
Scalable Messaging for Java-based Cloud
Applications

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—Many big data and large-scale cloud applications are
written in Java or are built using Java-based frameworks.
Typically, application instances are running in a data center
on many virtual machines which requires scalable and efficient
network communication. In this paper, we present the practical
experience of designing a Java.nio transport for DXNet, a low
latency and high throughput messaging system which goes beyond
message passing by providing a fast parallel object serialization.
The proposed design uses a zero-copy send and receive approach
avoiding copying data between de-/serialization and send/re-
ceive. It is based on Java.nio socket channels complemented by
application-level flow control to achieve low latency and high
throughput for >10 GBit/s Ethernet networks. Furthermore, a
scalable automatic connection management and a low-overhead
interest handling provides an efficient network communication
for dozens of servers, even for small messages (< 100 bytes)
and all-to-all communication pattern. The evaluation with micro
benchmarks shows the efficiency and scalability with up to 64
virtual machines in the Microsoft Azure cloud. DXNet and
the Java.nio-based transport are open source and available on
Github.

Keywords–Message passing; Ethernet networks; Java; Data
centers; Cloud computing;

I. INTRODUCTION

Big data processing is emerging in many application do-
mains whereof many are developed in Java or are based on Java
frameworks [1][2][3]. Typically, these big data applications
aggregate the resources of many virtual machines in cloud
data centers (on demand). For data exchange and coordination
of application instances, an efficient network transport is
very important. Fortunately, public cloud data centers already
provide 10 GBit/s Ethernet and faster.

Java applications have different options for exchanging
data between Java servers, ranging from high level Remote
Method Invocation (RMI) [4] to low-level byte streams using
Java sockets [5] or the Message Passing Interface (MPI)
[6]. However, none of the mentioned possibilities offer high
performance messaging, elastic automatic connection manage-
ment, advanced multi-threaded message handling and object
serialization all together. Therefore, we proposed DXNet [7],
a network messaging system which meets all of these require-
ments. DXNet is extensible by transport implementations to
support different network interconnects.

In this paper, we propose an Ethernet transport implemen-
tation for DXNet, called EthDXNet. The transport is based

on Java.nio and provides high throughput and low latency
networking over Ethernet connections.

The contributions of this paper are:

• the design of EthDXNet and practical experiences
including:

◦ scalable automatic connection management
◦ zero-copy approach for sending and receiving

data over socket channels
◦ efficient interest handling

• evaluations with up to 64 VMs in the Microsoft Azure
cloud

The evaluation shows that EthDXNet scales well while
per-node message throughput and request-response latency is
constant from 2 to 64 nodes, even in an high-load all-to-
all scenario (worst case). Furthermore, high throughput is
guaranteed for small 64-byte messages and saturation of the
physical network bandwidth (5 GBit/s) with 4 KB messages.
The latency experiments also show that EthDXNet efficiently
utilizes the underlying network as long as the CPU does not
get overstressed by too many application threads leading to a
natural increase in latency.

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section
III. In Section IV, we describe the sending and receiving
procedure of EthDXNet, followed by a presentation of the
connection management in Section V. Section VI focuses on
the flow control implementation and Section VII on the interest
handling. The evaluation is in Section VIII. The conclusions
can be found in Section IX.

II. RELATED WORK

In this section, we discuss the related work for this paper.

A. JavaRMI

Java’s RMI [4] provides a high level mechanism to trans-
parently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized and references result in a serialization
of the object itself and all reachable objects (transitive closure),
which can be costly. Missing classes can be loaded from
remote servers during RMI calls, which is very flexible but
introduces even more complexity and overhead. Additionally,
the built-in serialization is known to be slow and not very

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

space efficient [8][9]. Furthermore, method calls are always
blocking.

B. MPI

MPI is the state-of-the-art message passing standard for
parallel high performance computing. It is available for Java
applications by implementing the MPI standard in Java or
wrapping a native library. However, MPI was designed for
spawning jobs with finite runtime in a static environment.
DXNet’s and EthDXNet’s main application domain are ongo-
ing applications with dynamic node addition and removal (not
limited to). The MPI standard defines the required functionality
for adding and removing processes, but common MPI imple-
mentations are incomplete in this regard [10][11]. Furthermore,
job shutdown and crash handling is still improvable [11].

C. Java.nio

The java.io and java.net libraries provide basic
implementations for exchanging data via TCP/IP and UDP
sockets over Input- and OutputStreams [12][5]. To create a
TCP/IP connection between two servers, a new Socket is
created and connection established to a remote IP and port. On
the other end, a ServerSocket must be listening on given
IP-port tuple creating a new Socket when accepting an incom-
ing connection-creation request. The connection creation must
be acknowledged from both sides and can be used to exchange
byte arrays by reading/writing from/to the Socket hereafter.
While this is sufficient for small applications with a few con-
nections, this basic approach lacks several performance-critical
optimizations [13] introduced with Java.nio [12][14]. (1)
Instead of byte arrays, the read/write methods of Java.nio use
ByteBuffers, which provide efficient conversion methods
for all primitive data types. (2) ByteBuffers can be allocated
outside of the Java heap allowing system-level I/O operations
on the data without copying as the ByteBuffer is not subject to
the garbage collection outside of the Java heap. Obviously, this
relieves the garbage collector as well lowering the overhead
with many buffers. (3) SocketChannels and Selectors
enable asynchronous, non-blocking operations on stream-based
sockets. With simple Java Sockets, user-level threads have to
poll (a blocking operation) in order to read data from a Socket.
Furthermore, when writing to a Socket the thread blocks until
the write operation is finished, even if the Socket is not ready.
With Java.nio, operation interests (like READ or WRITE) are
registered on a Selector which selects operations when they
are ready to be executed. This enables efficient handling of
many connections with a single thread. The dedicated thread
is required to call the select method of the Selector which
is blocking if no socket channel is ready or returns with
the number of executable operations. All available operations
(e.g., sending/receiving data) can be executed by the dedicated
thread, afterwards.

D. Java Fast Sockets

Java Fast Sockets (JFS) is an efficient Java communication
middleware for high performance clusters [15]. It provides the
widely used socket API for a broad range of target applications
and is compatible with standard Java compilers and VMs. JFS
avoids primitive data type array serialization (JFS does not in-
clude a serializer), reduces buffering and unnecessary copies in

Figure 1. Simplified DXNet Architecture (from [7])

the protocol and provides shared memory communication with
an optimized transport protocol for Ethernet. DXNet provides
a highly concurrent serialization for complex Java objects and
primitive data types which avoids copying/buffering as well.
EthDXNet is an Ethernet transport implementation for DXNet.

III. DXNET

DXNet is a network library for Java targeting, but not
limited to, big data applications. DXNet implements an event
driven message passing approach and provides a simple
and easy to use application interface. It is optimized for
highly multi-threaded sending and receiving of small mes-
sages by using lock-free data structures, fast concurrent
serialization, zero copy and zero allocation. Split into two
major parts, the core of DXNet provides automatic connection
management, serialization of message objects and an interface
for implementing different transports. Currently, an Ethernet
transport using Java.nio sockets and an InifiniBand transport
using ibverbs is implemented.

This section describes the most important aspects of DXNet
and its core (see Figure 1) which are relevant for this paper.
However, a more detailed insight of the core is given in a
dedicated paper [7]. The source code is available at Github
[16].

A. Connection Management

All nodes are addressed using an abstract 16-bit node
ID. Address mappings must be registered to allow associating
the node IDs of each remote node with a corresponding
implementation dependent endpoint (e.g., socket, queue pair).
To provide scalability with up to hundreds of simultaneous
connections, our event driven system does not create one thread
per connection. A new connection is created automatically
once the first message is either sent to a destination or
received from one. Connections are closed once a configurable
connection limit is reached using a recently used strategy.
Faulty connections (e.g., remote node not reachable anymore)
are handled and cleaned up by the manager. Error handling on
connection errors or timeouts are propagated to the application
using exceptions.

B. Sending of Messages

Messages are Java objects and sent asynchronously. A
message can be targeted towards one or multiple receivers.
Using the message type Request, it is sent to one receiver. The

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

sender waits until receiving a corresponding response message
(transparently handled by DXNet) or skips waiting and collects
the response later.

One or multiple application threads call DXNet (concur-
rently) to send messages. Every message is automatically and
concurrently serialized into the Outgoing Ring Buffer (ORB),
a natively allocated and lock-free ring buffer. When used
concurrently, messages are automatically aggregated which
increases send throughput. The ORB, one per connection, is
allocated in native memory to allow direct and zero-copy ac-
cess by the low level transport. The transport runs a decoupled
dedicated thread which removes the serialized and ready to
send data from the ORB and forwards it to the hardware.

C. Receiving of Messages

The network transport handles incoming data by writing it
to pooled native buffers. We use native buffers and pooling
to avoid burdening the Java garbage collection. Depending on
how a transport writes and reads data, the buffer might contain
fully serialized messages or just fragments. Every buffer is
pushed to the ring buffer based Incoming Buffer Queue
(IBQ). Both, the buffer pool as well as the IBQ are shared
among all connections. Dedicated message handler threads
pull buffers from the IBQ and process them asynchronously
by de-serializing them and creating Java message objects. The
messages are passed to pre-registered callback methods of the
application.

D. Flow Control

DXNet implements its own flow control (FC) mechanism
to avoid flooding a remote node with messages. This would
result in an increased overall latency and lower throughput
if the remote node cannot keep up with processing incoming
messages. When sending messages, the per connection dedi-
cated FC checks if a configurable threshold is exceeded. This
threshold describes the number of bytes sent by the current
node but not fully processed by the receiving node. The
receiving node counts the number of bytes received and sends a
confirmation back to the source node in regular intervals. Once
the sender receives this confirmation, the number of bytes sent
but not processed is reduced. If an application send thread was
previously blocked due to exceeding this threshold, it can now
continue with processing the message.

E. Transport Interface

DXNet provides a transport interface allowing implemen-
tations of different transport types. One of the implemented
transports can be selected on the start of DXNet. The transport
and its specific semantics are transparent to the applications.

The following methods must be implemented for every
transport:

• Setup connection

• Close and cleanup connection

• Signal to send data available in the ORB of a connec-
tion (callback)

• Pull data from the ORB and send it

• Push received raw data/buffer to the IBQ

Figure 2. Data structures and Threads. Details of the Interest Queue can be
found in Figure 4.

IV. ETHDXNET - SENDING AND RECEIVING

In the following sections, we describe the Ethernet trans-
port of DXNet, called EthDXNet. An overview of the most
important data structures and threads of EthDXNet are depict
in Figure 2.

A. Sending of Data

To send messages, the DXNet API methods
sendMessage or sendSync are called by the application
threads (or message handler threads). In DXNet, messages are
always sent asynchronously, i.e., application threads might
return before the message is transfered. It is possible, though,
to wait for a response before returning to the application
(sendSync). After getting the ConnectionObject (a
Java object) from the Connection Manager, the message is
serialized into the ORB associated with the connection. For
performance reasons, many application threads can serialize
into the same or different ORBs in parallel (more in [7]). The
actual message transfer is executed by the SelectorThread, a
dedicated daemon thread driving the Java.nio back-end. Thus,
after serializing the message into the ORB, the application
thread must signal data availability for the corresponding
connection. This is done by registering a WRITE interest (see
Table I) for given connection in the Interest Queue (see
Section VII). When ready, Java.nio’s Selector wakes-up the
SelectorThread (which is blocked in the select method of
the Selector) to execute the operation and thus transferring
the message.

After returning from the select method, a SelectionKey
is available in the ready-set of the Selector. It contains the
operation interest WRITE, the socket channel and attach-
ment (the associated ConnectionObject). This SelectionKey
is dispatched based on the operation. In order to send the
message over the network, the SelectorThread pulls the data
block from the ORB of the corresponding connection and
calls the write method of the socket channel. From this
point, we cannot distinguish single messages anymore because

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

messages are naturally aggregated to data blocks in the ORBs,
which is a performance critical aspect. The write method is
called repeatedly until all bytes have been transferred or the
method returned with return value 0. The second case indicates
congestion on the network or the receiver and is best handled
by stopping the transfer and continue it later. After sending, the
back position (Bp, see Figure 2) of the ORB is moved by the
number of bytes transferred to free space for new messages
to send. Additionally, if the transfer was successful and the
ORB is empty afterwards, the SelectionKey’s operation is set
to READ which is the preset operation and enables receiving
incoming data blocks. If the transfer failed, the connection
is closed (see Section V). If the transfer was incomplete or
new data is available in the ORB, the SelectionKey is set
to READ | WRITE (combination of READ and WRITE by
using the bitwise or-operator) which triggers a new WRITE
operation when calling select the next time but also allows
receiving incoming messages. It is important to change the
SelectionKey to this state as keeping only the WRITE opera-
tion could result in a deadlock situation in which both ends try
to transfer data but none of them are able to receive data on
the same connection. This causes the kernel socket receive
buffers to fill up on both sides preventing further data transfer.

The ORB is a ring buffer allocated in native memory
(outside of the Java heap). In order to pass a ByteBuffer to the
socket channel, which is required for data transfer, we wrap
a DirectByteBuffer onto the ORB and set the ByteBuffer’s
position to the front position in the ORB and the limit to
the back position. A DirectByteBuffer is a ByteBuffer whose
underlying byte array is stored in native memory and is not
subject to garbage collection. This enables native operations of
the operating system without copying the data first. The socket
channel’s send and receive operations are examples for those
native operations, thus, benefiting from the DirectByteBuffer.
Java does not support changing the address of a ByteBuffer.
Therefore, on initialization of the ORB, we allocate a new
DirectByteBuffer by calling allocateDirect of the
Java object ByteBuffer and use the underlying byte array
as the ORB. To do so, we need to determine the memory
address of the byte array, which can be obtained with
Buffer.class.getDeclaredField("address").
That is, during serialization the ORB is accessed with
Java.unsafe by reading/writing from/to the actual address
outside of the Java heap, but the socket channel accesses the
data by using the DirectByteBuffer’s reference (with adjusted
position and limit). We do not access the ORB by using the
DirectByteBuffer during serialization because of performance
and compatibility reasons described in [7].

Although this approach prevents copying the data to be
sent on user-level, the data is still copied from the ORB
to the kernel socket send buffer which is a necessity of
the stream-based socket approach. Therefore, configuring the
kernel socket buffer sizes (one for sending and one for
receiving) correctly has a great impact on performance. We
empirically determined setting both buffer sizes to the ORBs’
size offers a good performance without increasing the memory
consumption too much (typically the ORBs are between 1 and
4 MB depending on the application use case).

B. Receiving of Data

Receiving messages is always initiated by Java.nio’s Se-
lector which detects incoming data availability on socket
channels. When a socket channel is ready to be read from,
the SelectorThread selects the SelectionKey and dispatches the
READ operation. Next, the SelectorThread reads repeatedly
by calling the read operation on the socket channel until
there is nothing more to read or the buffer is full. If reading
from the socket channel failed, the socket channel is closed.
Otherwise, the ByteBuffer with the received data is flipped
(limit = position, position = 0) and pushed to the IBQ (see
Figure 1). The buffer processing is explained in [7].

In order to read from the socket channel, a ByteBuffer is
required to write the incoming data into. Constantly allocating
new ByteBuffers decreases the performance drastically. There-
fore, we implemented a buffer pool. The buffer pool provides
ByteBuffers, allocated in native memory (which are Direct-
ByteBuffers), in different configurable sizes (e.g., 8×256 KB,
256× 128 KB and 4096× 16 KB). The SelectorThread pulls
DirectByteBuffers using a worst-fit strategy as the amount
of bytes ready to be received on the stream is unknown. It
can also scale-up dynamically, if necessary. The buffer pool
management consists of three lock-free ring buffers optimized
for access of one consumer and N producers [7].

The pooled DirectByteBuffers are wrapped to provide the
ByteBuffer’s reference as well as the ByteBuffer’s address.
The reference is used for reading from the socket channel and
the address is necessary to deserialize the messages within the
ByteBuffer.

V. AUTOMATIC CONNECTION MANAGEMENT

For sending and receiving messages, we have to manage
all open connections and create/close connections on demand.
A connection is represented by an object (ConnectionObject),
containing a node ID to identify the connection based on the
destination, a PipeIn and a PipeOut. The PipeOut consists
mostly of an ORB, a socket channel and flow control for
outgoing data. The PipeIn contains a socket channel, flow
control for incoming data, has access to the buffer pool (shared
among all connections) and more data structures important to
buffer processing, which are not further discussed in this paper.

1) Connection Establishment: Connections are created in
two ways: (1) actively by creating a new connection to a
remote node or (2) passively by accepting a remote node’s
connection request. In both cases, the connection manager
must be updated to administrate the new connection. Figure
3 shows the procedure of creating a new connection (active
on the left side and passive on the right). The core part is the
TCP handshake, which can be seen in the middle.

Active connection creation: A connection is created ac-
tively, if an application thread wants to send a message to
a not yet connected node. To establish the connection, the
application thread creates a new ConnectionObject (including
PipeIn and PipeOut and all its components), opens a new
socket channel and connects the socket channel to the re-
mote node’s IP and port. Afterwards, the application thread
registers a CONNECT operation, creates a ReentrantLock
and Condition and waits until the Condition is signaled or

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

Figure 3. Connection Creation

the connection creation was aborted. To correctly identify the
corresponding ConnectionObject to a socket channel, the Con-
nectionObject is attached to the SelectionKey when registering
the CONNECT interest and all following interests.

The SelectorThread continues the connection establishment
by applying the CONNECT interest and selecting the socket
channel when the remote node accepted the connection or the
connection establishment failed. After selecting the Selection-
Key, the socket channel’s status is checked. If it is pending,
the connection creation was successful so far and the socket
channel can be completed by calling finishConnect. If the
connection establishment was aborted, the application thread
is informed by setting a flag (which is checked periodically by
the application thread).

The remote node has to identify the new node currently
creating a connection. Thus, the node ID is sent to the
remote node on the newly created channel. Furthermore, the
SelectorThread marks the PipeOut as connected and signals the
condition so the application thread can continue. The applica-
tion thread adds the connection to the connection manager,
increments the connection counter and starts sending data,
afterwards.

Passive connection creation: For accepting and creating
an incoming connection, the Selector implicitly selects a Selec-
tionKey with ACCEPT operation interest which is processed by
the SelectorThread by calling accept on the socket channel.
This creates a new socket channel and acknowledges the
connection. Afterwards, the interest READ is registered in order
to receive the node ID of the remote node. After selecting and
dispatching the interest, the node ID is read by using the socket
channel’s read method.

At this point the socket channel is ready for sending
and receiving data, but the ConnectionObject has yet to be
created and pushed to the connection manager. This process is
rather time consuming and might be blocking if an application
thread creates a connection to the same node at the same
time (connection duplication is discussed in Section V-2).
Therefore, the SelectorThread creates a job for creating the
connection and forwards it to the ConnectionCreationHelper

thread. Additionally, the interest is set to NO-OP (0) to avoid
receiving data before the connection setup is finished and the
connection is attached to the SelectionKey.

The ConnectionCreationHelper polls the job queue period-
ically. There are two types of jobs: (1) a connection creation
job and (2) a connection shutdown job. The latter is explained
in Section V-3. When pulling a connection creation job, the
ConnectionCreationHelper creates a new ConnectionObject
(including the pipes, ORB, FC, etc.) and registers a READ
interest with the new ConnectionObject attached. Furthermore,
the PipeIn is marked as connected.

To be able to accept incoming connection requests, every
node must open a ServerSocketChannel, bind it to a
well-known port and register the ACCEPT interest. Further-
more, for selecting socket channels, a Selector has to be
created and opened.

2) Connection Duplication: It is crucial to avoid connec-
tion duplication which occurs if two nodes create a connection
to each other simultaneously. In this case, the nodes might
use different connections to send and receive data which
corrupts the message ordering and flow control. There are two
approaches for resolving this problem: (1) detecting connection
duplication during/after the connection establishment and (2)
avoiding connection duplication by using two separate socket
channels for sending and receiving.

Solution 1: Detect and resolve connection duplication
by keeping one connection opened and closing the other one.
Obviously, the other node must decide consistently which can
be done by including the node IDs (e.g., always keep the
connection created by the node with higher node ID). One
downside of this approach is the complex connection shut-
down. It must ensure that all data initially to be sent over the
closing connection has been sent and received. Furthermore,
message ordering cannot be guaranteed until the connection
duplication situation is resolved.

Solution 2: Avoid connection duplication by using two
socket channels per connection: one for sending and one
for receiving (implemented in EthDXNet). Thus, simultane-
ous connection creation leads to one ConnectionObject with

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

opened PipeIn and PipeOut (one socket channel, each) whereas
a single connection creation opens either the PipeOut (active)
or PipeIn (passive). This approach requires additional memory
for the second socket channel, Java.nio’s Selector has more
socket channels to manage and connection setup is required
from both ends. The additional memory required for the second
socket channel is negligible as the kernel socket buffers are
configured to use a very small socket receive buffer for the
outgoing socket channel and a very small socket send buffer
for the incoming socket channel. The second TCP handshake
(for connection creation, both sides need to open and connect
a socket channel) is also not a problem as both socket channels
can be created simultaneously and for a long running big
data application connections among application instances are
typically kept over the entire runtime. Finally, the overhead
for Java.nio’s Selector is difficult to measure but is certainly
not the bottleneck taking into account the limitations of the
underlying network latency and throughput. Sending out-of-
band (OOB) data is possible by utilizing the unused back-
channel of every socket channel. We use this for sending
flow control data in EthDXNet (see Section VI).

3) Connection Shutdown: Connections are closed on three
occasions: (1) if a write or read access to a socket channel
failed, (2) if a new connection is to be created but the config-
urable connection limit is reached or (3) on node shutdown.
In the first case, the SelectorThread directly shuts down the
connection. In the second case, the application thread registers
a CLOSE interest to let the SelectorThread close the connection
asynchronously. On application shutdown, all connections are
closed by one Shutdown Hook thread.

To shut down a connection, first, the outgoing and incoming
socket channels are removed from the Selector by canceling
the SelectionKeys representing a socket channel’s registration.
Then, the socket channels are closed by calling the socket
channels’ close method. At last, the connection is removed
from the connection manager by creating a shutdown job
handled by the ConnectionCreationHelper (case (1)) or directly
removing it when returning to the connection management
(cases (2) and (3)). The ConnectionCreationHelper also trig-
gers a ConnectionLostEvent, which is dispatched to the
application for further handling (e.g., node recovery).

When dismissing a connection (case (2)), directly shutting
down a connection might lead to data loss. Therefore, the
connection is closed gracefully by waiting for all outstanding
data (in the connection’s ORB) to be sent. Priorly, the con-
nection is removed from connection management to prevent
further filling of the ORB. Afterwards, a CLOSE interest is
registered to close the socket channels asynchronously. The
SelectorThread does not shut down the socket channels on
first opportunity but postpones shutdown for at least two
RTT timeouts to ensure all responses are received for still
outstanding requests.

VI. FLOW CONTROL

DXNet provides a flow control on application layer to avoid
overwhelming slower receivers (see Section III). EthDXNet
uses the Transmission Control Protocol (TCP) which already
implements a flow control mechanism on protocol layer. Still,
DXNet’s flow control is beneficial when using TCP. If the

application on the receiver cannot read and process the data fast
enough, the sender’s TCP flow control window, the maximum
amount of data to be sent before data receipt has to be acknowl-
edged by the receiver, is reduced. The decision is based on the
utilization of the corresponding kernel socket receive buffer.
In DXNet, reading incoming data from kernel socket receive
buffers is decoupled from processing the included messages,
i.e., many incoming buffers could be stored in the IBQ to be
processed by another thread. Thus, the kernel socket receive
buffers’ utilizations do not necessarily indicate the load on the
receiver leading to delayed or imprecise decisions by TCP’s
flow control.

This section focuses on the implementation of the flow con-
trol in EthDXNet. Flow control data has to be sent with high
priority to avoid unintentional slow-downs and fluctuations
regarding throughout and latency. Sending flow control data in-
band, i.e., with a special message appended to the data stream,
is not an option because the delay would be too high. TCP
offers the possibility to send urgent data, which is a single
byte inlined in the data stream and sent as soon as possible.
Furthermore, urgent data is always sent, even if the kernel
socket receive buffer on the receiver is full. To distinguish
urgent data from the current stream (urgent data can be at any
position within a message as transfer is not message-aligned),
a dedicated flag within the TCP header needs to be checked.
This flag indicates if the first byte of the packet is urgent data.
Unfortunately, Java.nio does not provide methods for handling
incoming TCP urgent data.

We solve this problem by using both unused back-
channels of every socket channel which are available because
of the double-channel connection approach in EthDXNet.
Thus, the incoming stream of the outgoing socket channel and
the outgoing stream of the incoming socket channel of every
connection are used for sending/receiving flow control data.

Sending flow control data: When receiving messages,
a counter is incremented by the number of received bytes
for every incoming buffer. If the counter exceeds a con-
figurable threshold (e.g., 60% of the flow control window),
a WRITE_FC interest is registered. This interest is applied,
selected and dispatched like any other WRITE interest. But,
instead of using the socket channel of the PipeOut, the PipeIn
is used to send the flow control data. The flow control
data consists of one byte containing the number of reached
thresholds (typically 1). If the threshold is smaller than 50%,
for example 30%, it is possible that between registering the
WRITE_FC interest and actually sending the flow control data,
the threshold has been exceeded again. For example, if the
current counter is 70% of the windows size which is more
than two thresholds of 30%. In this case 2 * 30% = 60% is
confirmed by sending the value 2. After sending flow control
data, the SelectionKey is reset to READ to enable receiving
messages on this socket channel, again.

Receiving flow control data: To be able to receive flow
control data, the socket channel of the PipeOut must be
readable (register READ). If flow control data is available
to be received, the socket channel is selected by the Selector
and the SelectorThread reads the single byte from the socket
channel of the PipeOut. When processing serialized messages
on the sender, a counter is incremented. Application threads
which want to send further messages if the counter reached

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

TABLE I. JAVA.NIO INTERESTS

Interest Description
OP_READ channel is ready to read incoming data
OP_WRITE set if data is available to be sent
OP_CONNECT set to open connection
OP_ACCEPT a connect request arrived

TABLE II. ETHDXNET INTERESTS

Interest Description (refers to attached connection)
CONNECT set OP_CONNECT for outgoing channel
READ_FC set OP_READ for outgoing channel
READ set OP_READ for incoming channel
WRITE_FC set OP_WRITE for incoming channel
WRITE set OP_WRITE for outgoing channel
CLOSE shutdown both socket channels

the limit (i.e., the flow control window is full) are blocked
until message receipt is acknowledged by the receiver. The
read flow control value is used to decremented the counter to
re-enable sending messages. Usually, the limit is never reached
as the flow control data is received before (if the threshold on
the receiver is low enough).

In Section IV-A, we discussed the end-to-end situation of
both nodes sending data to each other, but never reading (if the
SelectionKey’s operation stays at WRITE) causing a deadlock.
This situation cannot occur with two socket channels per
connection as reading and writing are handled independently.
But, a similar situation is possible where two nodes send data
to each other, but flow control data is not read for a while.
This does not cause a deadlock but decreases performance.
By setting the interest to READ | WRITE, flow control data is
read from time to time ensuring a contiguous high throughput.

VII. EFFICIENT MANAGEMENT OF OPERATION
INTERESTS

Operation interests are an important concept in Java.nio
and are registered in the Selector to create and accept a new
connection, to write data or to enable receiving data. The
operation interests are complemented by the ConnectionObject
(as an attachment) and the socket channel stored together in
a SelectionKey. As soon as the socket channel is ready for
any registered operation, the Selector adds the corresponding
SelectionKey to a ready-set and wakes-up the SelectorThread
waiting in the select method. If the SelectorThread is
not waiting in the select method, the next select call will
return immediately. The SelectorThread can then process all
SelectionKeys.

A. Types of Operations Interests

The operation interests can be classified into two cate-
gories: explicit operation interests and implicit operation
interests. Implicit operations are registered as presets after
socket channel creation and after executing explicit operations.
For example, a READ interest is registered for a socket channel
if data is expected to arrive on this socket channel. The opera-
tion is then selected implicitly by the Selector whenever data is

available to be received. Another example is the ServerSock-
etChannel which implicitly accepts new incoming connection
requests if the ACCEPT interest has been registered before.
Explicit operations are single operations which need to be
triggered explicitly by the application. For example, when the
application wants to send a message, the application thread has
to register a WRITE interest. When the socket channel is ready,
the data is sent and the socket channel is set to the preset (in
our case READ). It is not forbidden by Java.nio to keep explicit
operations registered. But, as a consequence the operations are
always selected (every time select is called) which increases
CPU load and latency. Therefore, in EthDXNet, every explicit
operation is finished by registering an implicit operation.

The set of Java.nio operation interests is extended
by EthDXNet to support flow control and to enable
closing connections asynchronously. Table I shows all in-
terests specified by Java.nio and Table II lists all interests
used in EthDXNet. The interests READ, WRITE and CON-
NECT are directly mapped onto OP_READ, OP_WRITE
and OP_CONNECT. OP_ACCEPT is registered and se-
lected by the Selector and must not be registered explicitly.
READ_FC and WRITE_FC are used to register OP_READ
and OP_WRITE interests for the back-channel used by the
flow control. The interest CLOSE does not have a counterpart
because the method close can be called explicitly on the
socket channel.

B. Interest Queue

None of the interests in Table II are registered directly
to the Selector because only the SelectorThread is allowed
to add and modify SelectionKeys. This is enforced by the
Java.nio implementation which blocks all register calls when
the SelectorThread is waiting in the select method. This
obstructs the typical asynchronous application flow and can
even result in a deadlock if the Selector does not have implicit
operations to select. This problem can be avoided by always
waking-up the SelectorThread before registering the operation
interest and synchronizing the register and select calls. How-
ever, this workaround results in a rather high overhead and
a complicated work flow. Instead, we address this problem
with an Interest Queue (see Figure 4) and register all interests
in one bulk operation executed by the SelectorThread before
calling select. This approach provides several benefits while
solving the above problem: first, the application threads
can return quickly after putting the operation interest into
the queue and even faster (without any locking) when the
interest was already registered (which is likely under high
load). Second, the operation interests can be combined
and put in a semantic order (e.g., CONNECT before WRITE)
before registering (a rather expensive method call). Finally,
the operation interest-set can be easily extended, e.g., by a
CLOSE operation interest to asynchronously shut down socket
channels.

Figure 4 shows the Interest Queue consisting of a byte array
storing the operation interests of all connections (left side in
Figure 4) and an ArrayList of ConnectionObjects containing
connections with new operation interests sorted by time of
occurrence (right side in Figure 4).

The byte array has one entry per node ID allowing access
time in O(1). The node ID range is limited to 216 (allowing

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

Figure 4. Interest Queue: the application threads add new interests to the
Interest Queue. If interest was 0 before, the ConnectionObject is added to an

ArrayList.

max. 65,536 nodes per application) which results in a fixed size
of 64 KB for the byte array. An array entry is not zero if at
least one operation interest was added for given connection to
the associated node ID. Operation interests are combined with
the bitwise or-operator to avoid overwriting any interest. By
combining operation interests, the ordering of the interests for
a single connection is lost. But, this is not a problem because
a semantic ordering can be applied when processing them.

The ordering within the interests of one connection can be
reconstructed but not the ordering across different connections.
Therefore, whenever an interest is added to a non-zero entry
of the byte array, the corresponding ConnectionObject is ap-
pended to an ArrayList. The order of operation interests is then
ensured by processing the interest entries in the ArrayList in
ascending order. The ArrayList also allows the SelectorThread
to iterate only relevant entries and not all 216.

Processing operation interests: The processing is initiated
either by the Selector implicitly waking up the SelectorThread
if data is available to be read or an application thread explicitly
waking up the SelectorThread if data is available to be sent. As
waking-up the SelectorThread is a rather expensive operation
(a synchronized native method call), it is important to call it
if absolutely necessary, only. Therefore, the SelectorThread is
woken-up after adding the first operation interest to the Interest
Queue across all connections (the ArrayList is empty after
processing the operation interests). If the SelectorThread is
currently blocked in the select call, it returns immediately and
can process the pending operation interests.

Listing 5 shows the basic processing flow of the Selec-
torThread. The first step in every iteration is to register all
operation interests collected in the ArrayList of the Interest
Queue. The SelectorThread gets the destination node ID from
the ConnectionObject and the interests from the byte array.
Operation interests are registered to the Selector in the follow-
ing order:

1) CONNECT: register SelectionKey OP_CONNECT with
given connection attached to an outgoing channel.

2) READ_FC: register SelectionKey OP_READ with given
connection attached to an outgoing channel.

3) READ: register SelectionKey OP_READ with given con-
nection attached to an incoming channel.

1 while (!closed) {
2 processInterests();
3

4 if (Selector.select() > 0) {
5 for (SelectionKey key :

Selector.selectedKeys()) {
6 // Dispatch key
7 if (key.isValid()) {
8 if (key.isAcceptable()) {
9 accept();

10 } else if (key.isConnectable()) {
11 connect();
12 } else if (key.isReadable()) {
13 read();
14 } else if (key.isWritable()) {
15 write();
16 }
17 }
18 }
19 }
20 }

Figure 5. Workflow of SelectorThread

4) WRITE_FC: change SelectionKey of an incoming chan-
nel to OP_WRITE if it is not OP_READ | OP_WRITE.

5) WRITE: change SelectionKey of an outgoing channel to
OP_WRITE if it is not OP_READ | OP_WRITE.

6) CLOSE: keep interest in queue for delay or close con-
nection (see Section V-3).

The order is based on following rules: (1) a connection must
be connected before sending/receiving data, (2) setting the
preset READ is done after connection creation, only, (3) all
READ and WRITE accesses must be finished before shutting
down the connection and (4) the flow control operations have
a higher priority than normal READ and WRITE operations.
Furthermore, re-opening a connection cannot be done before
the connection is closed and closing a connection is only pos-
sible if the connection has been connected before. Therefore
it is not possible to register CONNECT and CLOSE together.

Finally, the processing of registered operation interests
includes reseting the operation interest in the byte array and
removing the ConnectionObject from the ArrayList.

VIII. EVALUATION

We evaluated EthDXNet using up to 65 virtual machines
(64 running the benchmark and one for deployment) connected
with 5 GBit/s Ethernet in Microsoft’s Azure cloud in Germany
Central. The virtual machines are Standard_DS13_v2 which
are memory optimized servers with 8 cores (Intel Xeon E5-
2673), 56 GB RAM and a 10 GBit/s Ethernet connectivity,
which is limited by SLAs to 5 GBit/s. In order to manage the
servers, we created two identical scale-sets (as one scale-set is
limited to 40 VMs) based on a custom Ubuntu 14.04 image
with 4.4.0-59 kernel and Java 8.

We use a set of micro benchmarks for the evaluation send-
ing messages or requests of variable size with a configurable
number of application threads. All throughput measurements
refer to the payload size which is considerably smaller than the
full message size, e.g., a 64-byte payload results in 115 bytes to

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

TABLE III. ADDITIONAL PARAMETERS

Parameter Value
ORB Size 4 MB
Flow Control Windows Size 2 MB
Flow Control Threshold 0.6
net.core.rmem_max 4 MB
net.core.wmem_max 4 MB

 2 4 8 16 32 64
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 6. Message Payload Throughput per Node. 1 Application Thread, 2
Message Handler Threads

be sent on IP layer. Additionally, all runs with DXNet’s bench-
mark are full-duplex showing the aggregated performance for
concurrently sending and receiving messages/requests.

A. Message Throughput

First, we measured the asynchronous message throughput
with an increasing number of nodes in an all-to-all test
with message payloads of 64 and 4096 bytes. For instance,
when running the benchmark with 32 nodes each node sends
25,000,000 64-byte messages to all 31 other nodes and there-
fore each node has to send and receive 775,000,000 messages
in total. Additional network parameters can be found in Table
III.

Figure 6 shows the average payload throughput for single
nodes and Figure 7 the aggregated throughput of all nodes.

For 64-byte messages, the payload throughput is between
200 and 260 MB/s for all node numbers, showing a minimal
decrease from 2 to 16 nodes. With 4096-byte messages the
throughput improves with up to 8 nodes peaking at 1370 MB/s
full-duplex bandwidth (5.5 GBit/s uni-directional). With 64
nodes the throughput is still above 5 GBit/s resulting in an
aggregated throughput of 83,376 MB/s. The minor decline in
both experiments can be explained by an uneven deployment
of our network benchmark causing the last nodes starting
and finishing a few seconds later. The end-to-end throughput
between two nodes seems to be bound at around 3.2 GBit/s in
the Microsoft Azure cloud as tests with iperf showed, too.

The benchmarks show that DXNet, as well as EthDXNet
scale very well for asynchronous messages under high
loads.

 2 4 8 16 32 64
0

10000

20000

30000

40000

50000

60000

70000

80000

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 7. Aggregated Message Payload Throughput. 1 Application Thread, 2
Message Handler Threads

B. Request-Response Latency

The next benchmarks are used to evaluate request-response
latency by measuring the Round Trip Time (RTT) which
includes sending a request, receiving the request, sending the
corresponding response and receiving the response. Figure 8
shows the RTTs for an all-to-all scenario with 2 to 64 nodes
and 1, 16 and 100 application threads. Furthermore, all-to-
all tests with ping are included to show network latency
limitations.

The latency of the Azure Ethernet network is relatively
high with a minimum of 352 µs measured with DXNet and
one application thread (Figure 8). A test with up to 4032 ping
processes shows that the average latency of the network is
even higher (> 500 µs). In DXNet, own requests are combined
with responses (and other requests if more than one application
thread is used). This reduces the average latency for requests.
Additionally, the ping baseline shows an increased latency for
more than 32 nodes, by using one scale-set for the first 32
nodes and another one for the last 32 nodes. Different scale-
sets are most likely separated by additional switches which
increases the latency for communication between scale-sets.

EthDXNet is consistently under the ping baseline demon-
strating the low overhead and high scalability of EthDXNet
(and DXNet) when using one application thread. With 16
application threads, the latency is slightly higher and on the
same level as the baseline, but the throughput is more than
10 times higher as well (in comparison to DXNet with one
application thread). Furthermore, both lines have the same
bend from 32 to 64 nodes as the baseline.

With 100 application threads per node (up to 6,400 in total),
the latency increases noticeably, as expected, because the CPU
is highly overprovisioned. In this situation the latency between
writing a message into the ORB and sending it increases
dramatically with more open socket channels. Furthermore,
requests can be aggregated more efficiently in the ORBs with
less open connections masking the overhead with a few nodes.

The latency experiments show that EthDXNet scales
up to 64 nodes without impairing latency. With a very high
number of application threads (relative to the available cores)
the latency increases but is still good.

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

0

500

1000

1500

2000

 2 4 8 16 32 64

R
T
T
 [

µ
s]

Number of Nodes

1 Thread
16 Threads

100 Threads
Ping Baseline

Figure 8. Average Request-Response Latency. 1 to 100 Application Threads,
2 Message Handler Threads

IX. CONCLUSIONS

Big data applications, as well as large-scale interactive
applications are often implemented in Java and typically
executed on many nodes in a cloud data center. Efficient
network communication is very important for these application
domains.

In this paper, we described our practical experiences in
designing a transport implementation, EthDXNet, based on
Java.nio, integrated into DXNet. EthDXNet provides a double-
channel based automatic connection approach using back-
channels for sending flow control data and an efficient op-
eration interest handling which is important to achieve low-
latency message handling with Java.nio’s Selector.

Evaluation with micro benchmarks in the Microsoft Azure
cloud shows the scalability of EthDXNet (together with
DXNet) achieving an aggregated throughput of more than 83
GByte/s with 64 nodes connected with 5 GBit/s Ethernet (10
GBit/s Ethernet limited by SLAs). Request-response latency is
almost constant for an increasing number of nodes as long as
the CPU is not overloaded. Future work includes experiments
on larger scales with application traces.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, pp. 1804–1815, Aug. 2015.

[2] S. Ekanayake, S. Kamburugamuve, and G. C. Fox, “Spidal java: High
performance data analytics with java and mpi on large multicore hpc
clusters,” in Proceedings of the 24th High Performance Computing
Symposium, 2016, pp. 3:1–3:8.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[4] S. Microsystems, “Java remote method invocation specification,”
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html,
accessed: 2018-03-14.

[5] Oracle, “Package java.net,” https://docs.oracle.com/javase/8/docs/api/
java/net/package-summary.html, accessed: 2018-03-14.

[6] S. Mintchev, “Writing programs in javampi,” School of Computer
Science, University of Westminster, Tech. Rep. MAN-CSPE-02, Oct.
1997.

[7] K. Beineke, S. Nothaas, and M. Schoettner, “Efficient messag-
ing for java applications running in data centers,” Feb. 2018,
preprint on webpage at https://cs.hhu.de/en/research-groups/operating-
systems/publications.html.

[8] S. P. Ahuja and R. Quintao, “Performance evaluation of java rmi:
A distributed object architecture for internet based applications,” in
Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, ser.
MASCOTS ’00, 2000, pp. 565–569.

[9] M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and rmi for java,” Concurrency: Practice and Experience, vol. 12,
pp. 495–518, 2000.

[10] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg, 2006, pp.
275–284.

[11] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI ’13, 2013, pp. 43–48.

[12] Oracle, “Java i/o, nio, and nio.2,”
https://docs.oracle.com/javase/8/docs/technotes/guides/io/index.html,
accessed: 2018-03-14.

[13] W. Pugh and J. Spacco, MPJava: High-Performance Message Passing
in Java Using Java.nio. Springer Berlin Heidelberg, 2004, vol. 16.

[14] R. Hitchens, Java NIO. Sebastopol, CA, USA: O’Reilly Media, 2009.
[15] G. L. Taboada, J. Touriño, and R. Doallo, “Java fast sockets: Enabling

high-speed java communications on high performance clusters,” Com-
put. Commun., vol. 31, pp. 4049–4059, Nov. 2008.

[16] K. Beineke, S. Nothaas, and M. Schoettner, “Dxnet project on github,”
https://github.com/hhu-bsinfo/dxnet, accessed: 2018-03-14.

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-633-0

ICNS 2018 : The Fourteenth International Conference on Networking and Services

