

Dynamic Intrusion Deception in a Cloud Environment

Chia-Chi Teng
Cybersecurity

Brigham Young University

Provo, UT, USA

email: ccteng@byu.edu

Aaron Cowley

Cybersecurity

Brigham Young University

Provo, UT, USA

email: acow777@gmail.com

Ressel Havens

Cybersecurity

Brigham Young University

Provo, UT, USA

email: russel.havens@gmail.com

Abstract—As cyber-attacks become more sophisticated,

Network Intrusion Detection Systems also need to adapt to

counter the evolving advanced persistent threats. Security

deception, such as Honeypot, is an emerging defense tactic for

security operation in enterprise network or commercial cloud

environment. A well designed Honeypot can fool attackers and

malicious agents into a made-up system that is monitored by

security operators who can safely observe the attacks and

promptly develop counter measures. However, the availability of

Anti-Honeypot technologies has made the deception defense more

challenging. A dynamic deception method is necessary to counter

the modern Honeypot detection systems. We propose a dynamic

intrusion deception method designed to run in a public cloud

environment. A prototype of Honeynet is built using the Microsoft

Windows Azure Resource Group virtual machines and network

management platform.

Keywords—Cloud Computing; Intrusion Detection; Intrusion

Deception; Honeypot; Honeynet.

I. INTRODUCTION

Since commercial cloud computing services became
available over a decade ago, the cloud computing technology
platforms have made significant advancement in research and
development. Public cloud providers, such as Microsoft,
Amazon, Google and IBM, are offering a large variety of
services from infrastructure as a service (IaaS), platform as a
service (PaaS) to software as a service (SaaS). Cloud computing
is now the backbone of thousands of enterprises and
organizations where a 2018 industry study shows 77% of
enterprises have at least one application or a portion of their
Information Technology (IT) infrastructure in the cloud [1] and
trending up. While the industry continues to invest in cloud
computing, the study also shows that about one-third of the IT
decision-makers saying security concerns is one of their top
challenges.

In addition to private enterprises and business, government
agencies are also embracing the cloud computing technology to
support their future infrastructure and services. For example,
United States Department of Defense (DoD) listed cloud
computing as one of the top priorities in their Digital
Modernization Strategy [2]. DoD has also recently awarded a
ten-year ten billion dollar (USD) contract to Microsoft for its
Joint Enterprise Defense Infrastructure (JEDI) project [3].

With all the sensitive and classified information being stored
in the cloud, the security requirement has also increased. It is
important to understand the threat models, attack surfaces, and
available controls in the cloud environment to effectively
manage the security risks [4].

Intrusion Detection System (IDS) and Intrusion Prevention
System (IPS) [5] are well-known security controls commonly
deployed in enterprise or cloud computing environment. They
can protect target systems based on network or host activities by
denying access to malicious attacks. However, IDS/IPS do not
usually attempt to discover additional information about the
attacks or attackers, which is the primary function of the
Honeypot technology.

Honeypots are usually designed to resemble valid systems or
services with exploitable vulnerabilities to lure attackers to gain
access. When working in conjunction with IDS, attackers’
activities are monitored and analyzed by security operators once
they are in the Honeypots. Valuable information can be
discovered while an attack is taking place.

Unfortunately, Anti-Honeypot technologies have also been
developed by spammers and other malicious parties to counter
this defense measure. The unique capabilities of public cloud
computing platforms can enable a new type of Honeypot that is
more dynamic, realistic and cost effective in a way that
defensive resources mimicking real targets can be instantiated
and configured in real time as malicious attacks are being
detected.

A design and prototype of a dynamic Honeypot system is
presented below with a review of other recent work on cloud
computing related Honeypot and Honeynet. As the system
detects potential attacks, such as Brute-force SSH, it
dynamically creates containers, re-routes malicious network
traffic and actively engages with the attacker to gather
information about the attack and attacker. While the preliminary
work is implemented and tested on Microsoft Windows Azure
platform, it can easily be ported to other public cloud providers.

II. BACKGROUND

Since the concept of Honeypot was first introduced in 1998
[6], its applications have steadily been gaining popularity and
support as Honeypot evolved from a non-traditional tool to one
of the commonly used security controls. For example, United
States DoD Cloud Computing Security Requirement Guide [7]
specifies Honeypot as one of the standard controls. Many
varieties of Honeypot intrusion deception systems have been
proposed over the years, which can be classified based on their
level of interaction, scope, or targeted attack type [8]. A recent
survey [9] of Honeypot systems in a cloud environment further
classifies them based on architectures and functionalities. These
cloud-based solutions include

 Honeynet [10]

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

 HoneyFarm [11]

 HoneyBrid [12]

 HoneyMix [13]

 HoneyProxy [14]

Honeypots are usually used as an integrated-component in
an defense in depth strategy instead of a standalone security
control. Study showed that combining Honeypot with IDS/IPS
can increase the success rate of attack detection and prevention
[15]. While IDS/IPS can deny access to malicious attack,
Honeypot can further gather valuable information, such as
attacker’s identity and technique [16].

The security community has developed several open-source
Honeypot packages where some of them are considered quite
mature according to industry evaluation [17]. For example:

 Dionaea [18]: a low-interaction server-side Honeypot
that collects network malware.

 Honeyd [19]: a multi-purpose low-interaction Honeypot
using virtual hosts and services.

 Kippo [20]: low-interaction SSH Honeypot.

 Glastopf [21]: low-interaction web applications
Honeypot.

CloudHoneyCY [22] further proposed an open-source
framework to integrate a variety of existing Honeypot, such as
the one listed above, to work together in a cloud environment.

SSH is one of the commonly used attack surface against
services deployed in the cloud as it is the standard protocol for

developers and operators to access the target system. Research
shows that Brute-force/dictionary attacks against remote
services, such as SSH is ranked among one of the most common
forms of attacks that compromise servers [23]. Using Virtual
Machine Introspection (VMI) technique with a VM-based SSH
Honeypot can be effective in defending against such attacks
[24].

Study [25] has shown that new containerization technology,
such as Docker [26], can improve Honeypot systems with
following advantages over VM-based solutions,

 Scalability: spinning up/down containers is easier.

 Performance: spinning up/down container is faster.

 Cross-platform: containerization is supported by all
major cloud providers.

 Cost: contains have smaller CPU and memory footprint
which incur lower cost than VM’s in typical pay-per-use
cloud environments.

The cloud containers will inevitably enable Honeypot or
Honeynet to be more dynamic and looks more like a real system.
Research and development of container introspection
technology has drastically increase the capability of monitoring
applications inside containers [27].

Today’s cybersecurity is a cat-and-mouse game where threat
actors constantly make improvement with their tools to by-pass
defensive controls. Anti-honeypot technologies have been
successful in identifying and countering low- and medium-
interaction Honeypots [28], for example, Honeypot Hunter [29]

Figure 1. Dynamic Honenet System Diagram

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

has been used by spammers to identify HTTP and SOCKS
Honeypot proxies. Research [30] showed that a dynamic
Honeypot can be effective in defending malicious attacks.

Leveraging the previous research and the latest cloud
technology available, we propose a Honeynet system with the
following characteristics,

 Dynamically provision and revoke Honeypots based on
level of malicious network activities.

 High-interactivity Honeypots with dynamically
configured SSH service.

 Use container technology, e.g., Docker, for increased
performance and scalability.

 Easily deployable in a commercial cloud platform, e.g.,
Microsoft Azure.

The design and implementation of the proposed system are
discussed below.

III. METHODS

This dynamic Honeynet design is currently targeting
commercial public cloud computing services with large user
base and mature technology platform. Leading providers, such
as Microsoft Azure and Amazon AWS have the concept of
“resource group”, which is a logical collection of assets grouped
together for effective management, such as provisioning,
monitoring, and access control. The high-level design of the
proposed cloud-based Honeynet system is shown in Figure 1
above in a logical resource group environment. As this system
must rely on the cloud provider’s resource management
interface, e.g., Azure Resource Manager or AWS Resource
Access Manager, the actual implementation might be somewhat
platform dependent.

A resource group can be setup to include the following
collection of items,

 A Firewall and programmable Network Address
Translation (NAT) or reverse proxy layer.

 Regular service(s) which might be the initial target(s) of
an SSH brute-force attack.

 A target VM containing real services which also
monitors network intrusion with an IDS. Event trigger
will take place when certain pre-defined malicious
activity is observed.

 A VM host for the containerization software run-time,
e.g., Docker, which also handles the IDS event triggered
by an attack then dynamically provisions and configures
Honeypot accordingly.

 Pre-built container template of Honeypot with SSH
services and IDS.

 An Introspection VM for monitoring active Honeypots.

In the scenario of a SSH brute-force attack, the following
step-by-step actions will take place as labelled in Figure 1.

1) Incoming SSH brute-force attack reaches Firewall and
NAT.

2) Attack traffic directed to the target host.
3) After a number of failed SSH login attempts, an IDS

event triggers indicating a SSH brute-force attack taking
place.

4) The event handler invokes container host services.
5) An initial Honeypot service (#1) container is

provisioned, which hosts a simulated SSH service and a
pre-configured IDS.

6) Notify the Introspection VM to begin monitoring
Honeypot #1.

7) Configure NAT to redirect attacker IP’s SSH traffic to
the Honeypot service.

8) Incoming SSH attacks now goes to Honeypot #1.
9) IDS detects brute-force SSH attack on Honeypot #1.
10) Invoke container service to create new Honeypot

service (#2), generate authorized key for Honeypot #2,
then allow attacker to successfully connect to the
simulated SSH service where host and authorization
information to Honeypot #2 can be found.

11) Honeypot #2 is provisioned.
12) Notify the Introspection VM to begin monitoring

Honeypot #2.
13) Attacker attempts connection to Honeypot #2 with the

host and authentication information found in Honeypot
#1.

14) IDS detects attacker’s activity on Honeypot #2 and
create new Honeypots as needed.

Depending on the security operator’s objective, the steps of
detecting malicious activities, provisioning and directing
attacker to a new Honeypot can be repeated as needed until
certain information about the attacker is discovered, or until the
attacker become inactive. The operator can configure the
Honeynet based on available resources and desired level of
interactivity.

The event handler in the Honeypots can be configured with
a timer where it initiates the process of self-revocation or de-
provision of the container if certain amount of time elapsed
without the attacker actively engaged. The automated Honeypot
provision and revocation feature can potentially make the
Honeynet more dynamic and better at countering anti-Honeypot
technology.

IV. RESULTS

Base on the design described above, a functioning prototype
is successfully implemented with the following specifications as
shown in Figure 2.

 Cloud computing platform: Microsoft Windows Azure
with Azure Virtual Network, Azure Resource Group and
Resource Manager.

 Target Host: Ubuntu Linux server running OpenSSH
Daemon (sshd).

 IDS: Zeek (formerly Bro) Network Security Monitor.

 Network Address Translation (NAT): Azure Service
Fabric Reverse Proxy.

 Container Host: Docker and its Command-Line Interface
(CLI), such as “docker run” and “docker cp”.

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

 Two container templates/images: Honeypot #1 is the
initial container where the SSH brute force attack is
redirected to. Honeypot #2 is the secondary container
where the attacker is lured to after allowed successful
SSH connection to Honeypot #1.

In the test environment created as an Azure Resource Group,
we configured a Zeek trigger to take place after ten failed SSH
authentication attempts on the Target Host. The event handler is
a Python script that connects to the Docker Host and invoke
“docker run” to lunch Honeypot #1. The Python script also
collects host information of the attacker and dynamically
configure the Azure Reverse Proxy to redirect the SSH attack
traffic to Honeypot #1.

If Honeypot #1 continues to see incoming SSH brute force
attack, it will invoke another Python script that “docker run”
Honeypot #2, then generate a new SSH authorized_keys file and
“docker cp” to the newly provision container. At the same time,
the Python script will leave bread crumb in Honeypot #1
containing the authorized key to Honeypot #2 for the attacker to
find.

The completed Honeynet was blind tested by multiple
penetration testers using tools such Ncrack [31]. The system ran
successfully as designed in all instance where the attackers will
reach Honeypots and attempt other exploits.

V. CONCLUSION

As more commercial and critical services and applications
are migrating to the cloud infrastructure, it is imperative to
design and implement proper controls to defend against external
threats. While the underlying technologies for this Honeynet
system may already exist, it is a novel attempt to integrate them
in such a way that presents a more dynamic, scalable defense
solution in the cloud environment.

While the preliminary results are promising, more work is
needed to make it a complete solution. Potential future work
includes,

 Integration with container introspection software, e.g.,
Prometheus [32].

 Honeypot for other common attack vectors, e.g., SQL
injection.

 Working prototype with other public cloud platforms,
e.g., Amazon AWS.

REFERENCES

[1] L. Columbus, “State of Enterprise Cloud Computing,” Forbes, 2018.
https://www.forbes.com/sites/louiscolumbus/2018/08/30/state-of-
enterprise-cloud-computing-2018/ [retrieved: Jun 2020]

[2] DoD, “DoD Digital Modernization Strategy,” Department of Defense,
U.S.A., 2019. https://media.defense.gov/2019/Jul/12/2002156622/-1/-
1/1/DOD-DIGITAL-MODERNIZATION-STRATEGY-2019.PDF
[retrieved: Jun 2020]

Figure 2. Functional Prototype as Implemented in Microsoft Windows Azure Cloud Environment.

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

[3] Congressional Research Service, “DOD’s Cloud Strategy and the JEDI
Cloud Procurement,” 2019. https://fas.org/sgp/crs/natsec/IF11264.pdf
[retrieved: Jun 2020]

[4] N. Afshan, “Analysis and Assessment of the Vulnerabilities in Cloud
Computing,” International Journal of Advanced Research in Computer
Science, vol. 8, no. 2, 2017.

[5] M. Rani and Gagandeep, “A Review of Intrusion Detection System in
Cloud Computing,” in proceedings International Conference on
Sustainable Computing in Science, Technology & Management
(SUSCOM 2019), pp. 770-776, 2019.

[6] F. Cohen, “The Deception Toolkit,” Risks Digest vol. 19, 1998.

[7] DoD, “Department of Defense Cloud Computing Security Requirement
Guide,” Defense Information Systems Agency, U.S.A., 2017.
https://rmf.org/wp-
content/uploads/2018/05/Cloud_Computing_SRG_v1r3.pdf [retrieved:
Jun 2020]

[8] C. K. Ng, L. Pan, and Y. Xiang, “Honeypot Frameworks and Their
Applications: A New Framework,” Springer Briefs on Cyber Security
Systems and Networks, 2018.

[9] S. Krishnaveni, S. Prabakaran, and S. Sivamohan, “A Survey on
Honeypot and Honeynet Systems for Intrusion Detection in Cloud
Environment,” Journal of Computational and Theoretical Nanoscience,
vol. 15, pp. 2949-2935, 2018.

[10] L. Spitzner, “The Honeynet Project: Trapping the Hackers,” IEEE
Security & Privacy, vol. 1, no. 2, pp. 15-23, 2003.

[11] L. Spitzner, “Honeypot Farms,” Symantec, 2003.
https://www.symantec.com/connect/articles/honeypot-farms [retrieved:
Jun 2020]

[12] R. Bertheir, “HoneyBrid: Combining Low and High Interaction
Honeypots,” Honeynet, 2009.
https://www.honeynet.org/2009/05/27/honeybrid-combining-low-and-
high-interaction-honeypots/ [retrieved: Jun 2020]

[13] W. Han, Z. Zhao, A. Doupe, and G. J. Ahn, “HoneyMix: Toward SDN-
based Intelligent Honeynet,” in proceedings 2016 ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization (SDN-NFV Security '16), pp. 1-6, 2016.

[14] S. Kyung et al., “HoneyProxy: Design and implementation of next-
generation honeynet via SDN,” In proceedings 2017 IEEE Conference on
Communications and Network Security (CNS 2017), pp. 1-9, 2017.

[15] S. Ravji and M. Ali, “Integrated Intrusion Detection and Prevention
System with Honeypot in Cloud Computing,” in proceedings 2018
International Conference on Computing, Electronics & Communications
Engineering (iCCECE), pp. 95-100, 2018.

[16] P. A. Pandire and V. B. Gaikwad, “Attack Detection in Cloud Virtual
Environment and Prevention using Honeypot,” in proceedings of the
International Conference on Inventive Research Applications (ICIRCA
2018), pp. 515-520, 2018.

[17] C. Polska, “Proactive Detection of Security incidents: Honeypots,”
ENISA, Tech. Rep., 2012.

[18] Dionaea, http://dionaea.carnivore.it/ [retrieved: Jun 2020]

[19] Honeyd, http://www.honeyd.org/ [retrieved: Jun 2020]

[20] Kippo, https://github.com/desaster/kippo/ [retrieved: Jun 2020]

[21] Glastopf, http://glastopf.org/ [retrieved: Jun 2020]

[22] H. Gjermundrod and I. Dionysiou, “CloudHoneyCY - An Integrated
Honeypot Framework for Cloud Infrastructures,” in proceedings 2015
IEEE/ACM 8th International Conference on Utility and Cloud
Computing, pp. 630-635, 2015.

[23] V. Singh and S. K. Pandey, “Revisiting Cloud Security Threat: Dictionary
Attack,” in proceedings of International Conference on Advancements in
Computing & Management (ICACM 2019), pp. 175-180, 2019.

[24] S. Sentanoe, B. Taubmann, and H. P. Reiser, “Virtual Machine
Introspection Based SSH Honeypot,” in proceedings of the 4th Workshop
on Security in Highly Connected IT Systems (SHCIS’17), pp. 13-18,
2017.

[25] N. Majithia, “Honey-System: Design, Implementation and Attack
Analysis,” PhD Thesis, Indian Institute of Technology, Kanpur, 2017.

[26] M. N. Khandhar and M. S. Shah, “Docker-The Future of Virtualization,”
International Journal of Research and Analytical Reviews, 6(2), pp. 164–
167, 2019.

[27] T. Watts, R. G. Benton, W. B. Glisson, and J. Shropshire, “Insight from a
Docker Container Introspection,” in proceedings of the 52nd Hawaii
International Conference on System Sciences (HICSS 2019), pp. 7194-
7203, 2019.

[28] J. Uitto, S. Rauti, S. Laurén, and V. Leppänen, “A Survey on Anti-
honeypot and Anti-Introspection Methods,” Recent Advances in
Information Systems and Technologies. WorldCIST 2017. Advances in
Intelligent Systems and Computing, vol. 570, Springer, 2017.

[29] N. Krawetz, “Anti-Honeypot Technology,” IEEE Security & Privacy, vol.
2, no. 1, pp. 76-79, 2004.

[30] K. R. Sekar, V. Gayathri, G. Anisha, K. S. Ravichandran, and R.
Manikandan, “Dynamic Honeypot Configuration for Intrusion
Detection,” in proceedings 2nd International Conference on Trends in
Electronics and Informatics (ICOEI 2018), pp. 1397-1401, 2018.

[31] Ncrack, https://nmap.org/ncrack/ [retrieved: Jun 2020]

[32] Prometheus, https://prometheus.io/ [retrieved: Jun 2020]

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

