
Unified Language for Network Security Policy Implementation

Dmitry Chernyavskiy
Information Security Faculty

National Research Nuclear University MEPhI
Moscow, Russia

milnat2004@yahoo.co.uk

Natalia Miloslavskaya
Information Security Faculty

National Research Nuclear University MEPhI
Moscow, Russia

NGMiloslavskaya@mephi.ru

Abstract—The problem of diversity of the languages on
network security appliances’ interfaces is discussed. Idea of the
unified language for network security policy (ULNSP)
implementation is proposed. A basic approach to the ULNSP
formalization is considered. ULNSP Grammar and syntax
examples are given. Further research on UNLSP is briefly
discussed.

Keywords-Network Security Policy, Network Security
Appliances, Formal Language, Syntax, Grammar, Translator

I. INTRODUCTION

Communication in the modern world cannot be imagined
without such a concept as a language – an effective way of
representation and information transfer. At present there is a
large variety of different languages created by people for
their own needs: a sign language, a body language, a
languages of mathematical and chemistry formulas, graphics
languages applied in plotting and designer activity and
others. All formats of input/output data define a language
for information and communication technologies. Very
often program systems have really complex languages for
their interfaces, including declarations, instructions,
expressions and many other kinds of data sets. This is the
payment for programs and devices functionality.

The main reason of this diversity of possible languages is
a tendency to represent the information in a form as much as
possible short and convenient for a particular task solution.
Information security (IS) sphere has not avoided this issue.
Input and output languages are used for management of the
majority of network security appliances (NSA), having their
own set of instructions for implementation of the corporate
IS policy (ISP), containing many rules (ISPR). Hereafter, by
different NSA, we mean such appliances, for which at least
one ISPR can be specified so that its implementation in one
appliance is available only with the set of commands
different from those used for implementation of this rule in
another appliance. While protecting systems by different
manufacturers, their command languages can differ so
significantly that at the first glance it can be seen that there
is nothing common among them. Obviously, the diversity of
input languages on interfaces of NSA creates problems for
IS managers because it is necessary to "translate" their ISPR
for each particular device into a specific set of instructions.
Such "translation" takes much more time than in case if all

NSA could detect the identical commands. Moreover, it can
result in errors in ISPR implementation configuring devices,
especially if some rules are ambiguously formulated.

There are some solutions on the market that try to make a
universal interface for ISP implementation. One of them is
Check Point SmartDashboard [1], but this software product
supports only Check Point security devices. Cisco Security
Manager software [2] also uses policy-based approach to
management of routers, firewalls and IPS systems, but,
obviously, it supports only Cisco products. There are a lot of
different solutions designed in order to improve an existing
interface of a particular network security solution and make
it more convenient, for instance, Activeworx IDS Policy
Manager [3] is an application that provides GUI for policy-
based management of Snort IDS. While network security
models play an important role in any system, most research
effort related to this topic are based on limited concept and
do not discuss all the richness of current and emerging
NSA. A development of the unified language for network
security policy (ULNSP) implementation may solve these
problems. The language will allow implementation of
network security policy rules (NSPR) in a convenient form
without being dependent on a particular device. Obviously,
the language itself doesn’t have any practical application;
therefore its translator should be developed as well.
Inherently, ULNSP together with its translator will form a
universal interface between the human and NSA and, as a
result, will increase the efficiency of the network security
management.

Section II of the paper presents requirements and the
main idea of UNLSP. Basic approach for formalization of
the language is described in Section III. Section IV provides
examples of NSPR defined with ULNSP. Practical
application of the language is considered in Section V.
Conclusions are given in Section VI.

II. UNIFIED LANGUAGE FOR NETWORK SECURITY POLICY

BASIS

For the effective implementation of any policy, its rules
must meet the requirements of maximum simplicity, clarity
and ability for updating. Any policy rule should be
formulated so that it could not be interpreted ambiguously.
Implementation of these requirements should reduce the

136

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

probability that any rule will be ignored or implemented
incorrectly, as well as the probability of bypassing the rules.

NSPR are specified in the corporate ISP in a natural
human language and are subsequently implemented as a
configuration (settings) for NSA. So the problem arises
while translating NSPR into NSA commands by human
(system, network or IS administrator). But different NSA
recognize different languages, making it necessary to
translate the same NSPR in a different set of commands.
Such kind of translation may lead to typographical errors;
so, that the device cannot accept this command. In the worst
case, if a wrong command is syntactically correct, it can be
applied by device, and this can cause incorrect functioning
of the network or appearance of security breaches.

Proposed ULNSP would help to avoid such problems and
solve the problem of NSPR portability and consequently
improve network security management efficiency. In fact
NSPR defined by ULNSP language will be the intermediate
between ISPR and commands of a particular NSA (Fig. 1).
In this case, network administrator (or other person
responsible for the network security management) has to
translate the rules from the corporate ISP into the rules in
ULNSP, but this operation for a specific ISP must be done
only once without concentrating on particular NSA models.

Figure 1. NSP Implementation using ULNSP.

Another important requirement is ULNSP extensibility –
if we need to add a new type of devices or rules that the
language should support, this process would be as simple as
possible, and the changes wouldn’t change the overall
language structure.

III. ULNSP FORMALIZATION

For ULNSP formalization we use generative grammar G,
which defines the rules for constructing sentences of the
language G = (T, N, S, R) [4], where T - a finite nonempty
set - the terminal vocabulary (its elements are called
terminal symbols TS); N - a finite nonempty set - non-
terminal vocabulary (its elements are called non-terminal
symbols); S - selected item of non-terminal vocabulary, so-
called start symbol or axiom of the grammar; R - nonempty

finite set of rules (productions), each of which has the form
α → β, where α and β - chains on the dictionary T ∪ N. In
addition it is compulsory that T ∩ N = ∅.

The chain β is directly derivable from the chain α in the

grammar G (designated by α β), if the chain α can be
represented as a concatenation of the three chains β = µξν
(some of them may be empty), chain β can be also
represented as a concatenation of three chains β = µξν and
grammar G contains the production τ → ξ. Symbol

denotes the binary relation on the set of all chains over
the union of the vocabularies T ∪ N. The chain β is directly
derivable from the chain α in the grammar G (designated by
α β), if in grammar G exists a finite set of strings

, n>0 such that α = π0, πn = β for all i = 1,…, n
holds . Symbol denotes the reflexive

transitive closure of .
Formal language generated by G is a set of chains

composed of TS of the grammar and the vocabulary derived
from the grammar’s start symbol:

L(G) = {α ∈ T*: S α}.
It is important to note that, in general, one language can

be generated by different grammars.
Here an example of ULNSP grammar. The non-terminal

N and the terminal T vocabularies should be defined:

N = {policy rule, identifiers, actions, functions, params,
separators, permit action, deny action, traffic filtration,
address translation, routing, interface, data link layer,
network layer, transport layer, protocol ethernet, protocol
IP, protocol ICMP, protocol TCP, protocol UDP, Ethernet
params, IP params, ICMP params, TCP params, UDP
params, address translation params, routing params,
interface params, IPv4 addresses, IPv4 mask, Destination
MAC, Source MAC, Type, MAC address, Version, IHL,
Type of Service, Total Length, Identification, IP Flags,
Fragment Offset, Time to Live, Protocol, Checksum, Source
Address, Destination Address, Options, Source Port ,
Destination Port, Sequence Number, Acknowledgment
Number, Data Offset, Reserved, TCP Flags, Window,
Checksum, Urgent Pointer, Options, Length, Code, internal
name, external name, local address, global address,
interface ID, destination address, gateway, interface name,
interface address, security level}
T={0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,
w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,W,X,Y,

Z-,.,_,(,),*},
or in another words T consists of characters with ASCII
codes from 33 to 126. In N a policy rule is an axiom of G.

Fig. 2 shows the scheme of ULNSP rules construction.
This diagram is not a formalized method of representation
of a grammar, but we use this figure in order to make an
understanding of the language easier. Set of productions R
can be found in Appendix.

137

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

The grammar of ULNSP is context-free. This grammar
type is widespread in computer science and there are a lot of
relatively efficient parsing algorithms that are applicable to
detect chains of languages generated by context-free
grammars.

IV. ULNSP SYNTAX AND SEMANTICS EXAMPLES

To block all traffic coming to the router’s interface eth0
from the host with the address 192.168.1.1 to the host with
the address 10.1.1.1 the rule in ULNSP will be as follows:

eth0 deny IP (192.168.1.1 10.1.1.1), or
eth0 deny IP 192.168.1.1 10.1.1.1

The following rule allows the transfer of TCP packets
from the network 192.168.1.0/24 to the 80th port of the host
with the address 10.1.1.2 on eth1 interface of the firewall:

eth1 permit IP (192.168.1.0/24 10.1.1.2) TCP (* 80), or
eth1 IP (192.168.1.0/24 10.1.1.2) TCP * 80

The following rule blocks all ICMP traffic via eth1:
eth1 deny ICMP

The following rule blocks TCP packets with FIN, URG
and PSH flags to the host with the address 10.1.1.3 through
the interface eth0 on NSA:
eth0 deny IP (* 10.1.1.3) TCP (* * * * * * FIN URG PSH *

* *)
The rule for network address translation of the addresses

192.168.1.0/24 on the interface eth0 to addresses
10.1.1.0/24 on eth1 looks like that:

NAT (eth0 eth1 192.168.1.0/24 90.1.1.0/24), or
NAT eth0 eth1 192.168.1.0/24 90.1.1.0/24

For a static address translation 192.168.1.2 in the address
10.1.1.2 you can use the following rules:

NAT eth0 eth1 192.168.1.2 90.1.1.2
Translating of the address range 192.168.1.1 -

192.168.1.10 into the address 10.1.1.1 can be expressed by
the following rule:

NAT eth0 eth1 192.168.1.1-192.168.1.10 10.1.1.1
As can be seen from the above examples of usage, ULNS

has a convenient syntax and intuitively obvious semantics.

V. NLNSP TRANSLATOR

The main goal of NLNSP development is to create a
universal interface between a human and NSA. It is obvious
that the language itself has no practical applicability,
because all ISPR, described in it, in fact, are a formal
expression of rules defined in any natural language. In order
to make the language applicable to the real devices a
translation system is needed. The functions of this system
include establishing a connection (telnet, ssh and so on) to
the device; identifying the device, its version and
functionality; translating NSPR from ULNSP into
commands of a particular device; performing additional
device configuration (if necessary).

Thus, in the ideal case, this system allows to use the same
unified set of NSPR for all NSA with the required
functionality making all required settings to adjust them in

accordance with NSP. In reality it is almost impossible to
cover all the existing diversity of devices of different
manufacturers, types and versions, so the main challenge in
this case is to support as many systems as possible.

The final result of the development is a software product,
which allows to configure NSA by implementing NSP
described in ULNSP. A security administrator will be able
to set up a device in accordance with NSP, without being
dependent on manufacturer of this device.

Let us consider the main convenience of the system.
When designing a network security system for a
corporation, the requirements come from its ISP. In fact it
doesn’t matter what kind of device is applied in a particular
part of a network. It is important that this solution should
have required functionality. Because the basic ULNSP
concept is a function-based approach for formalization of
the rules, it won’t be a problem to formulate NSPR using
the language. For configuring any NSA in accordance with
the policy it is just necessary to connect to this device using
the proposed system and input ISPR in the unified language.
All necessary settings will be done automatically by the
system.

VI. CONCLUSION

The main peculiarities of created ULNSP are context-free
grammar and its extensibility. The function-based approach
in rules formalization used allows to add new types of rules
easily. Inherently, any policy rule formalized in ULNSP
describes security function policy (defined in ISO/IEC
15408 [5]). The language also provides convenient syntax
and intuitively obvious semantics. For example, all
parameters for TCP traffic filtration rules follow RFC 793
[6].

ULNSP translator will help to automatically configure
NSA in accordance with the corporate ISP by implementing
the corresponding rules described with the language. For
this purpose it is just necessary to know IP-address of the
device and ISPR in ULNSP.

Today, ULNSP and its translator support a basic set of
NSPR for firewalls and routers. The future challenge for the
development is an extension of the set of rules that could be
formalized with ULNSP such as rules for IDS/IPS systems,
DLP systems, VPN rules and so on.

REFERENCES
[1] http://www.checkpoint.com/products/smartcenter/smartcenter_manag

manag.html (last access date 16/03/2011)

[2] http://www.cisco.com/en/US/products/ps6498/index.html (last access
date 16/03/2011)

[3] http://activeworx.org/programs/idspm/index.htm (last access date
16/03/2011)

[4] Karpov Y.G. Fundamentals of translators design. - St.Petersburg.:
BHV, 2005 (In Russian).

[5] ISO/IEC 15408 Information technology - Security techniques -
Evaluation criteria for IT security.

[6] RFC793 - Transmission Control Protocol.

138

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

APPENDIX

Set of productions R:
1) policy rule→ identifiers, separators, actions,
separators, functions
2) identifiers→ α|ε
3) separators→ « »
4) actions→ permit action | deny action
5) permit action→ permit|ε
6) deny action → deny
7) functions→ address translation | routing | interface |
traffic filtration
8) address translation n→ NAT, (, address translation
params,)
 address translation → NAT, separators, address
translation params
9) address translation params → internal name,
separators, external name, separators, local address,
separators, global address
10) internal name→ α; external name→ α
11) local address→ IPv4 address, IPv4 mask
local address→ IPv4 address, -, IPv4 address
12) global address→ IPv4 address, IPv4 mask
global address→ IPv4 address, -, IPv4 address
13) IPv4 address→ β1.β2.β3.β4

14) Pv4 mask→ /ξ|ε
15) routing→ Route, (, routing params,)
routing → Route, separators, routing params
16) routing params→ interface ID, separators,
destination address, separators, gateway
17) interface identifier→ α
18) destination address→ IPv4 address, IPv4 mask
19) gateway→ IPv4 address
20) interface→ Interface, (, interface params,)
interface → Interface, separators, interface params
21) interface params → interface ID, separators,
interface name, separators, security level, separators,
interface address
22) interface name→ α|*
23) security level→ τ|*
24) interface address→ Адреса IPv4, Маска IPv4|*
25) traffic filtration→ data link layer | network layer |
transport layer |

data link layer, separators, network layer |
data link layer, separators, transport layer |
network layer, separators, transport layer |
data link layer, separators, network layer,

separators, transport layer
26) data link layer→ protocol Ethernet
27) network layer → protocol IP | protocol ICMP
28) transport layer→ protocol TCP | protocol UDP
29) protocol Ethernet→ Ethernet, (,Etherne paramst,)
protocol Ethernet→ Ethernet, separators, Ethernet
params
protocol Ethernet→ Ethernet

30) Ethernet params→ Destination MAC, separators,
Source MAC, Type
31) Destination MAC→ MAC address|*
32) Source MAC→ MAC address|*
33) MAC address→ σ1σ2:σ3σ4:σ5σ6:σ7σ8:σ9σ10:σ11σ12

34) Type→ 0xσ1σ2|β1|*|ε
35) protocol IP→ IP, (, IP params,)
protocol IP→ IP, separators, IP params
protocol IP→ IP
36) IP params → Version, separators, IHL, separators,
Type of Service, separators, Total Length, separators,
Identification, separators, IP Flags, separators, Fragment
Offset, separators, Time to Live, separators, Protocol,
separators, Checksum, separators, Source Address,
separators, Destination Address, separators, Options
IP params → Source Address, separators, Destination
Address
37) Version→ 0xσ1|φ|*
38) IHL→ 0xσ1|φ|*
39) Type of Service→ 0xσ1σ2|β1|*
40) Total Length→ 0xσ1σ2σ3σ4|η|*
41) Identification→ 0xσ1σ2σ3σ4|η|*
42) IP Flags→ θ|*
43) Fragment Offset→ η|*
44) Time to Live→0xσ1σ2|β1|*
45) Protocol→0xσ1σ2|β1|*
46) Checksum→0xσ1σ2σ3σ4|η|*
47) Source Address→ IPv4 address, IPv4 mask | IPv4
address, -, IPv4 adress|*
48)Destination Address→ IPv4 address, IPv4
address|IPv4 address,-, IPv4 address|*
49) Options→ 0xσ1σ2σ3σ4σ5σ6σ7σ8, Options|ε|*
50) protocol TCP→ TCP, (,TCP params,)
protocol TCP→ TCP, separators, TCP params
protocol TCP→ TCP
51) TCP params → Source Port , separators, Destination
Port, separators, Sequence Number, separators,
Acknowledgment Number, separators, Data Offset,
separators, Reserved, separators, TCP Flags, separators,
Window, separators, Checksum, separators, Urgent
Pointer, separators, Options
TCP params → Source Port , separators, Destination
Port
52) Source Port→ η|>η|<η|η1-η2|*
53) Destination Port→ η|>η|<η|η1-η2|*
54) Sequence Number→ 0xσ1σ2σ3σ4σ5σ6σ7σ8|ν|*
55) Acknowledgment Number→ 0xσ1σ2σ3σ4σ5σ6σ7σ8|ν|*
56) Data Offset→ 0xσ1|φ|*
57) Reserved→ χ|*
58) TCP Flags→¥| χ|*
59) Window→ 0xσ1σ2σ3σ4|η|*
60) Urgent Pointer→ 0xσ1σ2σ3σ4|η|*
61) protocol UDP→ UDP, (, UDP params,)
protocol UDP→ UDP, separators, UDP params

139

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

protocol UDP→ UDP
62) UDP params → Source Port, separators, Destination
Port, separators, Length, separators, Checksum
UDP params → Source Port, separators, Destination
Port
63) Length→ 0xσ1σ2σ3σ4|η|*
64) protocol ICMP→ ICMP, (, ICMP params,)
protocol ICMP→ ICMP, separators, ICMP params
protocol ICMP→ ICMP
65) ICMP params → Type separators, Code, separators,
Checksum
66) Code→ 0xσ1σ2|β1|*
where α – a finite chain of TS on the dictionary
{ 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,
w,x,y,z,-,_} ⊂ T;

βi – string of TS belonging to the set {0,1,2,3,4,5,6,7,8,9,
10,11,12,…,253,254,255} ⊂ T;
ξ - a chain of TS belonging to {1,2, …, 32}⊂ T;
τ - a chain of TS belonging to the set {0,1,2, …, 100}⊂ T;
σi – a terminal symbol belonging to the set {0,1,2, …, 9,
A, B, C, D, E, F}⊂ T;
φ - a chain of TS belonging to {1,2, …, 15}⊂ T;
η - a chain of TS belonging to {1,2, …, 65535}⊂ T;
θ - a chain of TS belonging to the set {1,2, …,7}⊂ T;
γ - a chain of TS belonging to the set {0,1,2, …,31}⊂ T;
ν - a chain of TS belonging to the set {0,1,2, …,
4294967295}⊂ T;
χ - a chain of TS belonging to the set {0, 1, 2, … ,63}⊂ T;

¥ - a sequence consisting of space-separated distinct
elements of {URG, ACK, PSH, RST, SYN, FIN}.

Figure 2. ULNSP rules construction.

140

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

