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Abstract—In the paper, open global computer networks and 

data communication networks are considered as structures 

with a random topology. Processes of epidemics spreads are 

described by percolation theory. “The percolation thresholds”, 

fraction of blocked nodes at which the whole network loses its 

working capacity, are calculated for different numbers of 

communications per node. For the real data communication 

networks with the average number of communications per 

node in the range of 2.5 to 3.5, the share of the used equitype 

equipment and the software types should not exceed the 

margin from 48% to 63%. 

Keywords: data communication network; blocking nodes; 

network topology, the percolation threshold; virus distribution 

dynamics 

I.  INTRODUCTION  

An important task in ensuring reliable functioning of 

data communication networks, as well as protection of the 

transferred information, is the study of the formation of 

groups of network node physically connected by 

communication channels but blocked (excluded from 

operation) for some reason. For example, blockage is 

possible during computer viruses epidemics. Under certain 

conditions, such groups of blocked nodes can increase in 

size and form clusters, which can lead to an overall loss of 

functionality of the data communication network. For 

instance, a cluster can form when there is some blockage of 

a backbone node of data network at the regional or city 

level. Alternatively, a cluster can originate in a base station 

of a mobile network as a result of peak load or overload, or 

when there is a computer virus epidemic in computer 

networks, which blocks the operation of different network 

equipment. Our objective is to develop a model describing 

the processes of nodes clustering based on the percolation 

theory, the main assumptions of which will be stated further 

on.  

Historically, any data communication network starting 

from the city region level has an irregular random structure. 

The brightest example of such a network is the Internet. 

This is caused by many factors among which we can single 

out the following: providers having different network and 

communication equipment, a fluctuating number of 

subscribers with constantly changing connection topology 

and many others. 
At present time, spreading of epidemics is often 

described as a process with structure similar a Kailey tree 
with random number of connections [1]-[2]. 

One can pay closer attention to a number of works by R. 
Pastor – Satorras and A. Vespignani, where the authors study 
the problem of defining the probability of infection 
depending on the node distance from the source of threat in 
networks of different scale and with varying number of 
nodes [3]–[7]. The authors used the scale and number of 
nodes as topological parameters; however, there were no 
special insights into the diversity of networking structures 
and the blocked nodes clustering. 

In common case a scale free graph can have any number 
of nodes. Figure 1a shows such a graph with the total 
number of nodes equaling 100.  

The description of virus epidemic topology using a scale 
free graph model produces interesting results. However, at 
some stage, infected network nodes can start sending copies 
of viruses to already infected nodes, and the process 
topology will look as shown in Figures 1b and 1c [1].With 
the help of a scale free graph model, we can consider the 
data transfer traffic dynamics [8], [9], as well as the 
processes of network structure hierarchical growth [10]. 

Obviously, if the amount of blocked nodes is not too 
large, there will be an “open” route (a way formed by 
unblocked nodes) between two randomly selected nodes 
located at a distance. We will refer to the amount of blocked 
nodes at which the network becomes nonfunctional as a 
percolation threshold–the network will be functional below 
this value despite the fact that it contains some nodes or their 
groups (clusters) blocked by viruses. Above the percolation 
threshold, the whole network turns off and loses its data 
transfer functionality. There is no “open” way between two 
randomly selected nodes.  

Studying processes of blocked nodes clusters formation 
and data percolation in networks with different (including 
random) topology has a lot of scientific and practical 
importance for the development of topology of data 
communication networks having high fault-tolerant features.  

It would greatly help improve their technical and 
economic, as well as operational characteristics, and create 

24Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services



new methods and methodologies of computer network and 
applications protection. 

 
Figure 1.  Different types of a scale free graph [2]: (а) – general case, (b)- 

the beginning of mutual DDoS attacks,(c) – the process of mutual DDoS 

attacks becomes considerable. 

Besides, we should distinguish between two notions: 

 Physical connections between the nodes. Two 
nodes are considered neighbors if they have a direct (without 
an intermediary) communication channel. 

 Address linkage between the nodes. A virus can 
send its copy to a randomly selected node with a random IP-
address instead of sending it to its physical neighbor.  

In the latter case, the virus epidemic development 
topology looks like the Kailey tree (network) with a random 
number of communications, while in the former, the 
structure of physically connected infected nodes will be more 
complex and it has almost never been studied. 

In Section II, we prove a choice of object and research 
methodology. 

In Section III, we provide the description and discussion 
of results for data transmission modeling received in 
framework percolation theory for networks with random 
topology. 

In Section IV we state the main conclusions drawn on the 
basis of the results received in the work. 

II. SUBJECT AND STUDY METHODOLOGY 

We base our choice of network structure for a complex 
study of topology influence on its reliability on the fact that 
assessment of real networks similarity and different 
theoretical types of topologies on the basis of modeling can 
help single out a network (or types of networks) with the 
features closest to those of real networks (for example, the 
Internet), which is important for analysis of processes 
happening in the existing networks and ensuring their 
reliability. 

Figure 2 shows the map of a mobile network operating in 
one of the Russian Federation regions. 

The given map shows that real networks of data 
communication have a random structure similar to the one 
shown in Figure 1c; therefore, this article scrutinizes the 
random network with a set of communications per node. 

As mathematical apparatus of the conducted research, we 
used the percolation theory, its basics being represented in 
[11]-[15]. 

During the modeling, we made the following 
assumptions: all nodes (10

6
) of a computer network create a 

single network with a specific topology. Blocking of nodes 
occurs when infected with a computer virus. The virus can 
send its copies (10

2
) from any node to any other arbitrary 

node (with probability of infection of 5·10
-3

) by selecting its 
address from the entire set of address space (not necessarily 
physically connected nearby sites). At the next steps of the 
epidemics, the infected nodes are sending copies of the virus 
to other nodes in the network etc. 

 
Figure 2. The location of base stations in the north of Chuvashia round the 

capital – the city of Cheboksary. 

The average cluster size of blocked sites was determined at 
each step by numerical modeling methods; the infection 
process was carried out until the network reached the 
percolation threshold. 

From a mathematician’s point of view, the percolation 

theory should be attributed to the probability theory in 

graphs. The most widespread problems of the percolation 

theory are the lattice problems, viz. the node problem and 

the connection problem. Let us consider a continued square 

grid. We shall name the points of line crossing nodes 

(vertexes of the graph); the lines themselves will bear the 

name of communications (graph edges). 

In the connection problem one tries to find an answer to 

the following: which share of communications should be 

eliminated (cut off) for the net to fall into two equal parts? 

In the node problem the nodes are blocked (removed, all the 

connections with the node being cut off) and one searches 

for the share of blocked nodes leading to network falling 

apart. In the percolation theory, a chain of connected items 

is called a cluster. A cluster connecting two opposite sides 

of the system is dubbed percolating, infinite, spanning or 

connecting. Below the percolation threshold, there are only 

clusters of a finite size.  

The staff members of IBM R&D Centre (Scott 

Kirkpatrick, Winfried Wilcke, Robert Garner, and Harald 

Huels) studied the possibility of applying the percolation 

theory to the data storage systems [16]. They proposed the 

following model. A data cube of 1000 base elements 

connected by a cubic-cell type contained two types of cells 

(nodes), viz. the ones containing the immediate data and the 

cells (nodes) ensuring fault-tolerance – data replication. 

Since each node of such a system should not only provide 

the data output but also ensure data passage through a 

storage array (the access to other data), it was reasonable to 

employ the percolation theory. The use of the percolation 

theory allowed proving that it is enough to have just one 
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copy of replicated data to ensure continuous fault-tolerant 

operation of the network. In case of excessive replication 

(two or more copies of data), one could observe a trespass 

over the percolation threshold, formation of non-conducting 

cluster in a cubic lattice, which led to the system operation 

failure. This model was put to good use in the system of 

data storage ‘Ice cube’ supplied by IBM Company and 

allowing the creation of a 32-terabyte array of data. 
There are no analytical models elaborated to describe the 

percolation processes and to study random networks with 
multiple communications. Their research is possible only by 
numerical methods of modeling. For this purpose, at first it is 
necessary to construct a structural model of a network (see 
Figure 3), then, to choose a couple of any arbitrary nodes and 
using numerical modeling methods to define at what part of 
unblocked nodes in the considered network there is a 
freeway between A and B nodes. Then, this procedure is 
likewise performed for any other couples of nodes (in our 
case for the couples of C and D, E and F nodes in Figure 3 
etc.). After that, with statistical averaging the results of 
separate experiments, we determine the average value of 
percolation threshold for all considered couples of nodes. 

 
Figure 3. Data transmission random network structure. 

III. RESULTS AND DISCUSION  

A. Percolation (flow) of information in a random network 

of data communication 

Table 1 presents the results of numerical modeling to find 
percolation threshold for random networks with the set of 
ways between nodes (see Figure 3) and various averages of 
communications per node. 

With an increasing average number of communications 
per network node, the time and computing resources 
consumption significantly increases as well. For this reason, 
we had to choose the number of communications per node 
ranging from 2.5 to 15 in our numerical modeling. 

In Figure 4 the dependence of the results given in Table 1 
is shown. The percolation threshold decreases monotonically 
to 0.115 with the growth of the communications average per 
one network node. There is really no need to carry out 
numerical modeling at great values of average of 
communications per node, and it is possible to extrapolate 
the results onto the area of great values. 

The graphical type of dependence in Figure 4 is similar 
to exponential law, therefore it can be described by 
function:  ( )     

  , where P(x) is the percolation 
threshold value at the average of communications per node 

equaling some value x, z=1/x;    is the percolation 
threshold valueat an infinitely large number of 
communications per node. 

Figure 4. Dependence of percolation threshold size in random network on 
the average of communications per its one node. 

As Figure 5 reveals, the data presented in Table 1 are 
well linearized in coordinates: lnP(x) depending on z=1/x (a 
natural logarithm of the percolation threshold is an inverse 
value to the average of communications x per node) that 
confirms the possibility of using the function:  ( )  
   

  . 
Points in Figure 5 mark the experimental data, and the 

solid line corresponds to the linear dependence:  
y = 4.39z-2.41, with a big value of correlation coefficient 
that equals 0.95.  

At z=1/x=0 (corresponds to the case x = ∞) we receive: 
y=lnP0 =-2.41, and the value of the percolation threshold at 
infinitely large number of communications per P0 node will 
be equal 0.09. 

It should be noted that, logically, it has to tend to 0; 
however, the obtained result can be explained as follows. At 
a very large number of communications, there can be a 
change in the law of dependence of percolation threshold on 
the number of communications. Nevertheless, it is possible 
to claim that the received dependence remains fair for 
random networks with significantly large number of 
communications per node. Thus, for a random network with 
an infinitely large number of communications per node it is 

TABLE I. PERCOLATION THRESHOLDS FOR RANDOM 
NETWORKS 

Network 

type 

Average number of 

communications per 

one network node  

Fraction of the activated 

nodes at which there is 

conductivity in the network 

(nc - percolation threshold) 

A 

random 

network 

with a 

set of 

paths 

between 

nodes 

2.36 0.515  

2.82  0.425 

3.29  0.365 

4.70 0.270 

4.75  0.250  

6.15  0.150  

6.17  0.185 

6.75  0.175  

9.41  0.170 

10.02  0.150 

10.31  0.130  

10.69  0.135  

11.07  0.115  

13.10  0.115  
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enough to have the fraction of the activated nodes equal to 
0.09 from the total number so that there could appear a 
carrying-out chain of nodes and the network could solve the 
set information task. At the average of communications 
equaling 100, the threshold of a percolation will amount to 
0.094, and at 10 to 0.139 respectively. 

 
Figure 5. The logarithmic dependence of percolation threshold value in a 

random network on the inverse value of average of communications per its 
one node. 

In practice, the number of communications of a random 
network per node will from 2.5 to 3.5, which yields the 
percolation threshold values ranging from 0.52 to 0.37. We 
calculated it using the data given in Figure 5 and the 
equation = 4.39z-2.41 

B. Clustering of a random network 

If we consider the transition of any node of a random 
network from the efficient (not infected) state in the blocked 
state as a random process (with some probability of 
transition), this probability has to influence the average size 
of a cluster (a group of the nodes directly interconnected) of 
the blocked nodes.  

By numerical experiments, we studied the influence of 
blocking probability on the average size of blocked nodes 
cluster of random networks with various average numbers 
of communications per node. Network with 10000 nodes 
were investigated. Two limit cases were considered: one for 
a small average of communications per node of a random 
network (see Table 2 and Figure 6) and the other limit case 
is for a big average of communications. 

In Figure 6, curve 1 corresponds to the average of 
communications per node of a random network equaling 
2.13; curve 2 depicts idem equaling 2.53; curve 3 is for 2.80 
and curve 4 outlines for value 3.27 respectively. As the data 
in Table 2 and in Figure 6 demonstrate, the size of the 
cluster of the blocked nodes depends on the average of 
communications and probability of infection. With the 
growth of the average of communications, at the fixed 
probability of blocking, the size of the cluster increases. We 
can observe a similar situation with a great average of 
communications per node of a random network.  

Figure 6. Dependence of the average size of the cluster of the blocked 
nodes on probability of blocking (for example, infections with a virus). 

TABLE II. DEPENDENCE OF THE AVERAGE SIZE OF THE 
CLUSTER OF THE BLOCKED NODES ON PROBABILITY OF 

BLOCKING 

Probabil

ity of 

blocking 

 

The average size of the blocked nodes cluster (in 

fractions relative to the total number) 

For the 

network 

with an 

average of 

communicat

ions per 

node 

equaling 

2.13 

For the 

network 

with an 

average of 

communicat

ions per 

node 

equaling 

2.53 

For the 

network 

with an 

average of 

communicat

ions per 

node 

equaling 

2.80 

For the 

network 

with an 

average of 

communicat

ions per 

node 

equaling 

3.27 

0.05 0.033 0.033 0.033 0.033 

0.1 0.037 0.039 0.039 0.039 

0.2 0.041 0.044 0.047 0.049 

0.3 0.049 0.054 0.056 0.062 

0.4 0.059 0.062 0.067 0.087 

0.5 0.070 0.087 0.101 0.132 

0.6 0.090 0.126 0.146 0.233 

0.7 0.120 0.206 0.268 0.368 

0.8 0.178 0.330 0.487 0.591 

0.9 0.353 0.638 0.785 0.825 

1 1 1 1 1 

 

C. Kinetics of blocking nodes in the address space of 

computer networks and achieving the percolation 

threshold 

Currently, researchers recourse to empirical susceptible–
infectious (SI) and susceptible–infectious–recovered (SIR) 
models originating from biology [17] to describe the 
kinetics of infection of data communication networks. 
However, instead of the empirical ones, some more 
reasonable mathematical and information models are 
required for the adequate description of the blocking 
processes.  

To create such a model, we have considered the network 
consisting of L computers, for example, in which viruses 
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can reproduce with coefficient of reproduction equal to ξ. 
Viruses start spreading before they are detected and before 
an efficient antivirus appears, which can efficiently 
eliminate the viruses. An antivirus program appears only at 
a certain step of virus distribution, lagging behind the start 
of virus distribution by h0 steps, i.e., at step k, k = h – h0 
(there is a delay). 

The number of the antiviruses appearing at step (k + 1) 
(at step (h + 1) for viruses) is designated as Nk+1, and the 
number of viruses appearing at step k (step h for viruses) is 
denoted as Nk. In other words, Nk will be equal to the 
number of computers, at which at k step an antivirus will be 
available, and Nk+1is equal to the number of computers, at 
which antivirus will be available at step (k + 1). 

The number of computers infected at step (h + 1) can be 
defined as Ph + 1, and the number of computers infected at 
step h can be indicated as Ph. The change in the number of 
infected computers is equal to the difference between the 
number of infections and the number of viruses destroyed at 
step (h + 1). 

There are the following random events that form the 
complete system: 

1. A computer is infected with a virus with 

probability of   
  

 
. 

2. There is an antivirus at the computer with 

probability of   
  

 
. 

3. There is neither a virus, nor an antivirus at the 

computer with probability of { -
  

 
-
  

 
}. 

The number of infections at step (h + 1) will be equal to 

   { -
  

 
-
  

 
}  as the infection of the already infected 

computer is not considered, and the computer where an 

antivirus is installed cannot be infected. 

The number of viruses eliminated at step (h + 1) has to 

make up   
  

 
, where 

  

 
 is the probability that at step (h+1) 

any of Ph viruses existing at step h can encounter an 

antivirus. Thus 

    -      { -
  

 
-
  

 
} -  

  

 
  (1) 

The change in the number of computers where the 
antivirus is installed at step (k +1) is defined by Nk+1 – Nk 
difference: 

    -      { -
  

 
},   (2) 

where ξPh implies that the antivirus is installed at step (h + 
1) at those computers where a virus has been detected at 

step h, and { -
  

 
} means that the antivirus is installed only 

where it has not been present. 
Since the duration of each step is equal to τ, the duration 

of the whole process t and number of steps h are 
interconnected by the following ratio of t=hτ and t0 = h0τ (k 
= h – h0), where t0 is the time when the antivirus springs into 

acting (its action lags behind the onset of viruses by the 
interval time value t0). 

Proceeding from the number of steps h and k to the 

process duration, we will receive: 

 (   )   ( )    ( ) {  
 ( )

 
 
 (    )

 
}  

  ( )
 (    )

 
     (3) 

 (      )   (    )    ( ) {  
 (    )

 
} (4) 

We will denote t-t0 = y and, having decomposed (3) and 

(4) into a Taylor row, we will receive: 

 
  ( )

  
 
  

 

   ( )

   
     ( ) (  

 ( )

 
) (5) 

 
  ( )

  
 
  

 

   ( )

   
   

   ( ) {  
 ( )

 
 
 (    )

 
}   

  ( )
 (    )

 
     (6) 

with an entry condition of N (y=0) = P (t0), where y = t – t0. 
The equations (5) and (6) essentially differ from the 

system of equations used in the SIR model. The 
fundamental differences are: 

 In the offered equation of infection (6), the 
decrease of viruses in the right part is determined not only 
by a share of nodes susceptible to infection  

{  
 ( )

 
 
 (    )

 
}, but also by the product of the number 

of viruses and the probability of their encounter with 
 

 
 

antivirus, whereas the SIR model implies that the number of 
viruses decreases with the constant average speed of 
"immunization" per unit of time γ. Besides, the second 
derivative reduces the infection speed due to mutually 
reciprocal attacks (when we transfer it to the right member 
of the equation, a minus sign appears). 

 The SIR model assumes that the speed of 

antivirus’s emergence (the speed of disinfection) linearly 

depends on the number of available viruses. In the model 

offered (5), it depends on the probability of 
 

 
 antivirus 

presence in the node and it is indirectly affected via 
   

   
 on 

updating of the antivirus base. When transferring this 

member of the equation into the right part, a minus sign 

occurs, and the second derivative implies that the already 

available antivirus protection requires a base update, and 

instead of mailing over a network and installation of new 

antiviruses, they are just being updated. 
This approach allows deducing the following differential 

equation that describes the kinetics of computer viruses 
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epidemic development without protection by an antivirus (N 
(t-t0) =0): 

  ( )

  
   ( ) (  

 ( )

 
)   (

   ( )

   
)  (7) 

The left member of (7) describes in general the speed of 
emergence of new infected computers or network nodes. 

The member of the (7)   ( ) ( -
 ( )

 
)  describes the 

inception of new infected computers, i.e. the existence in (7) 
of just this summand implies that all copies of viruses 
penetrate only the computers that are not infected. 

Moreover, the member of  (
   ( )

   
)  view allows 

considering some part of the dispatched viruses to penetrate 
the already infected nodes (and thus reduce the infection 
since there is a minus sign before it). 

Figure 7 presents the comparison of results of the 
empirical SI model and the model we offer, which is based 
on differential (7) that considers the derived changes of the 
second and higher order of the number of viruses over time. 
Curve 1 represents the SI model, and curve 2 depicts the 
offered model that takes into account the second derivative, 
curve 3 is idem for the third derivative, curve 4 is idem for 
the fourth derivative, and curve 5 is the same model taking 
into account the fifth derivative. All results are received for 
identical values of parameters (τ = 25, L = 200000, P0 = 5 
and ξ = 2). 

Figure 7. The comparison of SI model (curve 1) and the solution of the 
equation of the offered model. 

Figure 8 presents the comparison of the offered model 

and the results of observation over development of epidemic 

of Code Red Worm [18] (the curve describing data is 

deduced using (7) and taking into account the summands of 

 (
   ( )

   
)  form, the dotted line represents experimental 

data). Figure 8 shows that the data observed and theoretical 

calculations coincide well with values of P0 =1 (attack 

begins with one node), ξ =3 (the coefficient of reproduction 

equals 3, it is chosen to adjust the theoretical curve to the 

observed data), L=350000 (according to the observations 

presented in [16], the attacked network consisted of 350000 

nodes), τ = 70 (duration of one step of the epidemic 

development equals 70 conventional units of time or 3.89 

hours, it is chosen to adjust the theoretical curve to the 

observed data). Thus, the number of computers infected per 

hour is   
 

 
      . It coincides with an assessment of 

0.7 to 1.8 nodes provided in [18] for random mailing. 

 
Figure 8. Comparison of observations over epidemic of Code Red worm 
(dotted line) and calculations according to the offered model (solid line). 

In Figure 8, the horizontal lines show the allowance for 
the values of percolation thresholds ranging from 0.09 to 
0.14 for a random network with the set of ways between 
nodes blocked by viruses (line1-0.09=0.91 and line 1-
0.014=0.86). As seen in Figure 8, if the percolation 
threshold is to be considered as a criterion of reliability and 
operability of a computer network in general, then the 
network shut down from the normal operating mode will 
occur approximately in 19-20 hours after the beginning of 
infection, which allows taking necessary measures to 
eliminate epidemic consequences. This begs a question of 
why infection of computers continued. The answer is that a 
network consists not only of nodes that can be potentially 
infected, but also of nodes which cannot be any how 
infected due to the lack of vulnerabilities since they have 
another type of software. Yet, these nodes can transmit 
viruses through the network from infected to not infected 
nodes, remaining invulnerable. Besides, being infected, 
network nodes can continue carrying out functions on data 
transmission. 

IV. CONCLUSIONS 

Open global computer networks and networks of data 
communication can be considered as the structures with 
random topology, and the processes running in such 
networks can be described by percolation theory. 

During computer viruses epidemics distribution, data 
communication network nodes blocking can happen, as well 
as formation of clusters of such nodes. There are a number 
of blocked nodes at which all network entirely loses 
operational capacity (hitting the percolation threshold) in 
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spite of the fact that a considerable part of nodes is still in an 
operational state. 

For a random network, in the limit of infinitely large 
number of communications per node, it is enough to have 
the fraction of unblocked nodes equaling 0.09 relative to the 
total number so that there can arise a transferring chain of 
nodes and the network can solve the assigned information 
task. At an average of communications equaling 100, the 
percolation threshold will equal 0.094, and at 10 – 0.139. 
Thus, it is possible to consider that the fraction from 0.09 to 
0.14 nodes keeping operational capacity allows providing 
overall operability of a network and its reliability. When we 
reduce the average of communications per node up to 2.5 – 
3.5, the network keeps the general operational capacity for 
number of unblocked nodes from 0.52 to 0.37. 

The smaller the average number of connections per node 
is, the less the blocking time of data communication 
network as a whole and attaining the percolation threshold 
turns out to be. 

The size of a cluster of the blocked nodes depends on the 
average of communications and blocking probability. With 
the growth of an average of communications, at the fixed 
blocking probability, the size of cluster increases. A similar 
situation is observed with a large average of 
communications per node of a random network. 

Practical recommendations for protection of any data 
communication networks against threats of virus attacks are 
essentially the following. When using the equitype 
equipment and software to create networks of data 
communication with a very large number of 
communications per node, its share should not exceed 86% - 
91%. It will allow keeping operability of all network as a 
whole during epidemics spread of multivector viruses 
capable of deploying for their penetration not one, but the 
whole set of vulnerabilities, since it increases the probability 
that 9% -14% of the employed equipment and types of 
software will be impregnable. However, in reality the 
average of communications per node of network varies from 
2.5 to 3.5, which yields the percolation threshold ranging 
from 0.52 to 0.37. Thus, for the real computer information 
networks the fraction of the employed equitype equipment 
and software types should be strictly within the limit from 
48% to 63% (1-0.52=0.48 and 1-0.37=0.63). 

Describing the distribution dynamics of computer 
viruses and using the differential equations of the second 
and higher order to account for changes in the number of the 
infected nodes over time, the mathematical model enables 
allowances for mailing copies to already infected addresses. 
It will also be significantly better coordinated with the 
results of observation over computer viruses epidemics in 
the Internet, than the existing SI and SIR models are. 

In the future we will consider probabilistic schemes of 
transitions between statuses of congestion of data 
transmission networks. Such formalization is able to receive 
the differential equation of second order (like Kolmogorov's 
equation) which modeling stochastic dynamics of change 
status of congestion a network and to connect them with the 
results received from the percolation models. 
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