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Abstract— Electronic Control Units (ECUs) are essential for 

controlling many functions and systems in current and future 
vehicles.  Modern vehicles incorporate over seventy ECUs.  
Those ECUs are vulnerable to security attacks. A number of 
these attacks can be fatal and can result in casualties.  
Undoubtedly, there is a critical need for protecting the ECUs 
infrastructure.  This paper proposes an approach to secure 
vehicle’s ECUs based on a grouping principle. Four groups are 
introduced.  Each group is controlled by a Master ECU, and the 
Master ECUs are controlled by a Super Master ECU.  Public key 
cryptology is adopted.  Furthermore, the possibility of applying 
symmetric key cryptology, Elliptic Curve Cryptology (ECC), and 
One-Time Pad are investigated. 
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I. INTRODUCTION 

   Modern vehicles deploy a number of busses in their 
networks.  Among these are the Local Interconnect Network 
(LIN), Controller Area Network (CAN), Media-Oriented 
System Transport (MOST), and FlexRay.  LIN is used for the 
lowest data-rate functions, such as door locks, climate control, 
and mirror control.  CAN is suitable for medium speed 
applications including body systems, engine management, and 
transmission.   MOST lends itself to the high-speed data rates, 
and therefore, it is convenient for multimedia and 
entertainment.   Finally, the FlexRay is suitable for safety-
critical applications, such as steer-by-wire, stability control, 
and brake-by-wire.  Connected to these buses are various 
Electronic Control Units (ECUs).  ECUs are embedded 
systems controlling one or more of the vehicle’s systems and 
subsystems. They play a crucial role in controlling many 
functions in vehicles.  ECUs are made up of both hardware 
and firmware.  They are named and differentiated based on 
what they are used for.  For example, the Engine Control 
Module (ECM) controls various engine functions such as fuel 
injection, ignition timing and idle speed control system, the 
Electronic Brake Control Module (EBCM) is used in the anti-
lock braking system (ABS), and the Powertrain Control 
Module (PCM) monitors and controls speed control, A/C, and 
automatic transmission [1]-[9].  It is critical to protect these 
ECUs for proper functioning of the vehicle and for safety 
purposes.  
   Nish [10] introduced a number of security issues in modern 
automotive systems.  The communication of Tire Pressure 
Monitoring System (TPMS) with its sensor is unsecure and 

missing encryption and signature in the data protocol.  As a 
result, the tire pressure warning lights can be turned on and off 
causing the driver to worry about the tire pressure when there 
is nothing wrong with it.  Another issue regards the keyless 
entry systems.  The passive keyless entry in modern cars can 
be subject to relay attack by intercepting and relaying the 
radio signal from the smart keys to the cars.  The attackers can 
break into and steal the valuables left in the vehicle.  Further 
issue that has a safety nature involves the On-Board 
Diagnostic port (OBD-II).  This interface provides direct 
access to the vehicle for diagnosing and updating the firmware 
of ECUs.  By connecting to this port through a USB or WiFi, 
some software on the attacking computer can re-program the 
ECUs causing considerable and possibly fatal damage. 
   Othmane, Weffers, Mohamad, and Wolf [11] proposed a 
taxonomy for vehicle security and privacy aspects.  They 
stressed the security of communication links, data validity, 
devices security, identity, and access control.  They attempted 
to provide an initial repository of threats to vehicle network.  
Security threats and the possibility of attacks can arise when 
drivers try to control the lights, windshields, wipers, air flow 
and the heater of their vehicles through Bluetooth or exercise 
remote starting or unlock doors using their PDA [12].  Any 
attack on the Bluetooth or the PDA will impact security of the 
vehicle and drivers safety.  A vehicle’s ECUs communicate 
through the in-vehicle network and it communicates with 
Service Providers through cellular network [13].  All the 
possible attacks on cellular networks will find their way to the 
vehicle and can impact the ECUs. 
   A  security approach to protect the CAN protocol from 
masquerade and replay attacks was proposed by Lin and 
Sangiovanni-Vincentelli [14]. They provided a software-only 
solution with no additional hardware needed. The focus was 
on run-time authentication after ignition key i s  t u r n e d  o n  
and the security secret keys have been distributed to the 
ECUs.   Han, Potluri, and Shin [15] introduced a security 
architecture to deal with the potential security attacks 
infiltrated by mobile devices, such as smart phones and 
tablets, interfacing with the vehicle to send/receive 
information to/from the vehicle.  Three parties were adopted, 
the user device, the gateway, and the ECUs.  Patsakis, Dellios, 
and Bouroche [16] stressed that the standards for in-vehicle 
security are distant from deploying long-established security 
policies and procedures.  They analyzed the current auto 
industry policies and procedures with regards to security, and 
highlighted a number of vulnerabilities.  In an attempt to 
overcome these vulnerabilities, they introduced a security 
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architecture to support mutual authentications of ECUs and 
various access rights for users. 
   Several attempts have focused on grouping ECUs for 
various purposes.  In one of these attempts, ECUs were 
divided into four groups; Powertrain Master Control Unit, 
Chassis Master Control Unit, Cabin Master Control Unit, and 
Infotainment Master Control Unit [17]. Nilsson, Phung, and 
Larson [18] indicated five categories: Powertrain, Vehicle 
Safety, Comfort, Infotainment, and Telematics.  The groups; 
Comfort Systems, Body Control, Real Time Systems, and 
Safety-Critical systems were suggested by Seo, Kim, Hwang, 
Kwon, and Jeon [8].  Powertrain Gateway, Body and Comfort 
Gateway, Chassis Gateway, and Infotainment Gateway were 
advocated in [4].  ECUs were also grouped as Powertrain, 
Safety, Comfort, and Infotainment and Telematics [2].  A 
further approach adopted by Cho, Bae, Chu, and Suh [19] 
proposed User-Friendly Diagnostic Unit, Engine-
Transmission-Chassis-Body Unit, Safety Unit, and 
Telematics-Information-Entertainment Unit. 
   This paper proposes a security architecture for secure 
transmission of ECUs’ messages.  The ECUs are divided 
among four groups.  Each group is controlled by a Master 
ECU (MECU).  The resulting four MECUs are supervised by 
the Super Master ECU (SMECU).  Public Key cryptology is 
adopted.  Furthermore, the paper investigates the possibility of 
applying symmetric key cryptology, Elliptic Curve 
Cryptology, and stream ciphers.  The security requirements 
are examined.  The remainder of the paper is organized as 
follows: Section II introduces the proposed security 
architecture.  Securing the ECUs using public key cryptology 
is dealt with in section III.  Other possible approaches for 
securing a vehicle’s ECUs are briefly introduced in section IV.  
These include symmetric key cryptology, Elliptic Curve 
Cryptology and stream ciphers. Finally, the paper is concluded 
in section V. 

II. PROPOSED SECURITY ARCHITECTURE 
   In in-vehicle network, buses have ECUs connected to them.  
Three busses are shown in Figure 1 above; high speed CAN 
(CAN-HS), medium speed CAN (CAN_MS) and a LIN bus. 
To these buses various ECUs are connected.  ECUs broadcast 
messages.  In other words, messages are received by all ECUs, 
but only acted upon if the message concerns the receiving 
ECU.  The Body Control Module (BCM) and the Instrument 
Cluster (IC) are connect to both buses; CAN-MS and CAN-
HS.  These will act as gateways to gate the messages received 
from one bus to the ECUs connected to the other bus. Table 1 
provides the notations used in the hypothetical in-vehicle 
network. 

   The security architecture used in this paper is based on the 
principle of grouping ECUs.  The grouping could be based on 
any subdivision approach.  For example, ECUs may be 
grouped based on their location, functionality, or 
collaboration.  The number of groups is not limited.  In Figure 
2 below, the ECUs are distributed among four groups of 
Master ECUs, MECU1, MECU2, MECU3, and MECU4.  A 
number of ECUs are attached to each Master ECU.  MECUs 

do not necessarily contain the same number of ECUs.  For this 
reason, the subscript of the last ECU in each group has 
different letters.  In other words, the use of one subscript letter 
was avoided to indicate possibly different number of ECUs.  
There is no direct connection between the ECUs of each group 
with the other groups. 
 

 
 

Figure 1. Hypothetical In-Vehicle Network 
 

TABLE I 
NOTATIONS USED IN IN-VEHICLE NETWORK 

Symbol Role 

ECM Engine Control Module 
PCM Powertrain Control Module 
TCM Transmission Control Module 
ACC Adaptive Cruise Control 
PAM Parking Aid Module 
ESC Electronic Stability Control 
BCD Blind Spot Detective 
ABS Anti-Lock Brake System Module 
IC Instrument Cluster 
BCM Body Control Module 
HVAC Heat, Ventilation, and Air Conditioning System 
IT Intrusion Detection 
SJB Smart Junction Box 
SBC Seat Belt Control 
ACM Audio Control Module 
FDIM Front Display Module 
TCU Telematics Control Unit 
OBD-II On-board Diagnostic System II 
  

 

   The four master ECUs are connected to the Super Master 
ECU.  The SMECU is the heart of the security architecture.  It 
is the only component connected to the outside word through 
the security architecture for manufacturer-vehicle 
communication, which secures various areas, such as 
Firmware On-The-Air (FOTA), Software On-The-Air 
(SOTA), and on-board diagnostics.  Therefore, SMECU will 
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be protected by that security architecture, which is beyond the 
scope of this paper. 
   The SMECU manages the security of the four MECUs.  
When a message is broadcasted, it will not reach all the ECUs 
as shown in Figure 1 above. Only the MECU that controls the 
broadcasting ECU and the ECUs of the same group will 
receive it.  The MECU of that group will then forward it to the 
SMECU.  To broadcast to the ECUs of the other groups, the 
SMECU will decide which MECU will receive this message, 
by checking the message ID.  Once received by the MECU, it 
will broadcast it to its members.  By observing the message 
ID, the individual ECUs will decide to either ignore the 
message or act upon it.  The security approach adopted by the 
proposed architecture does not allow any direct 
communication between the MECUs.  This will prevent 
threats to the ECUs of one group from propagating to the 
ECUs of other groups. 
   The Super Master ECU manages key creation and 
distribution for the four MECUs.  The individual MECUs 
manage key creation and distribution for their members 
(ECUs). The broadcasted messages are short.  This implies 
that public key cryptology is appropriate here.  However, the 
symmetric key cryptology can also be used. 
 

 
Figure 2. The Proposed Security Architecture 

III. ECUS SECURITY 
   Due to bus frame limitation, an ECU message (payload) will 
be broken down into three messages.  Each frame will contain 
the ECU ID, ECUID, Message ID, MSGID, and the Message, 
MSG. Messages not exceeding the size of the framework will 
be sent in one communication. To facilitate following the 
security protocols, Table 2 provides the protocol notations. 

A. Initialization 
   All nodes will have their initial public and private keys pre-
installed at manufacturing time.  In addition, each MECU will 

have the public keys and IDs of its members and its members 
will have their MECU’s public key and ID pre-installed.  
Further pre-installation include a shared secret value Si 
between MECU i and its members, and a shared secret value 
Vj between each MECU and the Super MECU.  Finally, the 
public keys and IDs of the four MECUs will be pre-stored at 
the SMECU’s memory and the public key and ID of SMECU 
will be stored in each of the four MECUs. 
 
 

TABLE II PROTOCOL NOTATIONS 

Symbol Meaning 

MSG Message 
SMECU Super Master ECU 
MECUi, i= 1- 4 Master ECU i 

ECUij ECU j of MECU i 
PUECU, PRECU Public & private key of ECU 
PUMECU, PRMECU Public & private key of MECU 
PUSMECU, PRSMECU Public & private key of SMECU 
IDECU ID of ECU 
IDMECU ID of MECU 
IDSMECU ID of SMECU 
Si Secret value shared between MECU i & its ECUs 

Vj Secret value shared between MECU j & SMECU 
KECU Key shared between ECU and MECU 
KMECU Key shared between MECU and SMECU 
KMECU MAC Key shared between ECU and MECU 
KMMECU MAC Key shared between MECU and SMECU 
C(KMECU, MSG) MAC function for ECU and MECU 
C(KMMECU, MSG) MAC function for MECU and SMECU 
T Time stamp 
-O Used after a subscript to indicate old 
-N Used after a subscript to indicate new 
Kij Symmetric key shared between MECUi and ECUj 

Ki Symmetric key shared between MECUi & SMECU 

Gi Group key shared between MECUi and its ECUs 
H(X) Hash code of X 
SIG(X) Signature of X 
NX Private key of X in Elliptic Curve Cryptology 
PX Public key of X in Elliptic Curve Cryptology 
  

 

B. Keys Generation and Distribution 
 
   The pre-installed keys will be used once to distribute the 
newly created keys and then ignored.  Each ECU will create 
its own public and private keys.  The MECUs and the SMECU 
will also create their public and private keys. 
   Each ECU will send its public key to its MECU.  The new 
public key, PUECU-N, will be encrypted by the current public 
key of the MECU, PUMECU, and then by the old private key of 
the ECU, PRECU-O.  In other words, the encrypted new public 
key is signed before sending it to MECU: 
 
ECU à MECU: E[PRECU-O, E(PUMECU, PUECU-N)]. 
 
   Note that here only one message is needed.  After carrying 
out the needed decryptions, the MECU will capture the new 
public key and store it. 
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   The MECU will use a similar approach and send the 
encrypted and signed new key to the ECUs belonging to it. 
MECU à ECU: E[PRMECU-O, E(PUECU, PUMECU-N)]. 
 
   Each MECU sends its new public key to SMECU, and the 
SMECU will provide its new public key to the four MECUs 
after receiving theirs following the above style 
 
MECU à SMECU: E[PRMECU-O, E(PUSMECU, PUMECU-N)]. 
SMECU à MECU: E[PRSMECU-O, E(PUMECU, PUSMECU-N)]. 
 
   Having done that, all the old public and private keys are 
discarded.  This approach is also used when the keys need to 
be changed periodically or when needed. 

 

C. Secret Value Generation and Exchange 
 
   The new shared secret value, Si, between MECUi and its 
ECUs is generated as follows: 
 

1) Zero the odd bits of Si to get S’i 
2) Select an ECUj at random to get its ID, IDj 
3) Compute X = S’i XOR IDj 
4) Encrypt X with the public key of MECUi to get Y,  

Y = E(PUMECUi , X) 
5) Zero the even bits of Y to get Z 
6) Select an ECUj at random to get its public key, 

PUECUj 
7) Encrypt Z with this public key to get the new Si,  

Si-N = E(PUECUj , Z) 
    
   The same algorithm is used for generating the shared secret 
value, Vj, between MECU j and the SMECU after replacing 
ECU with MECU, and MECU with SMECU. 

 

D. ECU’s Public Key and ID Exchange 
 

   Each MECU is in charge of ensuring its members have the 
public keys and IDs of all other members.  The MECU will 
send messages containing the public key, ID, and time stamp 
to each ECU.  The messages are encrypted with the private 
key of the MECU and then with the public key of the ECU in 
question.  For example, MECU4 will send the following two 
messages to ECU4s (refer to Figure 2 above): 

 
X1 = E(PRMECU4, PUECU41 || IDECU41 || T) 
X2 = E(PRMECU4, PUECU42 || IDECU42 || T) 
MECU4 à ECU4s: E[PUECU4s, X1) 
MECU4 à ECU4s: E[PUECU4s, X2) 

 
   An alternative would be to have the MECU issue 
certificates.  However, certificates will require more 
communication traffic in this case. 
 

E. Securing ECU Messages 
 

   An ECU message, MSG, includes the payload, ECU ID and 
message ID (MSG = Payload || IDECU || IDMSG).  There are 
other contents that fulfill other ECU or bus requirements.  
However, these will not be included in the security protocol.  
The broadcasting ECU carries out the following: 

 
1) Encrypt MSG with its private key 
2) Calculate the cryptographic hash for MSG || Si, 

H(MSG || Si) 
3) Sign the cryptographic hash using an agreed upon 

digital signature algorithm.  This signature will be 
denoted by SIG [H(MSG || Si)] 
 

   It then broadcasts the following three protocol messages 
to its MECU and members of its group: 
 
M1 = E (PRECUij, MSG || T] 
M2 = E (PRECUij, H(MSG || Si) || T] 
M3 = E (PRECUij, SIG [H(MSG || Si)] || T] 
 
ECUij à X: M1 
ECUij à X: M2 
ECUij à X: M3 

   Here X is used to denote other ECUs in the group and 
MECUi.  The second and third protocol messages need to be 
padded to make them the same length as the first message.  
   Upon receiving these messages, the MECUi will broadcast a 
message to its members indicating which ECU broadcasted 
the message.  The message contains the ID of the broadcasting 
ECU. This will allow the ECUs to use the right public key to 
decrypt each message.  Assuming ECU11 from the group 
controlled by MECU1 is broadcasting, MECU1 broadcasts the 
following message: 

 
MECU1 à ECU1j: E (PRMECU1, IDECU11 || T). 
 

   At this point, each ECU is ready to decrypt the first message 
with the public key of the sender to get the message, MSG.  It 
then checks the message ID, IDMSG, to see if it needs to do 
anything.  If the message does not concern it, there is no need 
to decrypt the other two messages.  Otherwise, the receiving 
ECU calculates the hash of MSG || Si and compares it to the 
received hash code in message two.  Then, the signature 
received in message three is verified.  If either the hash code 
or the signature cannot be verified, the message is ignored and 
MECUi is informed.  This could imply a hardware or software 
issue at the sender site, or a possible attack. 

   MECUi will recover MSG from message M1, encrypt it first 
with its private key and then with the public key of SMECU.  
It then computes the hash of the message and Vj (H(MSG || 
Vj), and signs the resulting hash code.   
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   The resulting messages will be sent to SMECU.  The 
SMECU will perform the needed decryptions, and 
verifications of the hash code and signature.  Based on 
message ID, IDMSG, SMECU will make the decision on which 
MECUs should receive it.  A similar approach will be used to 
create three different messages for each MECU that needs this 
MSG.  Once these messages are received by the MECU and 
MSG is recovered, the MECU will broadcast the received 
message to its ECUs. 
 

F. Fulfilling Security Requirements 
 
   Most of the sent messages are encrypted with the public 
key of the receiver.  This ensures confidentiality because no 
one can decrypt the message but the one who owns the 
related private key.  When a message is broadcasted, it 
cannot be encrypted by the public key of the receiver due to 
the fact that a number of simultaneous receivers exist.  
However, encrypting it with the private key of the sender will 
ensure only the members of the group can decrypt.  It could 
be argued here that the message is confidential for other 
members of the group because only those members know the 
public key of the sender. 
   To ensure message integrity, all the messages have their 
hash code added.  Furthermore, the hash code is signed with 
the private key of the sender.  The receiver can verify the 
integrity of the received message by calculating the hash 
code and comparing the two hash codes.  If there is a 
mismatch, the message has been modified. 

    To ensure that parties (ECUs, MECUs, and SMECU) are 
communicating with the right parties, the messages are 
encrypted with the private key of the sender.  In addition the 
hash code also serves as the authenticator.    
   

IV. OTHER POSSIBLE SECURITY APPROACHES 
 

A. Using Symmetric Keys 
 
Symmetric key cryptology can also be used to secure the 
proposed security architecture.  The initialization step will be 
the same as for the public key cryptology.  The public and 
private keys are removed, and symmetric keys Kij are shared 
between the MECUs and ECUs.  Furthermore, symmetric 
keys Ki are shared between MECUs and SMECU.  Each 
MECUi creates a group key, Gi to be shared with its ECUs. 
The SMECU generates four session keys and shares a unique 
one with each MECU.  Encryption with symmetric key 
provides confidentiality and authentication.  The three 
messages above will be re-written as: 
 
M1 = E (Kij, MSG || T] 
 
M2 = E (Kij, H(MSG || Si) || T] 
 
M3 = E (Kij, SIG [H(MSG || Si)] || T] 

B. Utilizing Elliptic Curve Cryptology 
   Elliptic curve cryptology (ECC) is also effective in securing 
the above-mentioned architecture.  The initialization will 
include pre-installing the global public elements Eq(a, b), G, 
and n.  Here, Eq(a, b) is an elliptic curve with parameters a and 
b, q is a prime integer, G is a point on the elliptic curve whose 
order is a large value n.   
   Each group including the MECU and its ECU members will 
create their private keys, NX, and calculate their public keys, 
PX, where X indicates any ECU, or MECU.  To illustrate this, 
the group of MECU1 (refer to Figure 2 above) is selected.  The 
following procedure is used: 
1. MECU1 selects its private key N1 and calculates its public 

key P1, P1 = N1 x G 
2. ECU11 selects its private key N11 and calculates its public 

key P11, P11 = N11 x G 
3. ECU12 selects its private key N12 and calculates its public 

key P12, P12 = N12 x G 
4. ECU1n selects its private key N1n and calculates its public 

key P1n, P1n = N1n x G 
5. The MECU and ECUs broadcast their public keys.  

Therefore, each one of them will have all the public keys: 
P1, P11, P12, and P1n.  

6. The messages M1, M2, and M3 will be represented as 
points on the curve Eq(a, b) when broadcasted. 

7. The MECU will send the ID of the broadcasting ECU to 
allow the ECUs to use the right public keys. 

   The same procedure of generating and exchanging keys 
applies to MECUs and the SMECU but without the 
broadcasting of step 5.  Instead the SMECU and each MECU 
will exchange their public keys. At the end, each MECU will 
have the public of the SMECU only, but the SMECU will 
receive the public key of the four MECUs.   Step 7 will be 
deleted, as there is no broadcasting between the MECUs and 
the SMECU. 
   With elliptic curve cryptology, only the signature will be 
used.  No hash code or message authentication code will be 
employed. 

C. Employing Stream Cipher 
   Another approach would be using One-Time Pad (OTP).  
The keystream S = {S0, S1… Sn} will be generated using a 
True Random Number Generator (TRNG), such as Intel 
Digital Random Number Generator (DRNG) [20], or the full-
hardware implementation of a true number generator 
suggested by Schaumont [21].  For this purpose, the MECUs 
and the SMECU should encompass the hardware needed for 
generating true random numbers.  Initially, all the shared key 
streams need to be pre-installed at manufacturing time.  
   The SMECU will create four different keystream using the 
installed hardware for TRNG, one for each MECU.  The 
generated keystream will be encrypted with the old keystream 
(initially, the pre-installed one and later the current one) 
shared with each MECU and sent to MECUs.  Likewise, each 
MECU creates a keystream using its TRNG hardware, 
encrypts it with the old keystream and send it to its members 
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(ECUs). Once these keystreams are established, the pre-
installed ones are discarded.   
   To broadcast a message, that message should be encrypted 
with the keystream prior to broadcasting it.  If the bus frame is 
full, another a frame will be used to transmit what is left of the 
message.  The MECU in charge of the broadcasting ECU will 
forward it to the SMECU encrypted with the shared 
keystream. Once received by SMECU, it will be analyzed and 
sent to the MECUs that need the broadcasted message for their 
members (ECUs).  Once the decryptions are performed, all 
used keystreams will be discarded and new keystreams will be 
generated. 

V. CONCLUSION AND FUTURE WORK 

   The Electronic Control Units (ECUs) play a critical role in 
controlling many of the functions of current day’s vehicles. 
Because these ECUs are part of the in-vehicle networks, the 
possibility of security attacks is inevitable.  To protect the 
vehicle ECUs against various network attacks, a security 
architecture based on the notion of master and super master 
ECUs to ensure ECUs’ secure message broadcasting was 
proposed.  This architecture was implemented using public 
key cryptology.  The master and super master ECUs also 
simulated the role of a Key Distribution Center (KDC) 
through being in charge of generating keys for the units under 
their control. The super master ECU controlled the 
broadcasting of ECUs’ messages from one group of ECUs to 
the other groups.  Furthermore, the paper showed that other 
security approaches are reasonable.  To this extent, symmetric 
key cryptology, Elliptic Curve Cryptology, and stream ciphers 
were investigated. 

   Future work will concentrate on the implementation phase.  
During this phase, the optimal grouping of ECUs will be 
determined.  A comparison of the four approaches; public key 
cryptology, symmetric key cryptology, stream ciphers, and 
Elliptic Curve cryptology will be carried out to select the most 
suitable approach for securing the ECUs.  Furthermore, the 
most convenient algorithm that takes into consideration the 
computing resources limitations of the ECUs will be adopted. 
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