communications, vol. 13, no. 6, pp. 48–62,
2016.

[5] R. Gomes, D. Vieira, and M. Franklin de Castro, “Differential
evolution for vne-5g scenarios,” in 2021 11th IFIP Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), 2021, pp. 1–6.

[6] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hes-
selbach, “Virtual network embedding: A survey,” IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 4, 2013.

[7] K. T. Nguyen and C. Huang, “An intelligent parallel algorithm
for online virtual network embedding,” in 2019 International
Conference on Computer, Information and Telecommunication
Systems (CITS). IEEE, 2019, pp. 1–5.

[8] K. Nguyen and C. Huang, “Distributed parallel genetic al-
gorithm for online virtual network embedding,” International
Journal of Communication Systems, 12 2020.

[9] K. Nguyen, Q. Lu, and C. Huang, “Efficient virtual network
embedding with node ranking and intelligent link mapping,” in
2020 IEEE 9th International Conference on Cloud Networking
(CloudNet). IEEE, 2020, pp. 1–5.

[10] K. Salimifard and S. Bigharaz, “The multicommodity network
flow problem: state of the art classification, applications, and
solution methods,” Operational Research, pp. 1–47, 2020.

[11] F. A. Silva, S. Kosta, M. Rodrigues, D. Oliveira, T. Maciel,
A. Mei, and P. Maciel, “Mobile cloud performance evaluation
using stochastic models,” IEEE Transactions on Mobile Com-
puting, vol. 17, no. 5, pp. 1134–1147, 2017.

[12] A. Lobo, R. Matos, B. Silva, and P. Maciel, “Expolynomial
modelling for supporting vanet infrastructure planning,” in 2017
IEEE 22nd Pacific rim international symposium on dependable
computing (PRDC). IEEE, 2017, pp. 86–91.

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-965-2

ICNS 2022 : The Eighteenth International Conference on Networking and Services

