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Abstract—In this paper, we present a design of data center
deployment automation system, Compass, for bootstrapping a
software defined infrastructure, including network and com-
pute nodes. Compass automates the process of bootstrapping a
Software-Defined Networking (SDN) -based network from bare-
metal networking devices and provisioning the bare-metal servers
through the SDN network in a unified management approach. The
unified and streamlined deployment management of networking
and compute resources not only reduces the initial deployment
cost, but also provides a way to automatically scale out data
center infrastructure’s capacity horizontally after the initial
infrastructure setup (e.g., adding networking and computing
resources, etc.). Using Compass, we have deployed a private cloud
in a medium scale data center with around 200 commodity servers
and over 20 SDN switches in Tsinghua University. We present
the case study in this paper to illustrate the benefits of Compass
as a unified deployment and management tool in a data center’s
software define infrastructure.
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I. INTRODUCTION

Servers and network devices (e.g., switches and routers)
are key components of the data center infrastructure. In the
past, the two parts are usually provisioned and managed by
different teams using different tool sets. This situation poses
several challenges in efficient system planning, optimization,
and debugging, and in turn incurs high operational cost and
low return on investment.

Ideally, the two parts should be treated as an integral entity.
But in reality, they are handled separately from administrative
perspective. There are also some technical reasons for this
separation. One reason is that networking devices are vertically
integrated, and the deployment procedure is handled very
differently from server management. However, we observed
several appealing trends in industry which can change the
current status quo.

First, there is a trend of “software defined everything”
movement. Server software has a long history of being ‘soft-
ware defined’. Software-Defined Networking (SDN) [1] has
prevailed not only in academic research but also in industry
adoption. Moreover, storage industry starts the ‘software de-
fined’ roadmap and practice [2], [3]. IBM coined the term
“software defined environment” to address the vision for
automatic and dynamic computing infrastructure provision [4].
The trend becomes increasingly clear as the concepts and prac-
tices such as Software-Defined Data Center (SDDC) [5] and
warehouse-scale computing [6] prevail. The entire data center
can be modeled as one big computer comprised of distributed
computing/storage nodes, which in turn are interconnected

through a network fabric comprised of switches and routers.
Another trend we see is the “open everything” movement.

Not only the entire software stack for applications [7], [8],
operating systems [9], and cloud managements [10] have been
opened up, but also the hardware itself [11]. On the one hand,
the data center building blocks are all standard-based. The
choices of both software and hardware to construct the data
center are abundant and cost efficient. On the other hand, these
choices can become overwhelming for data center operators.
The sheer scale of the open ecosystem can be daunting even
to experienced Information Technology (IT) staff. There is
apparently a lack of a capable orchestrator which can glue
every piece of the system together organically and make them
run in concert.

The interesting question we would like to answer is: Can
we consolidate the best tools and automate the deployment
of entire data center infrastructure in a seamless way? To
be specific, we assume a greenfield deployment of new data
center with pure bare-mental servers and switches. The only
need from IT staff is to physically wire the devices together
according some topology plan and then power up the data
center. What if the data center administrators manage the
modern software defined infrastructure deployment in the same
way as a Linux system admin does today with a bootloader?

Though these questions sound like system administration
related, we argue that they are critical if the industry wants
to adopt new SDN technologies. As everything is software
defined and both software and hardware are open, a ‘boot-
loader’ at data center scale is needed to deploy the software
efficiently and coherently to various commodity hardware
resource. A solution toward this will enable a unified portal
and a coherent method to configure and manage the entire data
center infrastructure, just as we do today for installing software
components and services features onto a computer.

In this paper, we present the scheme and open source tool
we developed, Compass, to enable a unified software defined
infrastructure. We also share our successful experience on
actual deployment of a data center in Tsinghua University,
which has around 200 servers and over 20 SDN switches
in the first phase. Our experience is more from ‘out-of-
box’ system administration’s perspective in greenfield SDN
adoption scenario. We demonstrate that even a small step
toward data center bootloader can significantly reduce the
roadblock of SDN adoption in the context of entirely software
defined infrastructure in data center, and we demonstrate that
IT administration needs a ‘think-out-of-box’ methodology in
this ‘software defined everything’ and ‘open everything’ era.

What we add is a unified bootloading system that works
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on both switches and servers. After proper operating systems
are installed and booted up, the switches and servers are
further configured with the state-of-art open-source software,
which can monitor and control the computing, storage, and
networking components of the data center infrastructure.

The benefit of our approach is tremendous. It can sig-
nificantly reduce the data center operation and maintenance
cost. It allows the data center operators to focus on their core
business, that is, to provide better data services to customers.
It enables zero-touch scaling of the existing data center. New
software and new hardware can be incrementally deployed
without disturbing the normal data center operation.

This paper makes the following contributions:
First, it presents a unified deployment management system

design, which will consolidate the infrastructure bootstrapping
process. Traditionally, network infrastructure deployment and
server/storage infrastructure deployment are considered sepa-
rate efforts, which normally results in separate teams and pro-
longed engineering schedule. We present the first deployment
system that unifies the above procedures and fills the gap in
between in the era of SDN.

Second, it describes in details the first open system, Com-
pass, which reflects the above vision. The novelty of Compass
can be summarized as follows. (a) Compass is an open system
not only in the sense that it is open sourced [12], but also
in the sense that it is open to existing building blocks such
as configuration management tools and OS provisioning tools
through pluggable interfaces. (b) We present our engineering
experience of quickly bootstrapping an SDN infrastructure and
private cloud with a unified viewpoint.

The remaining of the paper is organized as follows. Sec-
tion II describes the high level architecture of the data center
and the procedure to deploy it. Section III explains the building
blocks of our tool and the benefits of our design in greater
details. Section IV presents the real word deployment of a
data center and share our preliminary performance evaluation
results. Section V compares our work with some existing
related work, and finally, Section VI concludes the paper and
suggests the future work.

II. HIGH LEVEL ARCHITECTURE

In this section, we describe the high level architecture
of an SDN-enabled data center and the role Compass plays
in this architecture. We partition the data center into three
tiers: controller tier, network tier, and server tier, as shown
in Figure 1. The controller tier hosts all the tools that are
required to configure and control the data center as well as
all the software that will be installed on the switches and
servers. Note that the controller tier contains servers for three
different roles. These roles are relatively independant and can
be realized on the same or different physical machines. Before
actually deploy the data center, a data center blueprint should
be prepared to specify the network address scheme, target
service locations, virtualization scheme, network topology, and
bandwidth allocations.

The network tier includes all the switches, which can be
roughly mapped to the Fabric Elements described by Casado et
al. [13]. The switches can be arranged in any topologies such
as Clos, Fat Tree, and 3D Torus. In our design, we use the fat
tree topology and a software-defined networking architecture
for which the switch behavior is programmed and controlled
by an OpenFlow [14] controller.

Figure 1: Architecture of Software Defined Data Center
Infrastructure

The server tier includes all the servers. There are two types
of configurations at this tier. One is to use virtual switches,
such as Open Virtual Switch (OVS) [15], on the servers to
enable edge intelligence. In this case, Compass will deploy a
virtual switch on each server and configure the control plane
connectivity to the same OpenFlow controller, which controls
the overall network fabric. This step essentially extends the
network tier into the server tier through virtualization. In this
case, there should also be dashed lines from the OpenFlow
controller server to all the servers in Figure 1. In the other type
of configuration, virtual switches are not used. A server could
still spawn multiple virtual machines, but all the networking
packets to and from these virtual machines will be switched
by the physical switches in the network tier.

The workflow is as follows. When the data center is
powered up, the network switches are first installed with
a Network Operating System (NOS) with OpenFlow agent
enabled. This is done through the switch’s control interface.
After the NOS boots up, the OpenFlow agent hands over the
switch control to OpenFlow controller. The controller first
learns the network topology and then starts to configure the
network. The controller conducts the network sanity check,
partitions the virtual networks, configures the gateways, and
provisions the flows and flow bandwidths. Once the network is
configured, all the servers are reachable. The server Operating
System (OS) and application software are then installed over
the network. If virtual switches are installed in this step,
then the OpenFlow controller must first configure these virtual
switches to make the virtual machine reachable. Each virtual
machine can then be provisioned individually.

III. SYSTEM DESIGN OF COMPASS

To fulfill the vision and showcase a workable system
described in previous sections, we designed Compass, a data
center bootloader. It provides a unified view and workflow for
the networking and server infrastructure deployment process
of a software defined data center. Programmability and exten-
sibility are the primary goals our design aims to achieve.

As shown in Figure 2, Compass provides six core com-
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ponents: RESTful Application Programming Interface (API)
engine, Resource Discovery engine, OS Provisioning engine,
Package Deployment engine, Messaging engine, and Data Per-
sistence engine. Here is how they work together as a system.
Through the Restful API engine, Compass user can specify
how they would like to design the software defined data cen-
ters, i.e., what the result system looks like. Resource Discovery
engine provides the functionality to automatically discover
hardware resources with corresponding network topology in-
formation in the data center once they are physically rack-
and-stacked. For example, Compass uses SNMP protocol to
query MIB table on switches to figure out the server MAC
addresses connected to specific networking devices. Since
each machine will send ARP requests to a switch during
bootstrapping process, this approach gives Compass a view
of all computing devices. Moreover, as long as the computing
resources are rack-and-stacked following well-defined rules,
Compass can translate its port position information into the
location information; therefore a physical to logical mapping
is created. OS Provisioning engine can install the specified
operating system or hypervisor accordingly, if needed, onto
those physical resources. Package Deployment engine will
specify the service package for different building block and
properly configure them into the functioning states. The above
engines communicate with each other through the Messaging
engine, so that everything is push-based event driven. This
design makes Compass orchestrate the complex deployment
process of whole data center like a symphony. Last but not
least, the Data Persistence engine is used to store the states
for Compass to act properly at each step.

Persistence Engine  

Cobbler plugin Chef plugin 

Package 
Deployment Engine 

Hardware Discover 
Engine 

Switch Plugin 

OS Provisioning 
Engine 

Message Bus 

Restful API Engine 

Web UI 
CLI Client 

Compass  

Server Plugin 

Figure 2: Compass Software Function Compoments

A. Programmability
Compass’s programmability is enabled through a RESTful

API engine. A set of APIs provide a programming contract
to external applications. Each Uniform Resource Identifier
(URI) [16] in our RESTful API corresponds to a resource
object in data center infrastructure. A resource object supports
operations such as create, update, delete, and execute actions.
In addition, Compass provides a client-side Python library
as a RESTful API wrapper to facilitate complex data center

deployment scenario. A user can configure and deploy a cluster
through Command Line Interface (CLI) scripts.

Table I shows a subset of resource objects. /switches and
/machines represent the hardware resources Compass discov-
ers and deploys the target systems to (such as Haddop or
OpenStack). /drivers is a metaphor we borrowed from OS
community, and it defines the final software infrastructure that
Compass bring the data center into. /drivers is composable in a
data center, i.e., Compass can bring a data center into an Open-
Stack [10] compute cluster along with Ceph [2] storage cluster
and with Pica8 [17] SDN switches as the networking fabric.
/clusters and /clusterhosts are the resource objects describing
the resulting systems. Note that we only show a subset of
resource objects here to illustrate the programming capability
of Compass. The other resource objects are omitted here
for conciseness. Interested reader can refer to the Compass
website [18] for detailed documents.

TABLE I: Example URI of Compass API

URI Resource Operations
/switches Networking switches create, edit
/machines Physical servers create, edit
/drivers An installer of a target

system(e.g, OpenStack)
create, list

/clusters A cluster with a target
system to be installed

create, edit,
delete

/clusterhosts A host in a cluster create, edit,
delete

B. Extensibility
The Resource Discovery engine, the OS Provisioning en-

gine, and the Package Deployment engine are the heavy-
lifting internals of Compass. The Resource Discovery en-
gine can collect the physical resources that are connected to
a management plane and understand the network topology
through protocols, such as Link Layer Discovery Protocol
(LLDP) and the resource capability through mechanisms such
as Ohai [19]. The Resource Discovery engine updates the
hardware cluster status in the Persistence engine and notify
the other components through the Messaging engine.

After the hardware discovery is done, the OS Provisioning
engine is able to deploy the corresponding operating system or
hypervisor to the physical nodes following the setup instruction
stored in the Persistence engine. Note that OS or hypervisor
setup instruction is defined by Compass user through the
RESTful API engine. Therefore, the behavior for this step
is programmable. The current Compass implementation uses
Cobbler [20] as the actual OS provisioning tool. Cobbler is
integrated into Compass as an OS Provisioning engine driver
plug-in. And then the Package Deployment engine follows the
setup instruction or policy-based rules stored in the Persistence
engine to deploy software components onto the resource nodes.
Moreover, the Package Deployment engine is in charge of
the proper configuration, such as setting up SDN controller
IP and trust credentials on the SDN switches, so that the
deployed distributed systems function as a logical cluster as
they are designed. The current Compass implementation uses
Chef [21] as the actual configuration management tool, and
Chef is integrated as a package deployment driver plug-in.

As we can see from the above, Compass takes a ‘mi-
crokernel’ software architecture and uses plug-in mechanism
to delegate works to the actual ‘drivers’. In this way, it can
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provide extensibility in the following dimensions with minimal
plug-in development:
• It is extensible with regard to the server hardware that

it can support, be it Dell, HP, or Open Compute Project
(OCP) [11] servers.

• It is extensible with regard to the switch hardware that
it can support, be it Pica8, BigSwitch, or OCP [11]
switches.

• It is extensible with regard to the target systems that it
can configure, be it an SDN enabled OpenStack cloud
or SDN enabled distributed file system cluster such as
Ceph and Hadoop cluster.

• It is extensible with regard to the network OS it
can provision, be it PicaOS [17], BigSwitch Open
Network Linux (ONL) OS [22], or Cumulus OS [23];
and it is extensible with regard to the server OS or
hypervisor it can provision, be it CentOS, Ubuntu, or
even ESXi.

Because of the above design principle, Compass code base
is ‘small’. It is around 6000 line of Python code at its core
and the complexity of extending plug-in is low. Here is an
example of extensibility through minimal plug-in development
effort at the dimension of resource discovery. We supported
Huawei switch for server hardware auto discovery in our
initial development. During our real deployment scenarios, we
encountered Pica8 switches and Arista switches. Because of
our ‘microkernel’ architecture and plug-in interface, we were
able to add just about 200 line of Python plug-in code to
support these switches and achieve the same functionality.

IV. EXPERIMENT AND EVALUATION

In this section, we share our experience using Compass to
deploy a private OpenStack [10] cloud with Pica8 [17] SDN
switches as the network tier in Tsinghua University. We used
the OpenStack’s Grizzly release with Neutron as the cloud
virtual networking provisioning engine.

OpenStack is an exemplification of the level of complexity
of the modern software defined infrastructure. It requires not
only configuring the networking infrastructure but also config-
uring the server infrastructure. Configuring a production Open-
Stack cloud is notoriously deemed as a maze for most system
administrators. Moreover, the majority of OpenStack issues
originated from the networking misconfiguration. The number
of Neutron (networking) related configuration is around 100,
and the number of Nova (compute) related configuration is
around 150. It is extremely hard if not impossible for admin-
istrators to properly configure the system in a productive way.

Figure 3 shows how Compass deploys the entire cloud
system not only the SDN networking infrastructure, i.e., the
network tier described in Figure 1, but also the distributed
system on the server tier. In the deployment process, the
operator uses the web User Interface (UI) we provide to
follow the step-by-step configuration – these steps essentially
reflect the operator’s thought process toward the design of
the whole software defined data center. The web UI talks
to our RESTful API engine to persist the design decisions
for the heavy lifting components to make decision for the
real deployment command and control process. It first deploy
the Pica8 switches, which is the network tier as described in
Figure 1. Currently, PicaOS does not allow OS provisioning.
Therefore our OS provisioning step is skipped (as a no-op) at

Server  

Host OS 

Server  

Host OS 

Server  

Host OS 

Switch 

NOS 

Switch 

NOS Switch 

NOS 

Router 

NOS 

Compass SDNController 
1. Network Bootstrap/Installation  
2. Network Configuration 
3. Server/Storage Bootstrap/Installation 

Figure 3: A Unified Process of the Entire Software Defined
Infrastructure Deployment

this moment. The Compass Package Management engine kicks
in right after the switches are discovered. During the package
management process, Compass orchestrates Pica8 switches to
configure themselves into the proper service state and establish
connectivity to their controllers. We are working with Pica8 for
OS provisioning using the Open Network Install Environment
(ONIE) [24] approach, so that other OS, such as Debian, can
be provisioned to the bare-metal switches. In the long run,
we envision ONIE will be adopted by ‘open switches’, and
therefore, the Compass logic can bootstrap switches from bare-
metal. After this step, Compass proceeds to work on the servers
including OS provisioning and package deployment of server
software such as OVS and OpenStack management agents.

In our real deployment procedure, Compass helped the
operator find the way out of the above maze. Instead of
configuring totally 250 parameters, the operator only needs
to program the RESTful API server through the web UI with
6 wizard-based steps. Our deployment process took a little
over one hour to deploy the entire SDN enabled OpenStack
cluster, with over 20 Pica8 switches and around 200 physical
rack servers, from bare-metal to a fully functional OpenStack
cloud.

V. RELATED WORK

ONIE [24] is an open source project which solves the
networking device OS installation problem. Here are some
issues of ONIE. First, ONIE only works for network switch
deployment and it does not provide a unified mechanism for
both switch and server deployment. Secondly, ONIE provides
the automation at individual device level, i.e., to benefit from
ONIE, the bare-metal switch is required to pre-install a special
boot-loader image while our tool eliminates this requirement
(our current practice is taking a non-ONIE in the loop ap-
proach). ONIE naturally fits into Compass extensible plug-
in architecture, in which Compass can leverage its capability
to bring a global view of entire networking infrastructure
deployment. We are working on the ONIE plug-in extension
for ONIE enabled networking devices.

Some long standing software deployment solutions, such
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as Rembo Preboot eXecution Environment (PXE) [25], IBM
Tivoli [26], and Symantec Altiris [27], include the bootstrap
of operating systems on a diversity of hardware architectures.
However, these solutions all assume the networking infrastruc-
ture is ready for server software deployment.

Crowbar [28], an deployment automation project lead by
Dell, assumes that network infrastructure has been deployed
before it takes over the server software deployment process.
This is a reasonable assumption in traditional data centers
where vertically integrated networking boxes were the only
option for networking infrastructure – an old paradigm that
data center builders did not have an option to deploy software
defined networking infrastructure. But as we have described,
these assumptions do not hold any more. Compass is different
from Crowbar as it designed for not only server infrastructure
deployment but also for networking infrastructure deployment
through a unified viewpoint.

Fuel [29] and TripleO [30] are tools tightly designed
for deploying OpenStack cloud management platform, while
Compass is designed for extensible capability toward software
defined infrastructure deployment. We extended Compass’s
capability to support Ceph deployment through a Ceph driver
while keeping the rest of code unchanged (see III-A for
the driver concept). Configuration management tools such as
Chef [21], Puppet [31], and Ansible [32] provide configuration
capability for software. However, they do not provide resource
provisioning capability, which is a key step in data center de-
ployment. As we described, Compass is open to utilized these
tools as components of its automation process and it delegates
the configuration management functionality to these existing
tools to avoid re-inventing wheels. Specifically, our current
implementation use Chef as our configuration management
plug-in and we are working toward an Ansible plug-in.

VI. CONCLUSIONS

The hardware and software decoupling is becoming the
new norm of the network camp thanks to the advent of the
software defined networking and the open network movement.
The ubiquitously available open-source software and bare-
mental devices gives data centers unforeseen opportunity to
optimize their cost structure and provide agile services at scale.
Finally, we are able to program and control network devices
just like we program and control a server. Then, why would
we still need to use two different tool chains and skill sets to
deploy and manage servers and networks?

In this paper, we revisit the data center provision problem.
We treat the entire data center infrastructure as an organic
entity and use a unified tool to deploy and provision the data
center from a scratch. SDN unlocks network management
in a great simplicity, and our system utilizes that promise
and demonstrates the real benefit in a greenfield case study
from system administration perspective. Our approach is fun-
damental in that it consolidates the two historically separate
worlds together and significantly simplifies the data center
infrastructure deployment. As far as we know, this is the first
such tool available with this vision in industry.

Compass is just a start of the effort of building a unified
management tool for software defined infrastructure. Several
works are ongoing. As Compass is a ‘microkernel’ design and
can be easily extended in functionality, we are working on
ONIE integration for switches pre-installed ONIE when they
are shipped to data center. We are working on handling the

server like PXE booting sequence for networking devices as
another Compass plug-in. All of these promise the unification
mechanism for both server and networking devices.

Thanks to the SDN evolvement, the last locked infrastruc-
ture in data center is now opening up. Data center infrastructure
deployment is just the start. Our tool can be extended and
integrated with other tools to continue managing, monitoring,
and controlling the data center. For example, servers and
switches can be upgraded or replaced without interrupting the
data center services. Our tool should be able to schedule and
automate the tasks with minimum human interference. While
we leave these as our future work, we are confident that the
data center automation would become the first-class require-
ment in building, running, and maintaining a data center. It is
our hope to evolve Compass to become an invaluable tool for
future cloud providers.
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