
Calculation of Location Probabilities for Agent-based Target Tracking System 

Masaru Shiozuka†‡, Tappei Yotsumoto†, Kenichi Takahashi‡, Takao Kawamura‡, Kazunori Sugahara‡ 
 

†System Engineering Department,  

Melco Power Systems Co. Ltd.  

Kobe, Japan 

email: {Shiozuka.Masaru@zd, Yotsumoto.Tappei@zb}.MitsubishiElectric.co.jp 
 

‡Graduate School of Engineering,  

Tottori University  

Tottori, Japan 

email: {takahashi, kawamura, sugahara }@tottori-u.ac.jp 

 

 
Abstract—Target monitoring systems are widely used in various 

domains such as companies and schools to prevent crimes. Such 

systems require operators to monitor the information sent from 

sensor devices, such as cameras and beacon devices. To reduce 

the workload on the operators, we proposed an automatic target 

tracking system. However, issues arose due to target recognition 

errors caused by the sensor devices. To address this problem, we 

introduced groups of agent to reduce false tracking. The groups 

were expanded to avoid losing the target; however, the location 

of the target in the group was unclear. In this study, we 

calculated the probabilities of the location of the target in a 

group and improved tracking efficiency. The validity of this 

approach was confirmed via simulations. 

Keywords-Agent; Target Tracking; Camera; Monitoring 

Systems. 

I.  INTRODUCTION 

Various types of systems, such as entrance control systems 
for monitoring a suspicious person, have been introduced as 
security measures in companies and other places. However, as 
the number of cameras and tracking targets increases, it 
becomes difficult for an operator to track all the targets. 
Therefore, we proposed an agent-based tracking system 
applicable to an environment where each sensor is installed in 
a discrete location [1]-[3]. This system comprises cameras, 
tracking nodes, agents, and a monitoring terminal. In the 
proposed system, a node with a camera analyzes the data 
received from cameras. Agents move among the nodes by 
detecting the features of the target. An operator can follow the 
location of the target by checking the location of its 
corresponding agent. 

If cameras could monitor area without any blind spots it 
would be possible to track targets. However, it is unrealistic 
to install cameras that cover all areas. A more realistic 
approach is to install a specific number of cameras at set points, 
e.g., entrances, rooms, and passages. In this case, there are 
instances when a target is not caught on any camera. Therefore, 
we proposed a method to calculate which cameras may detect 
the target next [2]. This method calculates the neighbor 

relation nodes of each camera based on the value of each 
camera's shooting area and the floor map. 

The system extracts the features of a target from a picture 
taken by the cameras. However, the features are not always 
extracted accurately; for example, when a camera tracks a 
person with brown hair color, their hair color may be 
recognized as black, depending on the intensity of the light. 
This results in target recognition errors. Therefore, a person 
who is not a target may be recognized as the target, and vice 
versa. This results in false tracking. To address such cases, we 
introduced groups of agent with two thresholds to reduce false 
tracking [1]. We defined a group as a set of agents that track 
the same target. Additionally, two thresholds were introduced 
(1) a decision threshold to determine a person as the target, 
and (2) a re-evaluation threshold to postpone the decision. If 
only one threshold is used, an agent must determine whether 
a person is its target or not. Hence, false tracking increases if 
the threshold value is low and non-detection increases if the 
threshold value is high. By introducing the second threshold, 
the decision is postponed when the evaluation value is 
between these two thresholds, and the group is temporarily 
expanded to cover the nodes where the target may appear next. 
By expanding the group, it was possible to prevent the target 
from leaving the group undetected. This method mitigated the 
cases of false tracking and non-detection. 

In this study, group-based tracking was improved. 
Previous group-based tracking studies [1]-[3] did not consider 
where the target was in the group. However, in this study, the 
probabilities of each agent in a group were calculated. Thus, 
the most probable location of where a target is known by 
checking the probability of each agent in the group.  

This paper is organized as follows: Section II reviews 
several studies on target tracking systems. Section III provides 
an overview of the agent-based target tracking system. Section 
IV explains the derived equations used to calculate 
probabilities. Section V evaluates the method and Section VI 
concludes the paper. 
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Figure 1.  Overview of the proposed system. 

 

II. RELATED WORKS 

Several studies on target tracking systems using cameras 
or other devices have been proposed previously. 

Wenxi et al. [4] proposed a method to predict the 
migration route of a target in a crowd by using a high-order 
particle filter and online-learning. Jin and Bhanu [5] proposed 
a group structure to improve tracking accuracy when the 
shooting ranges of cameras overlapped. These studies are not 
applicable to situations where cameras are installed discretely. 

Babenko et al. [6] and Zhang and Maaten [7] proposed an 
online classifier to improve the tracking accuracy of a single 
object. Cho et al. [8] proposed a method to automatically 
create neighbor relationships between cameras; however, this 
method requires a central server to collect and manage data 
from cameras. As the number of cameras increases, the system 
requires expensive machines to manage the increased 
computational cost. 

Alejandro et al. [9] and Bocca et al. [10] proposed a 
method that tracks a target by analyzing the Received Signal 
Strength Indication (RSSI) value. Komai et al. [11] also 
proposed a method that tracks a target using the RSSI values 
of Bluetooth low energy. The system sends RSSI values to a 
database server and estimates the location of the target. These 
methods require the ability to measure the signal strength in 
advance; thus, it is difficult to expand the tracking area 
dynamically. 

The system in this study assumed a dynamic network, 
instead of a static network. Therefore, the network could be 
easily rebuilt when nodes were dynamically added or deleted, 
or when the shooting range of a camera was changed. 
Furthermore, this system did not require a central server; thus, 
when nodes malfunctioned, other nodes continued tracking 
the targets. 

III. AGENT BASED TARGET TRACKING SYSTEM 

We developed an automatic target tracking system [2]. In 
this system, one group took charge of one target. Each target 
was tracked by a single group automatically. An operator 
could follow the location of each target via its corresponding 
group. 

 

Figure 2.  Neighbor relations of neighboring cameras. 

 

A. System Overview 

Figure 1 shows an overview of the system, which was 
comprised of targets, cameras, nodes, agents, and a 
monitoring terminal. A target was defined as a person tracked 
by a group, which was a program used to identify and track a 
person using information from cameras. The node connected 
to a camera included a data analysis function and an execution 
environment for agents and collected pictures from the camera. 
Agents moved across nodes along their target. The location of 
a target was displayed on the monitoring terminal using the 
location of the agent. 

B. Tracking Flow 

When a person moved within the shooting range of a 
camera, the corresponding node took the target’s picture. Each 
agent on the node checked to see if the person was their target. 
When an agent judged a person was its target, the agent 
became the “target agent.” The target agent sent its copies, 
called “copy agents,” to its neighbor relation nodes, which 
were the nodes where the target may appear next. Neighbor 
relation nodes were calculated by the method proposed in [2].  
An example of neighbor relation nodes is shown in section III-
C. When a copy agent detected its target, the copy agent 
became the new target agent. The target was then tracked by 
this new target agent. The original target and copy agents were 
subsequently erased. The new target agent sent its copy agents 
to its neighbor relation nodes. Following these steps, an agent 
tracked a target. 

C. Neighbor Relations 

Neighbor relation was used to calculate on which cameras 
a target may be caught next [2]. It calculated the neighbor 
relation nodes of each camera based on the value of each 
camera's shooting range and a map of the floor. Figure 2 
shows an example of neighbor relations. Red arrows indicate 
the neighbor relations of cameras. On the left-side of the 
figure, C1 & C2 and C1 & C3, have neighbor relations; thus, 
C2 & C3 are the neighbor relation nodes of C1. On the right-
side of the figure, because C1 & C2 have a neighbor relation, 
only C2 is the neighbor relation node of C1. By calculating 
neighbor relations, the camera on which a target may be 
caught next can be determined. 
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Figure 3.  Example of groups. 

 

 

Figure 4.  Group expansion. 

D. Group 

Figure 3 shows examples of groups. Operators can knows 
the approximate location of a target determined by checking 
its corresponding group. One group tracked one target. If the 
system tracked two targets, then there were two groups. If 
there were any overlaps between the groups, there were 
multiple agents tracking different targets on nodes where the 
groups overlapped. Group 1 and Group 2 are shown to overlap 
in Figure 3. 

E. Group Expansion 

When a target goes out of the group, the target can no 
longer be tracked. Therefore, we proposed a group expansion 
mechanism using the two thresholds previously mentioned [1]. 
The two thresholds were: (1) a decision threshold, used to 
determine if a person was a target, and (2) a re-evaluation 
threshold, used to postpone the decision regarding a target. If 
the result of a person's evaluation was between these two 
thresholds, the decision was postponed, and the group was 
expanded. Figure 4 shows an example of group expansion. If 
an agent evaluated a person and its evaluation value was 
between the two thresholds, then the agent sent copy agents to 
its neighbor relation nodes. This meant the group was 
expanded to include nodes where the person may appear next. 
An (copy) agent surrounded by dashed line in Figure 4 joins 
the group. Because the copy agent stayed on the expanded 
node, the person could be evaluated again when appearing on 
the expanded node. Thus, it was possible to continuously track  

 
Figure 5.  Target move patterns. 

 

 
Figure 6.  Example of subgroups. 

the person. When the evaluation value of the person exceeded 
the decision threshold, the detected person was determined to 
be a target. Then, the agent became the new target agent, and 
other agents in the group were erased (the group was 
collapsed.) The new target agent sent its copy agents to its 
neighbor relation nodes for the creation of a new group. By 
repeating these steps, the agents tracked a target. 

IV. CALCULATION OF PROBABILITIES IN GROUP 

A group expansion mechanism with two thresholds 
enabled the system to mitigate false tracking. Thus, the target 
is known to be somewhere in the group; however, its exact 
location is unknown. Furthermore, if group expansions are 
performed frequently, the group will expand endlessly. Thus, 
we proposed a method to calculate the probabilities of where 
a target is within the group. Using probability calculations, 
operators could determine the most probable location of a 
target (by checking the probability of each agent in the group.) 

Considering that the target was moving between nodes, 
the target should be caught by neighboring nodes. A target 
could not skip a neighbor relation node. Figure 5 shows a 
target movement patterns. When a target exists at node B, the 
target cannot reach node D, without passing node C. Therefore, 
we first calculated the probabilities that the target will move 
from a node to its neighbor relation nodes. For this calculation, 
we divided the group into subgroups, which consisted of a 
node (hereafter, called the central node) and its neighbor 
relation nodes. Subsequently, the probabilities of each node in 
a group were calculated by integrating the probabilities of 
each node in the subgroups. 

A. Probabilities in SubGroup 

We defined a subgroup as a set of nodes comprised of a 
central node and its neighbor relation nodes. Figure 6 shows 
an example in which a group is divided into subgroups. There 
are three nodes in the group. The group is divided into three 
subgroups, each with a different central node; Subgroup 1 is 
comprised of central node A and its neighbor relation node B;  
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Figure 7.  Calculating probabilities in subgroup. 

 
Subgroup 2 is comprised of central node B and its neighbor 
relation nodes, A and C; Subgroup 3 is comprised of central 
node C and its neighbor relation node B.  

The purpose of breaking a group into subgroups was to 
calculate the probability of where the target would move next. 
This was important considering that a target might be along 
the edges between two nodes after the central node identified 
the target for the last time. 

1) Calculating Probabilities within each SubGroup 
To calculate the probability that the target was in each 

node in a subgroup, it was assumed that there were two people 
in subgroup 1, P1 was at node A and P2 was at node B 
illustrated in Figure 7. The probability of that P1 was a target 
was 𝑠𝐴 , and that of P2 was 𝑠𝐵 . There were three cases 
identified where P1 was a target, P2 was a target, and neither 
P1 nor P2 were a target. Because P1 was a target only if P2 
was not a target, the probability of P1 as a target can be 
represented by (1). 

𝑠𝐴 × (1 − 𝑠𝐵) (1) 

Because P2 was a target only if P1 was not a target, the 
probability of P2 as a target can be represented by (2). 

(1 − 𝑠𝐴) × 𝑠𝐵 (2) 

The probability that neither P1 nor P2 was a target is 
represented by (3). 

(1 − 𝑠𝐴) × (1 − 𝑠𝐵) (3) 

These equations were generalized to represent n nodes in 
a subgroup, where a target was detected by an agent, with a 
probability of 𝑠𝑖  at node m. The probability, that a person 
detected at node m was a target, is represented by (4). 

𝑠𝑚 × ∏ (1 − 𝑠𝑖)
𝑛

𝑖=1
𝑖≠𝑚

 (4) 

The probability that the target was not observed by any 
nodes in the subgroup is also generalized by (5). 

∏ (1 − 𝑠𝑖

𝑛

𝑖=1
) 

(5) 

2) Observability and Normalization 
The probability that a target exists at node m in a subgroup 

was calculated. However, the possibility of observing the 
target decreased, if the distance between the nodes was 
significant. Conversely, the possibility of observing the target 
increased if the distance was small. For example, if two 
cameras were installed at both ends of a long passage, then, a 
wide area would not be covered; therefore, the possibility of 
being identified by either of two cameras would be small. 
Thus, we introduced a probability α that a target can be 
observed. Then, the probabilities in (4) and (5) were reformed 
as follows. 

{𝑠𝑚 × ∏ (1 − 𝑠𝑖)
𝑛

𝑖=1
𝑖≠𝑚

} × 𝛼 
(6) 

{∏ (1 − 𝑠𝑖

𝑛

𝑖=1
)} × (1 − 𝛼) 

(7) 

These probabilities were normalized by their ratio. Then, 
the probability 𝑆𝑚 that a target exists at node m was 
represented by (8). 

𝑆𝑚 =
(6)

{∑ (6)𝑛
𝑖=1 } + (7)

 

=

{𝑠𝑚 × ∏ (1 − 𝑠𝑖)
𝑛
𝑖=1
𝑖≠𝑚

} × 𝛼

{∑ ({𝑠𝑖 × ∏ (1 − 𝑠𝑘)𝑛
𝑘=1
𝑘≠𝑚

} × 𝛼)𝑛
𝑖=1 }

+ {{∏ (1 − 𝑠𝑖
𝑛
𝑖=1 )} × (1 − 𝛼)}

 
(8) 

The probability 𝑆𝑛𝑜𝑛 that a target is not observed was 
represented by (9).  

𝑆𝑛𝑜𝑛 =
(7)

{∑ (6)𝑛
𝑖=1 } + (7)

 

=
{{∏ (1 − 𝑠𝑖

𝑛
𝑖=1 )} × (1 − 𝛼)}

{∑ ({𝑠𝑖 × ∏ (1 − 𝑠𝑘)𝑛
𝑘=1
𝑘≠𝑚

} × 𝛼)𝑛
𝑖=1 }

+ {{∏ (1 − 𝑠𝑖
𝑛
𝑖=1 )} × (1 − 𝛼)}

 (9) 

To summarize briefly, 𝑠𝐴  and 𝑠𝐵  are probabilities 

calculated by a target recognition algorithm. Then, the 

probability 𝑆1𝐴  and 𝑆1𝐵  that a target exists at node A and 

node B in subgroup1 are calculated by equation (8). Then, the 

probability 𝑆1𝑛𝑜𝑛  that a target exists between nodes is 

calculated by equation (9). 
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Figure 8.  Target move cases in a group. 

 

B. Probabilities in Group 

To calculate probabilities in a group, the assumption was 
made that there was a group illustrated in Figure 6. The 
probability that the target exists at node B, or around node B, 
was calculated by the sum of the following two cases. 

 Case 1. A target moved from the neighbor relation 
nodes A or C, to node B. Additionally, a target moved 
from node B to B (that is, the target stayed at node B.)  

 Case 2. A target existed around node B; however, the 
target was not observed.  

Figure 8 shows the details of above two cases. We 
calculated the probabilities of the above cases, 1 and 2. 
Supposing that 𝑆1𝐴, 𝑆1𝐵 , 𝑆1𝑛𝑜𝑛  were the probabilities 
calculated in (8) and (9) for subgroup 1; 𝑆2𝐴, 𝑆2𝐵 ,  𝑆2𝐶 , 𝑆2𝑛𝑜𝑛  
were the probabilities for subgroup 2; and 𝑆3𝐵 , 𝑆3𝐶 , 𝑆3𝑛𝑜𝑛 
were the probabilities for subgroup 3. 𝐺𝐴′, 𝐺𝐵′, 𝐺𝐶 ′ were the 
probabilities that a target is identified at nodes A, B, and C for 
the last time, respectively. 

Case 1: Occurred when a target was at node A for the last 
time and subsequently the target was at node B in subgroup 1. 
A target was at node C for the last time and then the target was 
at node B in subgroup 3, or when a target was at node B for 
the last time, and stayed at node B in subgroup 2. Thus, the 
probability of Case 1 is represented by (10). 

𝐺𝐴′ × 𝑆1𝐵 + 𝐺𝐵′ × 𝑆2𝐵 + 𝐺𝐶′ × 𝑆3𝐵 (10) 

Case 1 was further generalized by (11), where a node m 
has n neighbor relation nodes.  

∑ (𝐺𝑖′ × 𝑆𝑖𝑚)
𝑛

𝑖=1
 (11) 

Case 2: Occurred when a target existed around node B; 
however, the target was not observed. This was calculated 
using the sum of the probabilities of the cases where a target 
exists around a node; however, the target is not observed in 
each subgroup. Hence, the probability of Case 2 is represented 
by (12). 

 

Figure 9.  Floor map. 

 

(𝐺𝐴′ × 𝑆1𝑛𝑜𝑛 +  𝐺𝐵′ × 𝑆2𝑛𝑜𝑛 + 𝐺𝐶 ′ × 𝑆3𝑛𝑜𝑛)

× 𝐺𝐵′ 
(12) 

Case 2 was further generalized by (13), where there are n 
subgroups. 

{∑ (𝐺𝑖′ × 𝑆𝑖𝑛𝑜𝑛)
𝑛

𝑖=1
} × 𝐺𝑚′ (13) 

Since the probability 𝐺𝑚 that the target was at node m in a 
group is the sum of (11) and (13), it is represented by (14). 

𝐺𝑚 = (11) + (13) 

= ∑ (𝐺𝑖′ × 𝑆𝑖𝑚)
𝑛

𝑖=1
 

+ {∑ (𝐺𝑖′ × 𝑆𝑖𝑛𝑜𝑛)
𝑛

𝑖=1
} × 𝐺𝑚′ 

(14) 

Thus, the probabilities of each node in a group can be 
calculated.  

V. EXPERIMENTS 

A simulation environment was implemented to evaluate 
the proposed method. For this simulation, we evaluated 
whether the probabilities could be obtained correctly for 
situations where target recognition errors occurred. The 
purpose of the simulation was to verify the validity of the 
proposed method. 

A. Simulation Settings 

1) Floor Map 
Figure 9 shows a floor map used for the simulation. The 

green circle represents a camera. There are 15 cameras on the 
floor. The white square blocks represent a passage.  

The walking route of a target is denoted by the red line in 
Figure 9. The target P1 moves between the cameras in the 
order of C1→C2→C7→C8→C9→C14→C15. Table I shows 
the walking routes of P1 to P8. A maximum of eight targets 
are assumed to be walking at the same time. 
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TABLE I.  WALKING ROUTE 

TargetID Walking Route 

P1, P5 C1→C2→C7→C8→C9→C14→C15 

P2, P6 C11→C12→C7→C8→C9→C4→C5 

P3, P7 C5→C4→C9→C8→C7→C12→C11 

P4, P8 C15→C14→C9→C8→C7→C2→C1 

 

 

Figure 10.  Distribution of correct/incorrect answers. 

 

 
Figure 11.  Tracking result of P1. 

 

2) Simulation Data 
For this simulation, we used the proposed target 

recognition method [12]. This method calculates the distance 
between persons, using several features, such as the clothes 
and height of the target. Several distances were obtained by 
applying the target recognition method to the public pictures’ 
dataset (SARC3D [13] in the PETA dataset [14]). SARC3D 
consisted of 50 different people. Each person had four pictures 
taken, from four different directions. Thus, SARC3D had 200 
pictures. Figure 10 shows a distribution of the distances of the 
correct answers and incorrect answers. A correct answer was 
the distance between two pictures of the same person. An 
incorrect answer was the distance between two pictures of 
different people. When a target approached a node with a 
camera, the node utilized the distance from the correct 
answers randomly. The agent used a ratio of the correct 
answers on the distance, to determine the probability of a 
target. 

B. Results 

1) Tracking Result of P1 
Figure 11 shows the snapshot of when P1 reaches the goal, 

C15. The numbers in Figure 11 indicate the existence 
probabilities of the target at each node. The highest probability 
is 0.852, for the last camera, C15. The next highest probability 
is 0.127, for camera C14, which the target passed immediately 
before C15. Table II shows the probabilities of each node in  

TABLE II.  TRACKING RESULT OF P1 DETAILS 

Camera 

No. 

t=0 t=4 t=8 t=12 t=16 t=20 t=24 

C1 1.000 0.072 0.005 0.001 0.000 0.000 0.000 

C2 0.000 0.928 0.071 0.008 0.001 0.000 0.000 

C7 0.000 0.000 0.924 0.101 0.012 0.002 0.000 

C8 0.000 0.000 0.000 0.890 0.106 0.015 0.002 

C9 0.000 0.000 0.000 0.000 0.881 0.122 0.018 

C14 0.000 0.000 0.000 0.000 0.000 0.862 0.127 

C15 0.000 0.000 0.000 0.000 0.000 0.000 0.852 

 

 

Figure 12.  Rank of tracking results 

 
each time period. The cells in which the target existed are 
shaded. For example, when 8 seconds passed (t=8), the target 
was at C7, and the probability of C7 was 0.924. This was the 
highest probability at t=8. The experimental results show that 
the probabilities changed according to the movement of the 
target, and the tracking was successful. 

The probabilities of each node gradually decreased after 
the target moved to other nodes. For example, the probability 
of C7 was 0.924 at t=8; however, it gradually decreased to 
0.101, 0.012, and 0.002 with the elapse of time. Even if the 
target was not detected, the probability did not immediately 
become zero. This was because we considered that there were 
cases when the target was not observed, despite its existence 
around the node C7. If the probability became zero 
immediately, the target would never be caught when the target 
moved to C2 (from the unobserved situation around C7.) It 
would have resulted in the loss of the target. Because we 
consider unobserved situations (14), the probabilities 
gradually decrease and finally become zero. 

2) Tracking Result of P1 to P8 
Figure 12 shows the rank of n cumulative accuracy rates 

(CNRs) when the simulation was conducted 100 times. The 
CNR indicated the rank orders of a node targets existence. 
Figure 12 shows 93% of targets existed on the node of 1st rank, 
and 99% exited at the 4th rank. 

For comparison, a comparative system that regards a 
person with the highest probability as the target was created. 
Figure 13 shows the proposed method tracks with a higher 
accuracy rate than the comparative system.  
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Figure 13.  Comparison with the comparative system 

 

C. Discussion 

This section discusses the limitations of the proposed 
method. The proposed method requires a condition that a 
distance of a target tends to be closer than that of a distance of 
a non-target as shown in Figure 10. The proposed method 
calculates a probability of a node based on its neighbor 
relation nodes. In other words, when the probability of a 
certain node is high, the probabilities of its neighbor relation 
nodes calculated tends to be higher. Therefore, if the 
probability of a non-target is accidentally high, the probability 
of its neighbor relation nodes tends to be calculated higher. 
These probabilities are unexpected results. However, these 
probabilities are temporary. These probabilities will gradually 
become proper values through the evaluation of several nodes 
because the probability of a target tends to be higher than that 
of the non-tracking target as shown in Figure 10. 
 

VI. CONCLUSION AND FUTURE WORK 

In this study, we proposed a method to calculate the 
probabilities of the location of a target in a group of agents. In 
the future, we plan to evaluate the validity of the proposed 
method in an actual environment. In an actual environment, 
walking routes of targets will be more complicated, such as 
walking the same routes repeatedly or turning back. In these 
cases, the probabilities will be updated frequently and the 
probabilities may become too high or low. We have to handle 
such cases by adjusting the results.  
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