
ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 29

Securing Vehicle’s Electronic Control Units

Kevin Daimi
Computer Science and Software Engineering

University of Detroit Mercy
Detroit, USA

email: daimikj@udmercy.edu

Mustafa Saed, Scott Bone, John Robb
HATCI Electronic Systems Development
Hyundai-Kia America Technical Center

Superior Township, USA
email: {msaed, sbone, jrobb }@hatci.com

Abstract— Electronic Control Units (ECUs) are essential for

controlling many functions and systems in current and future
vehicles. Modern vehicles incorporate over seventy ECUs.
Those ECUs are vulnerable to security attacks. A number of
these attacks can be fatal and can result in casualties.
Undoubtedly, there is a critical need for protecting the ECUs
infrastructure. This paper proposes an approach to secure
vehicle’s ECUs based on a grouping principle. Four groups are
introduced. Each group is controlled by a Master ECU, and the
Master ECUs are controlled by a Super Master ECU. Public key
cryptology is adopted. Furthermore, the possibility of applying
symmetric key cryptology, Elliptic Curve Cryptology (ECC), and
One-Time Pad are investigated.

Keywords— ECUs; Security Architecture; Security Protocols;
Security Requirements

I. INTRODUCTION

 Modern vehicles deploy a number of busses in their
networks. Among these are the Local Interconnect Network
(LIN), Controller Area Network (CAN), Media-Oriented
System Transport (MOST), and FlexRay. LIN is used for the
lowest data-rate functions, such as door locks, climate control,
and mirror control. CAN is suitable for medium speed
applications including body systems, engine management, and
transmission. MOST lends itself to the high-speed data rates,
and therefore, it is convenient for multimedia and
entertainment. Finally, the FlexRay is suitable for safety-
critical applications, such as steer-by-wire, stability control,
and brake-by-wire. Connected to these buses are various
Electronic Control Units (ECUs). ECUs are embedded
systems controlling one or more of the vehicle’s systems and
subsystems. They play a crucial role in controlling many
functions in vehicles. ECUs are made up of both hardware
and firmware. They are named and differentiated based on
what they are used for. For example, the Engine Control
Module (ECM) controls various engine functions such as fuel
injection, ignition timing and idle speed control system, the
Electronic Brake Control Module (EBCM) is used in the anti-
lock braking system (ABS), and the Powertrain Control
Module (PCM) monitors and controls speed control, A/C, and
automatic transmission [1]-[9]. It is critical to protect these
ECUs for proper functioning of the vehicle and for safety
purposes.
 Nish [10] introduced a number of security issues in modern
automotive systems. The communication of Tire Pressure
Monitoring System (TPMS) with its sensor is unsecure and

missing encryption and signature in the data protocol. As a
result, the tire pressure warning lights can be turned on and off
causing the driver to worry about the tire pressure when there
is nothing wrong with it. Another issue regards the keyless
entry systems. The passive keyless entry in modern cars can
be subject to relay attack by intercepting and relaying the
radio signal from the smart keys to the cars. The attackers can
break into and steal the valuables left in the vehicle. Further
issue that has a safety nature involves the On-Board
Diagnostic port (OBD-II). This interface provides direct
access to the vehicle for diagnosing and updating the firmware
of ECUs. By connecting to this port through a USB or WiFi,
some software on the attacking computer can re-program the
ECUs causing considerable and possibly fatal damage.
 Othmane, Weffers, Mohamad, and Wolf [11] proposed a
taxonomy for vehicle security and privacy aspects. They
stressed the security of communication links, data validity,
devices security, identity, and access control. They attempted
to provide an initial repository of threats to vehicle network.
Security threats and the possibility of attacks can arise when
drivers try to control the lights, windshields, wipers, air flow
and the heater of their vehicles through Bluetooth or exercise
remote starting or unlock doors using their PDA [12]. Any
attack on the Bluetooth or the PDA will impact security of the
vehicle and drivers safety. A vehicle’s ECUs communicate
through the in-vehicle network and it communicates with
Service Providers through cellular network [13]. All the
possible attacks on cellular networks will find their way to the
vehicle and can impact the ECUs.
 A security approach to protect the CAN protocol from
masquerade and replay attacks was proposed by Lin and
Sangiovanni-Vincentelli [14]. They provided a software-only
solution with no additional hardware needed. The focus was
on run-time authentication after ignition key i s t u r n e d o n
and the security secret keys have been distributed to the
ECUs. Han, Potluri, and Shin [15] introduced a security
architecture to deal with the potential security attacks
infiltrated by mobile devices, such as smart phones and
tablets, interfacing with the vehicle to send/receive
information to/from the vehicle. Three parties were adopted,
the user device, the gateway, and the ECUs. Patsakis, Dellios,
and Bouroche [16] stressed that the standards for in-vehicle
security are distant from deploying long-established security
policies and procedures. They analyzed the current auto
industry policies and procedures with regards to security, and
highlighted a number of vulnerabilities. In an attempt to
overcome these vulnerabilities, they introduced a security

ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 30

architecture to support mutual authentications of ECUs and
various access rights for users.
 Several attempts have focused on grouping ECUs for
various purposes. In one of these attempts, ECUs were
divided into four groups; Powertrain Master Control Unit,
Chassis Master Control Unit, Cabin Master Control Unit, and
Infotainment Master Control Unit [17]. Nilsson, Phung, and
Larson [18] indicated five categories: Powertrain, Vehicle
Safety, Comfort, Infotainment, and Telematics. The groups;
Comfort Systems, Body Control, Real Time Systems, and
Safety-Critical systems were suggested by Seo, Kim, Hwang,
Kwon, and Jeon [8]. Powertrain Gateway, Body and Comfort
Gateway, Chassis Gateway, and Infotainment Gateway were
advocated in [4]. ECUs were also grouped as Powertrain,
Safety, Comfort, and Infotainment and Telematics [2]. A
further approach adopted by Cho, Bae, Chu, and Suh [19]
proposed User-Friendly Diagnostic Unit, Engine-
Transmission-Chassis-Body Unit, Safety Unit, and
Telematics-Information-Entertainment Unit.
 This paper proposes a security architecture for secure
transmission of ECUs’ messages. The ECUs are divided
among four groups. Each group is controlled by a Master
ECU (MECU). The resulting four MECUs are supervised by
the Super Master ECU (SMECU). Public Key cryptology is
adopted. Furthermore, the paper investigates the possibility of
applying symmetric key cryptology, Elliptic Curve
Cryptology, and stream ciphers. The security requirements
are examined. The remainder of the paper is organized as
follows: Section II introduces the proposed security
architecture. Securing the ECUs using public key cryptology
is dealt with in section III. Other possible approaches for
securing a vehicle’s ECUs are briefly introduced in section IV.
These include symmetric key cryptology, Elliptic Curve
Cryptology and stream ciphers. Finally, the paper is concluded
in section V.

II. PROPOSED SECURITY ARCHITECTURE
 In in-vehicle network, buses have ECUs connected to them.
Three busses are shown in Figure 1 above; high speed CAN
(CAN-HS), medium speed CAN (CAN_MS) and a LIN bus.
To these buses various ECUs are connected. ECUs broadcast
messages. In other words, messages are received by all ECUs,
but only acted upon if the message concerns the receiving
ECU. The Body Control Module (BCM) and the Instrument
Cluster (IC) are connect to both buses; CAN-MS and CAN-
HS. These will act as gateways to gate the messages received
from one bus to the ECUs connected to the other bus. Table 1
provides the notations used in the hypothetical in-vehicle
network.

 The security architecture used in this paper is based on the
principle of grouping ECUs. The grouping could be based on
any subdivision approach. For example, ECUs may be
grouped based on their location, functionality, or
collaboration. The number of groups is not limited. In Figure
2 below, the ECUs are distributed among four groups of
Master ECUs, MECU1, MECU2, MECU3, and MECU4. A
number of ECUs are attached to each Master ECU. MECUs

do not necessarily contain the same number of ECUs. For this
reason, the subscript of the last ECU in each group has
different letters. In other words, the use of one subscript letter
was avoided to indicate possibly different number of ECUs.
There is no direct connection between the ECUs of each group
with the other groups.

Figure 1. Hypothetical In-Vehicle Network

TABLE I
NOTATIONS USED IN IN-VEHICLE NETWORK

Symbol Role

ECM Engine Control Module
PCM Powertrain Control Module
TCM Transmission Control Module
ACC Adaptive Cruise Control
PAM Parking Aid Module
ESC Electronic Stability Control
BCD Blind Spot Detective
ABS Anti-Lock Brake System Module
IC Instrument Cluster
BCM Body Control Module
HVAC Heat, Ventilation, and Air Conditioning System
IT Intrusion Detection
SJB Smart Junction Box
SBC Seat Belt Control
ACM Audio Control Module
FDIM Front Display Module
TCU Telematics Control Unit
OBD-II On-board Diagnostic System II

 The four master ECUs are connected to the Super Master
ECU. The SMECU is the heart of the security architecture. It
is the only component connected to the outside word through
the security architecture for manufacturer-vehicle
communication, which secures various areas, such as
Firmware On-The-Air (FOTA), Software On-The-Air
(SOTA), and on-board diagnostics. Therefore, SMECU will

ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 31

be protected by that security architecture, which is beyond the
scope of this paper.
 The SMECU manages the security of the four MECUs.
When a message is broadcasted, it will not reach all the ECUs
as shown in Figure 1 above. Only the MECU that controls the
broadcasting ECU and the ECUs of the same group will
receive it. The MECU of that group will then forward it to the
SMECU. To broadcast to the ECUs of the other groups, the
SMECU will decide which MECU will receive this message,
by checking the message ID. Once received by the MECU, it
will broadcast it to its members. By observing the message
ID, the individual ECUs will decide to either ignore the
message or act upon it. The security approach adopted by the
proposed architecture does not allow any direct
communication between the MECUs. This will prevent
threats to the ECUs of one group from propagating to the
ECUs of other groups.
 The Super Master ECU manages key creation and
distribution for the four MECUs. The individual MECUs
manage key creation and distribution for their members
(ECUs). The broadcasted messages are short. This implies
that public key cryptology is appropriate here. However, the
symmetric key cryptology can also be used.

Figure 2. The Proposed Security Architecture

III. ECUS SECURITY
 Due to bus frame limitation, an ECU message (payload) will
be broken down into three messages. Each frame will contain
the ECU ID, ECUID, Message ID, MSGID, and the Message,
MSG. Messages not exceeding the size of the framework will
be sent in one communication. To facilitate following the
security protocols, Table 2 provides the protocol notations.

A. Initialization
 All nodes will have their initial public and private keys pre-
installed at manufacturing time. In addition, each MECU will

have the public keys and IDs of its members and its members
will have their MECU’s public key and ID pre-installed.
Further pre-installation include a shared secret value Si
between MECU i and its members, and a shared secret value
Vj between each MECU and the Super MECU. Finally, the
public keys and IDs of the four MECUs will be pre-stored at
the SMECU’s memory and the public key and ID of SMECU
will be stored in each of the four MECUs.

TABLE II PROTOCOL NOTATIONS

Symbol Meaning

MSG Message
SMECU Super Master ECU
MECUi, i= 1- 4 Master ECU i

ECUij ECU j of MECU i
PUECU, PRECU Public & private key of ECU
PUMECU, PRMECU Public & private key of MECU
PUSMECU, PRSMECU Public & private key of SMECU
IDECU ID of ECU
IDMECU ID of MECU
IDSMECU ID of SMECU
Si Secret value shared between MECU i & its ECUs

Vj Secret value shared between MECU j & SMECU
KECU Key shared between ECU and MECU
KMECU Key shared between MECU and SMECU
KMECU MAC Key shared between ECU and MECU
KMMECU MAC Key shared between MECU and SMECU
C(KMECU, MSG) MAC function for ECU and MECU
C(KMMECU, MSG) MAC function for MECU and SMECU
T Time stamp
-O Used after a subscript to indicate old
-N Used after a subscript to indicate new
Kij Symmetric key shared between MECUi and ECUj

Ki Symmetric key shared between MECUi & SMECU

Gi Group key shared between MECUi and its ECUs
H(X) Hash code of X
SIG(X) Signature of X
NX Private key of X in Elliptic Curve Cryptology
PX Public key of X in Elliptic Curve Cryptology

B. Keys Generation and Distribution

 The pre-installed keys will be used once to distribute the
newly created keys and then ignored. Each ECU will create
its own public and private keys. The MECUs and the SMECU
will also create their public and private keys.
 Each ECU will send its public key to its MECU. The new
public key, PUECU-N, will be encrypted by the current public
key of the MECU, PUMECU, and then by the old private key of
the ECU, PRECU-O. In other words, the encrypted new public
key is signed before sending it to MECU:

ECU à MECU: E[PRECU-O, E(PUMECU, PUECU-N)].

 Note that here only one message is needed. After carrying
out the needed decryptions, the MECU will capture the new
public key and store it.

ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 32

 The MECU will use a similar approach and send the
encrypted and signed new key to the ECUs belonging to it.
MECU à ECU: E[PRMECU-O, E(PUECU, PUMECU-N)].

 Each MECU sends its new public key to SMECU, and the
SMECU will provide its new public key to the four MECUs
after receiving theirs following the above style

MECU à SMECU: E[PRMECU-O, E(PUSMECU, PUMECU-N)].
SMECU à MECU: E[PRSMECU-O, E(PUMECU, PUSMECU-N)].

 Having done that, all the old public and private keys are
discarded. This approach is also used when the keys need to
be changed periodically or when needed.

C. Secret Value Generation and Exchange

 The new shared secret value, Si, between MECUi and its
ECUs is generated as follows:

1) Zero the odd bits of Si to get S’i
2) Select an ECUj at random to get its ID, IDj
3) Compute X = S’i XOR IDj
4) Encrypt X with the public key of MECUi to get Y,

Y = E(PUMECUi , X)
5) Zero the even bits of Y to get Z
6) Select an ECUj at random to get its public key,

PUECUj
7) Encrypt Z with this public key to get the new Si,

Si-N = E(PUECUj , Z)

 The same algorithm is used for generating the shared secret
value, Vj, between MECU j and the SMECU after replacing
ECU with MECU, and MECU with SMECU.

D. ECU’s Public Key and ID Exchange

 Each MECU is in charge of ensuring its members have the
public keys and IDs of all other members. The MECU will
send messages containing the public key, ID, and time stamp
to each ECU. The messages are encrypted with the private
key of the MECU and then with the public key of the ECU in
question. For example, MECU4 will send the following two
messages to ECU4s (refer to Figure 2 above):

X1 = E(PRMECU4, PUECU41 || IDECU41 || T)
X2 = E(PRMECU4, PUECU42 || IDECU42 || T)
MECU4 à ECU4s: E[PUECU4s, X1)
MECU4 à ECU4s: E[PUECU4s, X2)

 An alternative would be to have the MECU issue
certificates. However, certificates will require more
communication traffic in this case.

E. Securing ECU Messages

 An ECU message, MSG, includes the payload, ECU ID and
message ID (MSG = Payload || IDECU || IDMSG). There are
other contents that fulfill other ECU or bus requirements.
However, these will not be included in the security protocol.
The broadcasting ECU carries out the following:

1) Encrypt MSG with its private key
2) Calculate the cryptographic hash for MSG || Si,

H(MSG || Si)
3) Sign the cryptographic hash using an agreed upon

digital signature algorithm. This signature will be
denoted by SIG [H(MSG || Si)]

 It then broadcasts the following three protocol messages
to its MECU and members of its group:

M1 = E (PRECUij, MSG || T]
M2 = E (PRECUij, H(MSG || Si) || T]
M3 = E (PRECUij, SIG [H(MSG || Si)] || T]

ECUij à X: M1
ECUij à X: M2
ECUij à X: M3

 Here X is used to denote other ECUs in the group and
MECUi. The second and third protocol messages need to be
padded to make them the same length as the first message.
 Upon receiving these messages, the MECUi will broadcast a
message to its members indicating which ECU broadcasted
the message. The message contains the ID of the broadcasting
ECU. This will allow the ECUs to use the right public key to
decrypt each message. Assuming ECU11 from the group
controlled by MECU1 is broadcasting, MECU1 broadcasts the
following message:

MECU1 à ECU1j: E (PRMECU1, IDECU11 || T).

 At this point, each ECU is ready to decrypt the first message
with the public key of the sender to get the message, MSG. It
then checks the message ID, IDMSG, to see if it needs to do
anything. If the message does not concern it, there is no need
to decrypt the other two messages. Otherwise, the receiving
ECU calculates the hash of MSG || Si and compares it to the
received hash code in message two. Then, the signature
received in message three is verified. If either the hash code
or the signature cannot be verified, the message is ignored and
MECUi is informed. This could imply a hardware or software
issue at the sender site, or a possible attack.

 MECUi will recover MSG from message M1, encrypt it first
with its private key and then with the public key of SMECU.
It then computes the hash of the message and Vj (H(MSG ||
Vj), and signs the resulting hash code.

ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 33

 The resulting messages will be sent to SMECU. The
SMECU will perform the needed decryptions, and
verifications of the hash code and signature. Based on
message ID, IDMSG, SMECU will make the decision on which
MECUs should receive it. A similar approach will be used to
create three different messages for each MECU that needs this
MSG. Once these messages are received by the MECU and
MSG is recovered, the MECU will broadcast the received
message to its ECUs.

F. Fulfilling Security Requirements

 Most of the sent messages are encrypted with the public
key of the receiver. This ensures confidentiality because no
one can decrypt the message but the one who owns the
related private key. When a message is broadcasted, it
cannot be encrypted by the public key of the receiver due to
the fact that a number of simultaneous receivers exist.
However, encrypting it with the private key of the sender will
ensure only the members of the group can decrypt. It could
be argued here that the message is confidential for other
members of the group because only those members know the
public key of the sender.
 To ensure message integrity, all the messages have their
hash code added. Furthermore, the hash code is signed with
the private key of the sender. The receiver can verify the
integrity of the received message by calculating the hash
code and comparing the two hash codes. If there is a
mismatch, the message has been modified.

 To ensure that parties (ECUs, MECUs, and SMECU) are
communicating with the right parties, the messages are
encrypted with the private key of the sender. In addition the
hash code also serves as the authenticator.

IV. OTHER POSSIBLE SECURITY APPROACHES

A. Using Symmetric Keys

Symmetric key cryptology can also be used to secure the
proposed security architecture. The initialization step will be
the same as for the public key cryptology. The public and
private keys are removed, and symmetric keys Kij are shared
between the MECUs and ECUs. Furthermore, symmetric
keys Ki are shared between MECUs and SMECU. Each
MECUi creates a group key, Gi to be shared with its ECUs.
The SMECU generates four session keys and shares a unique
one with each MECU. Encryption with symmetric key
provides confidentiality and authentication. The three
messages above will be re-written as:

M1 = E (Kij, MSG || T]

M2 = E (Kij, H(MSG || Si) || T]

M3 = E (Kij, SIG [H(MSG || Si)] || T]

B. Utilizing Elliptic Curve Cryptology
 Elliptic curve cryptology (ECC) is also effective in securing
the above-mentioned architecture. The initialization will
include pre-installing the global public elements Eq(a, b), G,
and n. Here, Eq(a, b) is an elliptic curve with parameters a and
b, q is a prime integer, G is a point on the elliptic curve whose
order is a large value n.
 Each group including the MECU and its ECU members will
create their private keys, NX, and calculate their public keys,
PX, where X indicates any ECU, or MECU. To illustrate this,
the group of MECU1 (refer to Figure 2 above) is selected. The
following procedure is used:
1. MECU1 selects its private key N1 and calculates its public

key P1, P1 = N1 x G
2. ECU11 selects its private key N11 and calculates its public

key P11, P11 = N11 x G
3. ECU12 selects its private key N12 and calculates its public

key P12, P12 = N12 x G
4. ECU1n selects its private key N1n and calculates its public

key P1n, P1n = N1n x G
5. The MECU and ECUs broadcast their public keys.

Therefore, each one of them will have all the public keys:
P1, P11, P12, and P1n.

6. The messages M1, M2, and M3 will be represented as
points on the curve Eq(a, b) when broadcasted.

7. The MECU will send the ID of the broadcasting ECU to
allow the ECUs to use the right public keys.

 The same procedure of generating and exchanging keys
applies to MECUs and the SMECU but without the
broadcasting of step 5. Instead the SMECU and each MECU
will exchange their public keys. At the end, each MECU will
have the public of the SMECU only, but the SMECU will
receive the public key of the four MECUs. Step 7 will be
deleted, as there is no broadcasting between the MECUs and
the SMECU.
 With elliptic curve cryptology, only the signature will be
used. No hash code or message authentication code will be
employed.

C. Employing Stream Cipher
 Another approach would be using One-Time Pad (OTP).
The keystream S = {S0, S1… Sn} will be generated using a
True Random Number Generator (TRNG), such as Intel
Digital Random Number Generator (DRNG) [20], or the full-
hardware implementation of a true number generator
suggested by Schaumont [21]. For this purpose, the MECUs
and the SMECU should encompass the hardware needed for
generating true random numbers. Initially, all the shared key
streams need to be pre-installed at manufacturing time.
 The SMECU will create four different keystream using the
installed hardware for TRNG, one for each MECU. The
generated keystream will be encrypted with the old keystream
(initially, the pre-installed one and later the current one)
shared with each MECU and sent to MECUs. Likewise, each
MECU creates a keystream using its TRNG hardware,
encrypts it with the old keystream and send it to its members

ICNS 2016 : The Twelfth International Conference on Networking and Services

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-482-4 34

(ECUs). Once these keystreams are established, the pre-
installed ones are discarded.
 To broadcast a message, that message should be encrypted
with the keystream prior to broadcasting it. If the bus frame is
full, another a frame will be used to transmit what is left of the
message. The MECU in charge of the broadcasting ECU will
forward it to the SMECU encrypted with the shared
keystream. Once received by SMECU, it will be analyzed and
sent to the MECUs that need the broadcasted message for their
members (ECUs). Once the decryptions are performed, all
used keystreams will be discarded and new keystreams will be
generated.

V. CONCLUSION AND FUTURE WORK

 The Electronic Control Units (ECUs) play a critical role in
controlling many of the functions of current day’s vehicles.
Because these ECUs are part of the in-vehicle networks, the
possibility of security attacks is inevitable. To protect the
vehicle ECUs against various network attacks, a security
architecture based on the notion of master and super master
ECUs to ensure ECUs’ secure message broadcasting was
proposed. This architecture was implemented using public
key cryptology. The master and super master ECUs also
simulated the role of a Key Distribution Center (KDC)
through being in charge of generating keys for the units under
their control. The super master ECU controlled the
broadcasting of ECUs’ messages from one group of ECUs to
the other groups. Furthermore, the paper showed that other
security approaches are reasonable. To this extent, symmetric
key cryptology, Elliptic Curve Cryptology, and stream ciphers
were investigated.

 Future work will concentrate on the implementation phase.
During this phase, the optimal grouping of ECUs will be
determined. A comparison of the four approaches; public key
cryptology, symmetric key cryptology, stream ciphers, and
Elliptic Curve cryptology will be carried out to select the most
suitable approach for securing the ECUs. Furthermore, the
most convenient algorithm that takes into consideration the
computing resources limitations of the ECUs will be adopted.

REFERENCES
[1] CCS, “Electronic Control Units (ECUS),” 2014, http://www.ccs-

labs.org/teaching/c2x/2014s/05-ecus.pdf, pp. 1-27, [retrieved: April
2016].

[2] L. Delgrossi, “The Future of the Automobile Vehicle Safety
Communications,” 2014,
https://cache.freescale.com/files/automotive/doc/white_paper/BODYDE
LECTRWP.pdf, [retrieved: April 2016].

[3] ETAS GmbH, “Electronic Control Unit (ECU) – Basics of Automative
ECU,” 2014, http://www.scribd.com/doc/268828296/20140121-ETAS-
Webinar-ECU-Basics#scribd, pp. 1-30, [retrieved: April 2016].

[4] Freescale, “Future advances in Body Electronics”
https://cache.freescale.com/files/automotive/doc/white_paper/BODYDE
LECTRWP.pdf, 2013, pp. 1-18, [retrieved: April 2016].

[5] Freescale, “In-Vehicle Networking,”
https://cache.freescale.com/files/microcontrollers/doc/brochure/BRINV
EHICLENET.pdf, 2006, pp. 1-11, [retrieved: April 2016].

[6] National Instruments, “ECU Designing and Testing Using National
Instruments Products,” http://www.ni.com/white-paper/3312/en, 2009,
[retrieved: April 2016].

[7] On Semiconductor, “Basics of In-Vehicle Neworking (INV) Protocols,”
http://www.onsemi.com/pub_link/Collateral/TND6015-D.PDF, pp. 1-
27, [retrieved: April 2016].

[8] S. Seo, J. Kim, S. Hwang, K. Kwon, and J. Jeon, “A Reliable Gatway
for In-Vehicle Networks Based on LIN, CAN, and FlexRay,” ACM
Transcation on Embedded Computing Systems, vol. 4, no. 1, Article 7,
2012, pp. 1-24.

[9] T. Tomonari, “EMC Countermeasures for In-Vehicle Communication
Networks,” TDK Corporation,
https://product.tdk.com/en/products/emc/guidebook/eemc_practice_09.p
df, pp. 1-7, [retrieved: April 2016].

[10] P. Nisch, “Security Issues in Modern Automative Systems,” 2012, pp. 1-
7, http://www.panisch.com/wp-
content/uploads/2012/06/Security_Issues_in_Modern_Automotive_Cars
.pdf, [retrieved: April 2016].

[11] L. B. Othmane, H. Weffers, M. M. Mohamad, and M. Wolf, “A Survey
of Security and Privacy in Connected Vehicles,” in Wireless Sensor and
Mobile Ad Hoc Networks, Part III, Springer, New York, 2015, pp. 217-
247.

[12] S. Mahmud and S. Shanker, “In-Vehicle Secure Wireless Personal Area
Network (SWPAN),” IEEE Transcations on Vehicular Technology, vol.
55, no. 3, 2006, pp. 1051-1061.

[13] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. Mccoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in Proc.
IEEE Symposium on Security and Privacy (SP), Oakland, CA, USA,
2010, pp. 447–462.

[14] C. Lin and A. Sangiovanni-Vincentelli, “Cyber-Security for the
Controller Area Network (CAN) Communication Protocol,” in Proc.
International Conference on Cyber Security, Washington, DC, USA,
2012, pp. 1-7.

[15] K. Han, S. D. Potluri, and K. Shin, “On Authentication in a Connected
Vehicle: Secure Integration of Mobile Devices with Vehicular
Networks,” in Proc. the 2013 ACM/IEEE 4th International Conference
on Cyber-Physical Systems (ICCP’13), Philadephia, PA, USA, 2013,
pp. 160-169.

[16] C. Patsakis, K. Dellios, and M. Bouroche, “Towards a Distributed
Secure In-Vehicle Communication Architecture for Modern Vehicles,”
Computers and Security, vol. 40, 2014, pp. 60-74.

[17] Continental Automotive GmbH, “Electronic Vehicle Management -
New Options for Commercial Vehicle Controllers,”
http://www.continental-
automotive.cn/www/download/automotive_cn_cn/general/contact_servi
ces/downloads/commercial_vehicles/flc_vcu_cvam_en.pdf, [retrieved:
April 2016].

[18] D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ECU
Classification Based on Safety-Security Characteristics,” in Proc. the
13th International Conference on Road Tarnsport Information and
Control (RTIC’08), Manchester, England, UK, 2008, pp. 1-7.

[19] K. Y. Cho, C. H. Bae, Y. Chu, M. and W. Suh, “Overview of Telmatics:
A System Architecture Approach,” International Journal of Automative
Technology, vol. 7, no. 4, 2006, pp. 509-517.

[20] Intel Digital Random Number Generator (DRNG), May 15, 2015,
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Soft
ware_Implementation_Guide_2.0.pdf, [retrieved: April 16].

[21] S. Schaumont, “True random Number Generation,” Circuit Cellar, No.
268, 2012, pp. 52-58.

