
The Uncompress Application on Distributed Communications Systems

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—The most popular compressors are based on
Lempel-Ziv coding methods. Zip compressors and Unzip de-
compressors apply the sliding window method, while other
applications as Compress and Uncompress under Unix and
Linux platforms use the so-called LZW compressor and
decompressor. LZW compression is less effective but faster
than the zipping applications. We face the problem of how to
implement Lempel-Ziv data compression on today’s large scale
distributed communications systems. Zipping and unzipping
files is parallelizable in theory. However, the number of global
computation steps is not bounded by a constant and a local
computation approach is more advantageous on a distributed
system. Such approach might cause a lack of robustness when
scalability properties are required. Differently from the Zip
compressors, the LZW encoder/decoder presents an asymmetry
with respect to global parallel computation since the encoder
is not parallelizable while the decoder has a very efficient
parallelization. We show that, in practice, the number of iter-
ations of the LZW parallel decoder (Uncompress) is much less
than ten units. Since scalability and robustness are generally
guaranteed if bounding the number of global computation steps
is possible, LZW is more attractive than Zip for distributed
communications systems in those cases (which are the most
common in practice) where compression is performed only
once or very rarely, while the frequent reading of raw data
needs fast decompression.

Keywords-distributed application; communication; scalability;
robustness; data compression

I. INTRODUCTION

The most popular compressors are based on Lempel-Ziv
coding methods (LZ compression). Zip compressors and Un-
zip decompressors apply the sliding window method, while
other applications as Compress and Uncompress under Unix
and Linux platforms use the so-called LZW compressor
and decompressor. LZW compression is less effective but
faster than the zipping applications. LZ compression [1][2]
is based on string factorization. Two different factorization
processes exist with no memory constraints. With the first
one (LZ1) [1], each factor is independent from the others
since it extends by one character the longest match with
a substring to its left in the input string. With the sec-
ond one (LZ2) [2], each factor is instead the extension
by one character of the longest match with one of the
previous factors. This computational difference implies that
while LZ1 compression has theoretical parallel algorithms
[3]-[6], LZ2 compression is hard to parallelize [7]. This

difference is mantained when bounded memory versions
of LZ compression are considered [5][6][8]. On the other
hand, parallel decompression is possible for both approaches
[4][9]. The Zip compressors implement a bounded memory
version (sliding window) of LZ1, while LZW compression
is a bounded memory variant of LZ2.

We face the problem of how to implement LZ data com-
pression on today’s large scale distributed communications
systems. The computing techniques involved in the design of
parallel and distributed algorithms strictly relate to the com-
putational model on which the distributed communications
system is based. The efficiency of a technique designed for
a specific model can consistently deteriorates when applied
to a different system. This is particularly evident when a
technique designed for a shared memory parallel random
access machine (PRAM) is implemented on a distributed
memory system. Indeed, when the system is scaled up the
communication cost is a bottleneck to linear speed-up. So,
we need to limit the interprocessor communication either
by involving more local computation or by bounding the
number of global computation steps in order to obtain a
practical algorithm. Local computation might cause a lack
of robustness when scalability properties are required. On
the other hand, scalability and robustness are generally
guaranteed if bounding the number of global computation
steps is possible for a specific problem.

As mentioned above, zipping and unzipping files are
parallelizable in theory. However, the number of global
computation steps is not bounded by a constant and the local
computation approach is more advantageous on a distributed
memory system. A distributed algorithm, approximating in
practice the compression effectiveness of the Zip application,
has been realized in [10] on an array of processor with
no interprocessor communication. An approach using a
tree architecture slightly improves compression effectiveness
[11]. Yet, distributed algorithms approximating in practice
the compression effectiveness of the Compress application
have been realized in [12] with very low communication
cost. However, scalability and robustness for each of these
LZ compression distrbuted algorithms are guaranteed only
on very large size files.

In this paper, we evidentiate that, differently from the
Zip compressors, the LZW encoder/decoder presents an

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

asymmetry with respect to global parallel computation since
the encoder is not parallelizable while the decoder has a
very efficient parallelization. We show that, in practice, the
number of iterations of the LZW parallel decoder is much
less than ten units. This makes LZW more attractive than
Zip for distributed communications systems in those cases
(which are the most common in practice) where compression
is performed very rarely while the frequent reading of raw
data needs fast decompression.

In Section II, we describe the LZ data compression
techniques and their bounded memory versions. In Section
III, we discuss the parallel complexity of LZ data com-
pression and decompression. Section IV shows how the
implementation of the parallel LZW decompressor (Uncom-
press) is suitable for distributed communications systems.
Conclusions and future work are given in Section V.

II. LZ DATA COMPRESSION

LZ data compression is a dictionary-based technique.
Indeed, the factors of the string are substituted by pointers
to copies stored in a dictionary which are called targets.
LZ1 (LZ2) compression is also called the sliding (dynamic)
dictionary method.

A. LZ1 Compression
Given an alphabet A and a string S in A∗, the LZ1

factorization of S is S = f1f2 · · · fi · · · fk, where fi is the
shortest substring which does not occur previously in the
prefix f1f2 · · · fi for 1 ≤ i ≤ k. With such factorization, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZSS
factorization) where fi is the longest match with a substring
occurring in the prefix f1f2 · · · fi if fi ̸= λ, otherwise
fi is the alphabet character next to f1f2 · · · fi−1 [13]. fi
is encoded by the pointer qi = (di, ℓi), where di is the
displacement back to the copy of the factor and ℓi is the
length of the factor (LZSS compression). If di = 0, li is the
alphabet character. In other words, the dictionary is defined
by a window sliding its right end over the input string, that
is, it comprises all the substrings of the prefix read so far in
the computation. It follows that the dictionary is both prefix
and suffix, since all the prefixes and suffixes of a dictionary
element are dictionary elements.

B. LZ2 Compression
The LZ2 factorization of a string S is S =

f1f2 · · · fi · · · fk, where fi is the shortest substring which
is different from all the previous factors. As for LZ1, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZW
factorization) where each factor fi is the longest match with
the concatenation of a previous factor and the next character
[14]. fi is encoded by a pointer qi to such concatenation
(unbounded LZW compression). Differently from LZ1 and
LZSS, the dictionary is only prefix.

C. Bounded Size Dictionary Compression

The factorization processes described in the previous
subsections are such that the number of different factors
(that is, the dictionary size) grows with the string length.
In practical implementations instead the dictionary size is
bounded by a constant and a fixed length code is used for
the pointers. With sliding window compression, this can be
simply obtained by using a fixed length window (therefore,
the left end of the window slides as well) and by bounding
the match length. Simple real time implementations are
realized by means of hashing techniques providing a specific
position in the window where a good appriximation of the
longest match is found on realistic data. The window length
is usually several kilobytes. The compression tools of the
Zip family, as the Unix command gzip for example, use a
window size of at least 32 Kb.

With LZW compression the dictionary elements are re-
moved by using a deletion heuristic [15]. Let d + α be
the cardinality of the fixed size dictionary where α is
the cardinality of the alphabet. With the FREEZE deletion
heuristic, there is a first phase of the factorization process
where the dictionary is filled up and “frozen”. Afterwards,
the factorization continues in a “static” way using the
factors of the frozen dictionary. In other words, the LZW
factorization of a string S using the FREEZE deletion
heuristic is S = f1f2 · · · fi · · · fk, where fi is either the
longest match with the concatenation of a previous factor
fj , with j ≤ d, and the next character or the current
alphabet character if there is no match. The shortcoming
of the FREEZE heuristic is that, after processing the string
for a while, the dictionary often becomes obsolete. A more
sophisticated deletion heuristic is RESTART, which moni-
tors the compression ratio achieved on the portion of the
input string read so far and, when it starts deteriorating,
restarts the factorization process (standard LZW encoding).
Let f1f2 · · · fj · · · fi · · · fk be such a factorization with j the
highest index less than i where the restart operation happens.
Then, fj is an alphabet character and fi is the longest match
with the concatenation of a previous factor fh, with h ≥ j,
and the next character (or the current alphabet character if
there is no match since the restart operation removes all the
elements from the dictionary but the alphabet characters).
This heuristic is the one used by standard applications (as
Compress under Unix and Linux platforms) since it has a
good compression effectiveness and it is easy to implement.
Usually, the dictionary performs well in a static way on a
block long enough to learn another dictionary of the same
size. This is what is done by the SWAP heuristic. When
the other dictionary is filled, they swap their roles on the
successive block.

The best deletion heuristic is the least recently used (LRU)
strategy. The LRU deletion heuristic removes elements from
the dictionay in a “continuous” way by deleting at each step

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

of the factorization the least recently used factor, which is
not a proper prefix of another one. In [8], a relaxed version
(RLRUp) was introduced. RLRUp partitions the dictionary
in p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy.
RLRUp turns out to be as good as LRU even when p is
equal to 2 [16]. Since RLRU2 removes an arbitrary element
from the equivalence class with the “older” elements, the
two classes can be implemented with a couple of stacks,
which makes RLRU2 slightly easier to implement than LRU
in addition to be more space efficient. SWAP is the best
heuristic among the “discrete” ones. Each of the bounded
versions of LZW compression, described in this subsection,
can be implemented in real time by storing the dictionary
in a trie data structure.

III. PARALLEL COMPLEXITY

The model of computation we consider in this section is
the CREW (cuncurrent read, exclusive write) PRAM, that
is, a parallel machine where processors access a shared
memory without writing conflicts. As mentioned in the
introduction, speed is more relevant with decompression
than with compression since in most cases compression is
performed very rarely while the frequent reading of raw
data needs a fast decoder. Therefore, we briefly discuss
the parallel complexity issues concerning compression and,
then, describe the parallel decoders for sliding window
compression and LZW compression.

A. Parallel Complexity of LZ Compression

LZSS (or LZ1) compression (that is, the zipping applica-
tion) can be efficiently parallelized from a theoretical point
of view [3]-[6]. On the other hand, LZW (or LZ2) compres-
sion is P-complete [7] and, therefore, hard to parallelize.
Decompression, instead, is parallelizable for both methods
[4][9]. As far as bounded size dictionary compression is
concerned, the “parallel computation thesis” claims that
sequential work space and parallel running time have the
same order of magnitude, giving theoretical underpinning to
the realization of parallel algorithms for LZW compression
using a deletion heuristic. However, the thesis concerns
unbounded parallelism and a practical requirement for the
design of a parallel algorithm is a limited number of pro-
cessors. A stronger statement is that sequential logarithmic
work space corresponds to parallel logarithmic running
time with a polynomial number of processors. Therefore,
a fixed size dictionary implies a parallel algorithm for LZW
compression satisfying these constraints. Realistically, the
satisfaction of these requirements is a necessary but not a
sufficient condition for a practical parallel algorithm since
the number of processors should be linear, which does not
seem possible for the RESTART deletion heuristic (that is,
Compress), while the SWAP heuristic does not seem to
have a parallel decoder [8]. Moreover, the SCk-hardness of

LZ2 compression using the LRU deletion heuristic and a
dictionary of polylogarithmic size shows that it is unlikely
to have a parallel complexity involving reasonable multi-
plicative constants [8]. In [8], the RLRUp relaxed version
was introduced in order to obtain the first (and only so far)
natural SCk-complete problem by partitioning the dictionary
in p equivalence classes and by considering all the elements
in each class to have the same “age” for the LRU strategy.
As mentioned in the previous section, RLRU2 turns out to
be as good as LRU and it is slightly easier to implement
in addition to be more space efficient. In conclusion, the
only practical LZW compression algorithm for a shared
memory parallel system is the one using the FREEZE
deletion heuristic [6].

B. Parallel Unzip

The design of a parallel decoder for sliding window
compression (that is, the unzipping application) is based on
a reduction to the problem of finding the trees of a forest
in O(k) time with O(n/k) processors on a CREW PRAM,
if k is Ω(log n) and n is the number of nodes. Given the
sequence of pointers qi = (di, ℓi), for 1 ≤ i ≤ m, produced
by the application zipping an input file, let s1, ..., sm be
the partial sums of l1, ..., lm. Then, the target of qi encodes
the substring over the positions si−1 +1 · · · si of the output
string. Link the positions si−1 + 1 · · · si to the positions
si−1 + 1 − di · · · si−1 + 1 − di + li − 1, respectively. If
di = 0, the target of qi is an alphabet character and the
corresponding position in the output string is not linked to
anything. Therefore, we obtain a forest where all the nodes
in a tree correspond to positions of the decoded string where
the character is represented by the root. The reduction from
the decoding problem to the problem of finding the trees in a
forest can be computed in O(k) time with O(n/k) processors
where n is the length of the output string, because this is
the complexity of computing the partial sums since m ≤ n.
Afterwards, O(n/k) processors store the parent pointers in
an array of size n for blocks of k positions and apply the
pointer jumping technique to find the trees.

C. Parallel Uncompress

We already pointed out that the decoding problem is
interesting independently from the computational efficiency
of the encoder. This is particularly evident in the case of
compressed files stored in a ROM since only the compu-
tational efficiency of decompression is relevant. With the
RESTART deletion heuristic, a special mark occurs in the
sequence of pointers each time the dictionary is cleared out
so that the decoder does not have to monitor the compression
ratio (Uncompress application). The positions of the special
mark can be detected by parallel prefix.

Let Q1 · · ·QN be the standard LZW encoding of a string
S, drawn over an alphabet A of cardinality α, with Qh

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

sequence of pointers between two consecutive restart opera-
tions, for 1 ≤ h ≤ N . Let D be the bounded size dictionary
employed by the compression algorithm, with d = |D|.
Each Qh can be decoded independently. Let q1...qm be the
sequence of pointers Qh encoding the substring S′ of S. The
decoding of Qh can be parallelized on a CREW PRAM in
O((log(L)) time with O(|S′|) processors, where L is the
maximum length of a pointer target. d is a theoretical upper
bound to L, that is tight for unary strings. The algorithm
works with an initially null m x d matrix M and applies to
M the procedure of Figure 1 [9].

Figure 1. The CREW PRAM procedure.

At each step, last[i] is the last nonnull component on
the ith column considered. The nonnull components of the
value(i)th column are copied on the ith column in the
positions after last[i]. Note that value(i) is strictly less
than i. Then, value(i) is updated by setting value(i) :=
value(value(i)). The iteration stops on the column i when
value(i) is less or equal to zero. This procedure takes
O(|S′|) processors and O(log(L)) time on a CREW PRAM,
since the number of nonnull componenents on a column
doubles at each step. The target of the pointer qi is the
concatenation of the target of the pointer in position qi − α
with the first character of the target of the pointer in position
qi−α+1, since the dictionary contains initially the alphabet
characters. At the end of the procedure, M [last[i], i] is the
pointer representing the first character of the target of qi
and last[i] is the target length. Then, we conclude that
M [last[M [j, i] − d + 1],M [j, i] − d + 1], for 1 ≤ j ≤
last[i]−1, is the pointer representing the (last[i]− j+1)th

character of the target of qi. That is, we have to look at
the pointer values written on column i and consider the last
nonnull components of the columns in the positions given
by such values decreased by α− 1. Such components must
be concatenated according to the bottom-up order of the

respective values on column i. By mapping each component
into the correspondent alphabet character, we obtain the
suffix following the first character of the target of qi and
the pointers are, therefore, decoded.

IV. DISTRIBUTED COMMUNICATIONS SYSTEMS AND
THE UNCOMPRESS APPLICATION

Shared memory machines, as the PRAM model, are ideal
systems for distributed communications. Realistically, such
systems are feasible with the current technology only when
the scale is very limited (ten units is the order of magnitude).
The scalability requirement implies that the memory of the
system is distributed. However, the PRAM model might be
useful for a first approach to the design of an algorithm for
distributed communications systems. Before discussing such
approach, we consider distributed memory systems with no
or very low interprocessor communication cost during the
computational phase and, then, we discuss the requirements
that a model of computation must have in order to yield a
practical algorithm for distributed communications systems.
Finally, we discuss the implementation of Uncompress and
compare it with Unzip.

A. Star and Extended Star Networks

Distributed memory systems have two types of com-
plexity, the interprocessor communication and the input-
output mechanism. While the input/output issue is inherent
to any parallel algorithm and has standard solutions, the
communication cost of the computational phase after the
distribution of the data among the processors and before the
output of the final result is obviously algorithm-dependent.
So, as mentioned in the introduction, we need to limit the
interprocessor communication either by involving more local
computation or by bounding the number of global compu-
tation steps in order to design a practical algorithm. If we
consider the local computation approach. the simplest model
is a simple array of processors with no interconnections and,
therefore, no communication cost. Such array of processors
could be a set of neighbors linked directly to a central node
(from which they receive blocks of the input) to form a
so called star network (a rooted tree of hn height 1). In an
extended star, each node adjacent to the central one has a set
of leaf neighbors (a rooted tree of height 2). Such extension
is useful in practice to scale up the system.

For every integer k greater than 1, we can apply in
parallel sliding window compression to blocks of length
kw with O(n/kw) processors connected to a central node
of a star network, where n and w are the lengths of the
input string and the window respectively [10]. If the order
of magnitude of the block length is greater than the one
of the window length, the compression effectiveness of
the distributed implementation is about the same as the
sequential one on realistic data. Since the compression tools
of the Zip family use a window size of at least 32 Kb, the

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

block length should be about 300 Kb and the file size should
be about one third of the number of processors in megabytes.
Therefore, the application is suitable only for a small scale
system unless the file size is very large.

As far as LZW compression is concerned, if we use
a RESTART deletion heuristic clearing out the dictionary
every ℓ characters of the input string we can trivially
parallelize the factorization process with an O(ℓ) time,
O(n/ℓ) processors distributed algorithm. In order to speed
up the static phase after the dictionary is filled up, an
implementation is provided on an extended star topology in
[12]. The Compress application employs a dictionary of size
216 and works with the RESTART deletion heuristic (also,
called LZC compression [17]). The block length needed to
fill up a dictionary of this size is approximately 300 Kb and
the scalability and robustness issues with Compress are the
same as with Zip.

B. A Model of Computation

Distributed communications systems allow global compu-
tation and bounding the number of computational steps is a
requirement for the design of a practical algorithm. In [18],
necessary requirements for a practical model of distributed
computation were proposed, by considering the MapReduce
programming paradigm which is the most in fashion for
the design of an application for distributed communications
systems. The following complexity requirements are stated
as necessary for a practical interest:

• the number of global computation steps is
polylogarithmic in the input size n;

• the number of processors and the amount of memory
for each processor are sublinear;

• at each step, each processor takes polynomial time.
In [18], it is also shown that a t(n) time CREW PRAM

algorithm using subquadratic work space and a subquadratic
number of processors has an implementation satisfying the
above requirements if t(n) is polylogarithmic. Indeed, the
number of global computation steps of the implementation
is O(t(n)) while the subquadratic work space is partitioned
among a sublinear number of processors taking polynomial
computational time. Such requirements are necessary but
not sufficient to guarantee a speed-up of the computation.
Obviously, the total running time cannot be higher than the
sequential one and this is trivially implicit in what is stated
in [18]. The non-trivial bottleneck is the communication
cost of the computational phase. This needs to be checked
experimentally since the number of global computation steps
can be polylogarithmic in the input size. The only way
to guarantee with absolute robustness a speed-up with the
increasing of the number of nodes is to design distributed
algorithms implementable with no interprocessor communi-
cation. Moreover, if we want the speed-up to be linear then

the total running time of a processor must be O(t(n)/n1−ϵ),
where t(n) is the sequential time and n1−ϵ is the number of
processors. These stronger requirements are satisfied by the
distributed implementation of Zip and Unzip presented in the
first subsection. The LZW encoder/decoder implemented on
the extended star network has a low communication cost,
which is still affordable. Based on a worst case analysis, a
more robust approach with no interprocessor communication
is presented in [19] for compressing very large size files,
which uses the RLRU2 deletion heuristic.

Generally speaking, an application on distributed commu-
nications systems has a practical interest if the number of
global computation steps is about ten units or less. This is
obtained from the simulation of the CREW PRAM imple-
mentation of the Uncompress application, together with the
other requirements mentioned above.

C. Uncompress versus Unzip with Pointer Jumping

Computing the trees of a forest for Unzip and, implicitly,
computing for each tree of a forest the paths from the nodes
to the root for Uncompress are the problems we faced with
parallel decompression. If we use a parent array as data
structure to represent a forest, these problems can easily
be solved on a CREW PRAM by running in parallel the
pointer jumping operation parent[i] = parent[parent[i]]. The
procedure takes a number of processors linear in the number
of nodes and a time logarithmic in the maximum height of a
tree. However, while with the unzipping application the max-
imum height of a tree can reach the order of magnitude of
the string length, Uncompress deals with very shallow trees.
This means that we can parallelize the LZW decoder with
many fewer iterations. Moreover, the number of children for
each node is very limited in practice and cuncurrent reading
can be easily managed by standard bdroadcasting techniques
on today’s available clusters.

Now, we are ready to discuss the complexity issues
with respect to distributed communications systems of the
parallelization of the Uncompress application presented in
[9]. Standard LZW encoding applies the ”restart” operation
to a dictionary of size 216 in the Unix and Linux Com-
press applications, as pointed out in the first subsection,
and similar applications have been realized with Stuffit on
Windows and Dos platforms. As previously mentioned, the
theoretical upper bound to the factor length is the dictionary
size, which is tight in the unary string case. However, on
realistic data we can assume that the maximum factor length
L is such that 10 < L < 20. The motivation for this
assumption is that, in practice, the maximum length of a
factor is much smaller than the dictionary size. For example,
when compressing english text with sixteen bits pointers,
the average match length will only be about five units (for
empirical results, see [15]). In some exceptional cases, the
maximum factor length will reach one hundred units, that
is, the number of iterations (global computation steps) will

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

be equal to seven units. If Q1 · · ·QN is the encoding of the
input string S, with Qh = qh1 ...q

h
mh sequence of pointers

between two consecutive restart operations for 1 ≤ h ≤ N ,
let H =max{mh : 1 ≤ h ≤ N}. It is easy to implement the
parallel procedure on a cluster of H processors, where the
input is a set ∪N

h=1V
h and each element in V h is a pointer

qhi , for 1 ≤ i ≤ mh and 1 ≤ h ≤ N . This set is distributed
among the H processors so that the i-th processor receives
pointer qhi (if it exists), for 1 ≤ h ≤ N .

The sub-linearity requirements stated in [18] are satisfied,
since N and mh, for 1 ≤ h ≤ N , are generally sub-linear
in practice. Moreover, the running time multiplied by the
number of processors is O(T), with T sequential time, since
the number of global computation steps is about ten units
(optimality requirement). This makes the implementation of
practical interest.

V. CONCLUSION

In this paper, we presented an implementation of the
Uncompress application on distributed communications sys-
tems. Although the Compress application is not paralleliz-
able in practice, those characteristics implying hardness
results with respect to the parallel complexity of the encoder
are the same providing asymmetrically a practical parallel
decoder. Since, in most cases, compression is performed
only once or very rarely, while the frequent reading of raw
data needs fast decompression, Compress can be considered
attractive in a parallel fashion. Indeed, Unzip is much less
practical to parallelize.

Parallel and distributed algorithms for LZ data compres-
sion and decompression is a field that has developed in the
last twenty years from a theoretical approach concerning
parallel time complexity with no memory constraints to
the practical goal of designing distributed algorithms with
bounded memory and low communication cost. However,
there is a lack of robustness of the practical compression
distributed algorithms when the system is scaled up and
the order of magnitude of the file size is smaller than one
gigabyte. As long as the communication cost is a relevent
bottleneck of current technology, considering Compress and
focusing only on speeding up Uncompress has good motiva-
tions since there is still a need for compression for purposes
both of storage and transmission when the file size is a
hundred megabytes or less and a novel application speeding
up decoding requires robustness in such cases. As future
work, we would like to implement Uncompress on today’s
large scale commodity clusters.

REFERENCES

[1] A. Lempel and J. Ziv, A Universal Algorithm for Sequential
Data Compression, IEEE Transactions on Information The-
ory, vol. 23, 1977, pp. 337-343.

[2] J. Ziv and A. Lempel, Compression of Individual Sequences
via Variable-Rate Coding, IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[3] M. Crochemore and W. Rytter, Efficient Parallel Algorithms
to Test Square-freeness and Factorize Strings, Information
Processing Letters, vol. 38, 1991, pp. 57-60.

[4] M. Farach and S. Muthikrishnan, Optimal Parallel Dictionary
Matching and Compression, Proceedings SPAA, 1995, pp.
244-253.

[5] S. De Agostino, Parallelism and Dictionary-Based Data
Compression, Information Sciences, vol. 135, 2001, pp. 43-
56.

[6] S. De Agostino, Lempel-Ziv Data Compression on Parallel
and Distributed Systems, Algorithms, vol. 4, 2011, pp. 183-
199.

[7] S. De Agostino, P-complete Problems in Data Compression,
Theoretical Computer Science, vol. 127, 1994, pp. 181-186.

[8] S. De Agostino and R. Silvestri, Bounded Size Dictionary
Compression: SCk-Completeness and NC Algorithms, Infor-
mation and Computation, vol. 180, 2003, pp. 101-112.

[9] S. De Agostino. A Parallel Decoding Algorithm for LZ2 Data
Compression, Parallel Computing, vol. 21, 1995, pp. 1957-
1961.

[10] L. Cinque, S. De Agostino and L. Lombardi, Scalability and
Communication in Parallel Low-Complexity Lossless Com-
pression, Mathematics in Computer Science, vol. 3, 2010,
pp. 391-406.

[11] S. T. Klein and Y. Wiseman, Parallel Lempel-Ziv Coding,
Discrete Applied Mathematics, vol. 146, 2005, pp. 180-191.

[12] S. De Agostino, LZW Data Compression on Large Scale and
Extreme Distributed Systems, Proceedings Prague Stringology
Conference, 2012, pp. 18-27.

[13] J. A. Storer and T. G. Szimansky, Data Compression via
Textual Substitution, Journal of ACM, vol. 24, 1982, pp. 928-
951.

[14] T. A. Welch, A Technique for High-Performance Data Com-
pression, IEEE Computer, vol. 17, 1984, pp. 8-19.

[15] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[16] S. De Agostino, Bounded Size Dictionary Compression: Re-
laxing the LRU Deletion Heuristic, International Journal of
Foundations of Computer Science, vol. 17, 2006, pp. 1273-
1280.

[17] T. C. Bell, J. G. Cleary and I. H. Witten, Text Compression,
Prentice Hall, 1990.

[18] H. J. Karloff, S. Suri and S. Vassilvitskii, A Model of
Computation for MapReduce, Proc. SIAM-ACM Symposium
on Discrete Algorithms (SODA 10), SIAM Press, 2010, pp.
938-948.

[19] S. De Agostino, A Robust Approach to Large Size Files Com-
pression using the MapReduce Web Computing Framework,
International Journal on Advances in Internet Technology, vol.
7, 2014, pp. 29-38.

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

