
Weighted Fair Resource Sharing Without Queuing
Delay

Benedek Kovács
Budapest University of Technology and Economics

H-1111, Egry József u. 1
Budapest, Hungary

kovacsbe@math.bme.hu

Abstract—This paper presents a new method that provides
weighted fair sharing without queues and delay while outper-
forming traditional traffic throttling mechanisms. A mathemati-
cal description and model is presented to justify the findings and
to provide better knowledge about traffic throttling characteris-
tics. Simulation, numerical results and statistical discussion are
also presented to underpin the findings especially where exact
mathematical results are not or just partly available.

Keywords-Network management; Service level agreement;
Overload control; Traffic shaping; Fair sharing; Maximal
throughput

I. INTRODUCTION

There are many overload and congestion control and load
sharing problems to be solved in telecommunication networks
of various kinds e.g., in the Internet Multimedia Subsystem.
Considering any type of network and signalling protocol a
protocol operation flow consists of messages. The network
nodes are entities receiving these messages and they process
them using their resources such as CPU capacity or memory. If
they lack the resource to process an offered message then the
node is overloaded. Similarly, in packet switched networks,
congestion control and fair resource (link bandwidth) sharing
aims to keep the system utilizing its resources at its rated
capacity while providing satisfactory service for the users and
quality of service for service classes.

Many overload control mechanisms are developed to avoid
overload and congestion situations. In some of them the
target node (the critical resource) itself can deny to serve
the request/forward a packet or sometimes reject/drop (send
a negative reply message using minimal resources/ignore) it
(see Figure 2). Another solution is that the sender (source)
does not send out the message if it knows for some reason
that the target will not be able to serve it. This information
can be hard coded or can be gained from measurements by the
source itself or gathered via special messages from peers (see
Figure 1). In all cases i.e. in all overload control mechanisms
there is a decision point and logic that decides to reject or
admit/send out the request. This entity is called the throttle
which is in the center of our interest. We suppose that the
control information and the requirements on the behavior are
available and up to date for the throttle. (Such information
is to be gained with measurement or with some closed/open

loop control mechanism. It has a large literature and is out of
the scope of this paper to examine the characteristics of such
mechanisms.) The throttle itself can be physically located in
the target as Figure 2 shows, in the source or might also be
distributed in multiple sources as Figure 1 shows.

target

GW1

GW2

Network A

Network B

control info

control info

Network N

Fig. 1. A scenario where two operators A and B share a common core
network N. The Gateways associated to each network implement distributed
throttling to prevent the central nodes (target) to get overloaded. The central
node—or any overload control agent— distributes control information to the
Gateway Nodes to ensure fair service of requests from networks A and B
while keeping maximum utilization of Network N.

The throttle entity discussed here is one very important and
well defined part of overload control systems of any type as
it has the role to reject (or drop) an offer or to let it go
through i.e., admit it. When a throttle realizes a call gapping
mechanism it makes the decision based only on previous offers
thus no offers in the future are examined. (Call gapping means
that calls are not admitted for a given period of time based on
some measurements and collected information.) In our case
the non-anticipative throttle is not allowed to delay an offer
and only one offer arrives at a time i.e. the call gapping
mechanism cannot buffer the offer and admit it later than it has
arrived. This makes a fundamental difference from Weighted
Fair Queuing and mechanisms like those in [4], [3]. Weighted
fair resource sharing with no delay and maximum utilization
is the main advantage of the method introduced and discussed
in this paper.

For the sake of clarity, definition of terms and word usage
is presented here:

57

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

cable

dropped

th
ro
ttle

Fig. 2. The throttle is implemented in the Base Station and applied to
avoid congestion on links when multiple users are sharing media in a small
cell. Users not sharing media are also given a minimum share to be able
to communicate. The throttle at the base station should select wisely which
packet to be dropped and which to forward.

• The throttle decision function is a function mapping
from the offer load point process to the set {admission,
rejection}. (Each throttle is uniquely assigned a function
γ that transforms the intensity process ρ(t) of the in-
come process to an intensity process of the admissions
γ(ρ(t)) = a(t). [9])

• An offer is the event for which the throttle has to decide
on admission or rejection. If an offer is admitted it cannot
be rejected (dropped) and vice versa, and there is no third
possibility. An offer has properties: arrival time, priority
level and class that can be measured.

• The traffic class and the priority level sets have finite
elements.

• The offered traffic (or offer load) is the flow of offers
modeled with a progressively measurable not necessarily
stationary point process marked with the marks from the
mark space that is the direct product of the set of priorities
and classes. (This implies that the probability of two offer
events occurring at the same time is zero.)

• The admitted traffic (or throughput) is the flow (i.e. the
point process) of admitted offers (offers for which the
throttle yields admission). The flow of admitted offers
can be conditioned upon the whole history (past) of the
offer load flow and upon the throttle parameters and
undoubtedly on the decision strategy.

The above assumptions and definitions are natural and
obvious and also necessary to make the discussion clear.

The typical verbal definitions of the requirements we inves-
tigate the different throttles against are given here preliminary.
They are not precise and many contradict and can have multi-
ple exact (i.e. mathematical) definitions with different results.
In this paper we give exact definitions of these requirements:

• Requirement-A Maximal throughput with bound: No
offer should be rejected if there is enough available
capacity in the system to serve it, but no offer should
be admitted if there is not enough available capacity to

serve it in the system.
• Requirement-B Priority levels: Each offer may be as-

signed a priority level and the offer with higher priority
shall be admitted in favor of the one with the lower
priority level.

• Requirement-C Throughput share for traffic classes: The
offers can be classified and for the traffic class i the si
portion of the capacity of the target shall be provided.

The three requirements are associated with three behavior
aspects. We propose a so-called rate based call gapping
mechanism and compare it with Token Bucket [7] against
Requirement-A and Requirement-B.

In Section II, we introduce traffic throttling mechanisms,
namely the Token Bucket and the rate based call gapping. Then
in Section III, the new call gapping mechanism is proposed and
it is shown how it meets the requirements. We also show how
it can be extended with the original Token Bucket concept,
achieving similar throughput characteristics to the original
algorithm while keeping the good properties of the introduced
one. In Section IV we present our simulations and some figures
about the offer and admission traffic flows with the three
mechanisms. Using statistics we show how each mechanism
meets Requirement-B.

II. CLASSICAL REQUIREMENTS IN A QUEUE-LESS
ENVIRONMENT

A. Traffic throttling, priority handling and weighted fair shar-
ing

Many call gapping mechanisms have been developed for
different purposes with different characteristics. One of the
most important call gapping algorithms is the Crawford algo-
rithm [5] but one of the most widely implemented solutions is
Token Bucket call gapping mechanism defined in the Overload
Control Standard H.248.11 [13].

1) The Token Bucket with parameters (r,W): The Token
Bucket call gapping mechanism is the following: there is a
bucket of available tokens representing available resources
(free capacity) of the system. Requests are offered to the
system and each of them is assigned a number of tokens
needed i.e., the amount of resources it requires to be served.
Once there are enough tokens in the bucket the request is
admitted or dropped. (Thus no queues are applied and no
delay is present in the system because of the Token Bucket
call gapping algorithm.)

By the definition of the original Token Bucket the tokens
are generated into the bucket with exponential distribution and
the offers arrive with a Poisson process in most of the models
that means, the time interval between the consecutive arrivals
is also exponentially distributed. We analyze and describe such
a variant.

Firstly we mention that decision about serving a request are
often implemented differently. The most important difference
is in the interpretation: rather than consuming the tokens the
bucket fill b is increased when a request arrives. The token
generation is then realized with decreasing the bucket fill. The
maximum fill is the watermark W that cannot be exceeded and

58

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

also the bucket fill can not be lower than 0. This concept is
equivalent to the original algorithm.

Secondly we consider deterministic token generation instead
of the exponential one that is used in most cases (e.g., [13]),
because it is much easier to implement and sometimes to
analyze, as well.

Then the Token Bucket mechanism we discuss works as
follows: When a new request arrives at tn than the needed
bucket fill is calculated: b(tn) as if the request was served.
This is done with calculating the expected number of tokens
that would have been generated from the time when the former
service was served (tn−1) then multiply it with the throughput
capacity of the bucket i.e., the Token Bucket rate at tn: r(tn)
and subtract it from the former bucket size at b(tn−1). Then
it tests it against the preset constant watermark: W .

Definition 1: Token Bucket call gapping strategy γt(r,W).

b(tn) = max{χ(t), b(tn−1)−r(tn−1)(tn−tn−1)+χ(t)}, (1)

where χ(t) = 1 iff there is an offer. Admit if b(tn) ≤ W . If
the offer is admitted, the above definition is used for the next
value of the bucket fill b. If the offer is rejected, then b(tn) is
recalculated with χ(t) = 0.

In many solutions the offers for the bucket can be of
different types with different resource needs thus Siχi(t) is
used for update, where Si is the so-called “splash amount”
i.e., the expected number of tokens needed to serve the request
of type i. From now on we suppose that Si = 1, since
the calculations would be much more difficult without any
qualitatively different result with respect to the requirements
we consider now.

2) Rate based call gapping: One obvious solution to regu-
late traffic is to limit the admitted offers in a given time frame.
The Crawford algorithm worked as follows: for each time
period T when the number of offers reached a certain number
c, the capacity of the target, no other offers are admitted in
the given period. This introduced bursts in traffic thus not
preferred in most cases.

The idea and our proposal is to maintain an estimate of
the traffic intensity ρ̂ updated at each tn an offer arrives. The
provisional admission rate estimate â(tn) is also calculated
and then compared to some goal function g(tn), say the actual
maximal throughput rate c(tn). Iff â(tn) ≤ g(tn) then the offer
is admitted.

The essence of such a mechanism lies in the way how the
estimates are calculated and how g(tn) is determined. The first
statistics that can be used and examined as an estimate for the
intensity of a point process is the simplest first moment type
estimate:

Definition 2 (Periodic intensity estimate):

λ̄(tn;T) :=
N(tn)−N(tn − T)

T
if tn ≥ T

N(tn)

tn
if tn < T (2)

λ̄(0;T) := 0

To calculate the value of the periodic intensity estimate one
has to maintain all t < ti ≤ t− T event times and it is often
too resource consuming thus not feasible in real time systems.
An adaptive estimate is often preferred and introduced by
patent [14] to control network traffic. The definition is the
following:

Definition 3 (Dynamic intensity estimate):

λ̂(tn;T) := max{ 1
T ,

T λ̂(tn−1;T)−(tn−tn−1)λ̂(tn−1;T)+1
T },

λ̂(t0;T) := 0. (3)

We do not want to go into details of intensity estimation of
inhomogeneous point processes in this paper.

B. Priority handling with Token Bucket and Rate-based call
gapping

At first we would like to clarify that once the offered
traffic is modeled with a point process and the throttle meets
Requirement-A we cannot provide priority between the of-
fers. Why? Suppose that we have an offer in the system and
we have to decide if we should admit it or not. Requirement-
A tells us to admit the offer if we have the capacity to serve it.
Suppose that this is the case and see that if the throttle would
not admit the current offer to reserve this capacity for offers
of higher priority then it might happen that there will be no
higher priority offer in the future and the throttle would suffer
a loss of workload.

1) Priority handling with Token Bucket: However, giving
up the maximal throughput requirement with turning it into an
efficient-enough requirement, some priority handling naturally
can be done. In the Token Bucket concept different watermarks
are assigned to each priority level. The offers of lower priority
are checked with a lower watermark. This means reserving a
set of tokens (system resources) to the higher priority traffic.
This method violates Requirement-A whenever b(t) declines
to 0 before rejecting an offer. Whenever this event has a low
probability, using different watermarks for different priority
levels is a good solution to meet Requirement-B with a Token
Bucket throttle.

This is a strict priority handling in the sense that when
possible, resources are always reserved for higher priority
offers. The probability of rejecting an offer on a given priority
level is given by a formula which is, together with other
regulation properties, discussed in [10].

2) Priority handling with rate based call gapping only: For
rate based call gapping mechanisms the above solution cannot
be applied but less strict priority handling can be achieved
using the dynamic intensity estimate 3 with different settings
of parameter T .

The dynamic estimate is asymptotically unbiased with low
variance proving its usability and also, the dynamic one
often performs better than the most commonly used periodic
estimate 2. Such discussion is pure mathematics thus out of
the scope of this article.

It can be also proved that the expected bias of the dynamic
estimate 3 is lower than the real intensity and this property is

59

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

monotonous in T . More exactly, at each tn an offer arrives
if T1 < T2 < ∞ then E[λ̂(tn;T1)] < E[λ̂(tn;T2)] <
E[λ̂(tn;∞)] = λ(tn). The load is thus slightly underesti-
mated, but the more likely the load is underestimated the more
likely the offer is admitted i.e., higher priority offers should
have lower T parameter and Requirement-A is met.

C. Weighted fair sharing

Fair sharing is about the differentiation between offers on
the same priority level. (Note that traffic classes are not the
same as priority levels.) Suppose a scenario like Figure 1
where the resources of Network N should be equally split
between the two contractors while emergency (priority) calls
still have to be served. In our other example minimal share for
different data types should be achieved on limited bandwidth
while it is allowed that there are some priority e.g., time critical
packets such as voice, video, media, etc.

The solution in an environment without queues proposed in
this paper is rather straightforward: one should measure the
incoming rates for each class and check each offer against on-
line calculated goal levels. The goal throughput rates can be
adjusted dynamically according to the weighted fair sharing
agreements and also according to the maximal throughput
requirements.

The problem with the solution using Token Bucket only is
that it does not measure the incoming traffic rates. (Using the
bucket fill instead of measurement gives false result.) However,
using any kind of rate based call gapping method the problem
is solved. One can also measure the incoming rates for each
class with the estimates presented above and set the bucket fill-
up rate r according to the desired goal levels but this is already
a combination of the methods. A solution for the network level
case is proposed in the GOCAP standard [11].

III. WEIGHTED FAIR SHARING WITH NO DELAY

In this Section our new method, the proposed fair sharing
method with no delay is presented. At first we introduce the
complete proposed procedure clearly. Then we discuss and
prove how it satisfies all the requirements and what possible
extensions, modifications or other solutions might result in a
similar good algorithm. At the end of the discussion we present
the relationship between the new method and the original
Token Bucket algorithm.

A. The new call gapping algorithm γg(c, T, g, s)

Suppose that the consecutive offers arrive to the throttle at
... < tn−1 < tn < tn+1 < ... time instants respectively. Each
offer has a well defined priority level j, j ∈ 1..J and traffic
class i ∈ 1..I . Each priority level j has a priority parameter
Tj assigned (Tj ≥ Tk) if the offer with priority k has the
higher priority and each traffic class has a pre-configured
weight i 7→ si ∈ (0, 1) ⊂ R, (where

∑
si = 1). For each

i the algorithm maintains an estimation of the incoming offer
rate ρ̂i(t), a provisional admission rate α̂i(t) from which it
calculates a bounding rate gi(t) and then according to the
decision it estimates an admission rate âi(t).

We suppose that the rate of the throttle varies with the
following function: c(t). (This value is determined and given
for the algorithm and represents the capacity of the throttle
and might be different from r(t)).

Definition 4: Define the proposed throttle decision strategy
γg in the following way. Let us suppose that at tn an offer
arrives and the system is in state {tn−1, ρ̂i(tn−1), âi(tn−1)}
and c(tn):

1) Determine priority constants i.e., calculate Tj ;
2) Update the incoming rates estimated for all i classes:

ρ̂(tn) with χk(tn) = 1 iff i = k, 0 otherwise;
3) Calculate a provisional admission rate for all i: â(tn)

with χk(tn) = 1 iff i = k, 0 otherwise;
4) Calculate the bounding rate for class i only: gi(tn);
5) If α̂i ≤ gi then admit the offer and a(tn) := α(tn) else

reject the offer and update α̂(tn) with χk(t) = 0,∀k(!);
6) (Continue with 1. for the next event).
We propose to update ρ̂i, α̂i, âi according to the following

equation:

λ̂(tn) :=
χ(tn)

Tj
+max{0, Tj λ̂(tn−1)− (tn − tn−1)λ̂(tn−1)

Tj
},

(4)
where λ̂ is an estimator asymptotically unbiased for the λ(t)
real intensity of a point process thus to be replaced by ρ̂i, α̂i, âi
and indicator χi(tn−1) = 1 iff the offer is of type i and 0
otherwise (or further specified like in step 5). Note that the
time parameter Tj changes in time as well according to the
priority level and that the former always has to be remembered.

To calculate the bound rate we introduce u(t) the provi-
sional used capacity according to Requirement-B:

u(t) :=
∑
∀i

min{sic(t), ρ̂i(t)} (5)

=
∑

ρ̂i(t)≤sic(t)

ρ̂i(t) +
∑

sic(t)<ρ̂i(t)

sic(t)

Thus the remaining (unused) capacity in the system is c(t)−
u(t). This has to be split between traffic classes with higher
incoming rate then the agreed share ρ̂i(t) > sic(t). Then

gi(t) := min{ρ̂i(t), sic(t)+(ρ̂i(t)−sic(t))
c(t)− u(t)

ρ− u(t)
}. (6)

It is important to see that our method is capable to handle
other class-wise throughput criteria than fair sharing and
maximal throughput. Giving upper or lower bounds for g one
can implement fairly complex throttle mechanisms.

As one can see the new method is more complex than the
original token bucket mechanism. However, the processing
cost of updating the few variables introduced is significantly
smaller than processing the offers, thus it does not count even
in case of overload.

B. γg meets all the requirements

Now that the strategy is introduced we prove that it meets all
the requirements. We define each requirement mathematically

60

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

then we show how they are satisfied. We introduce some
notation to make the discussion clear.

• c(t) represents the true capacity of the system expressed
in rate, deterministic and coming from an external input
source.

• ρ(t) is the real intensity of the offered traffic and ρ̂(t) is
its estimate with (4).

• a(t) is the real intensity of the admitted traffic and â(t)
is the estimation of the intensity with (4).

• α(tn) is the preliminary admitted traffic intensity for
which the following stands: α(t) = a(t),∀t < tn, and
α(tn) is the intensity a(tn) would have if the offer was
admitted at time tn, and its estimate is α̂(t) accordingly.

1) Requirement-A : This requirement consists of two parts.
Firstly, it says that there exists an upper bound for the system
that should not be exceeded i.e., it limits the admission rate to
avoid overload. Secondly, it tells us that once the limit is not
exceeded then all the offers should be admitted to maximize
the utilization. However, in theory the words capacity and
bound can have many different definitions depending on the
model we use for the target node.

The target node is often modeled with an inverse Token
Bucket, i.e., a server with deterministic serving rate s and
a queue of maximal length Q. It is very easy to see that
the Token Bucket throttle γt(s,Q) can perfectly meet the
requirement in this case. (Note that this is only true supposing
that there is no delay in the system between the throttle and
the protected entity while s(t) = r(t) is satisfied.)

Another approach is to assume that the target can handle
requests on a maximal call rate c that is used as the bound at
the throttle.

Both models have benefits and drawbacks while a mixture
of them is used in practice. Speaking about the capacity of
a node in Next Generation Networks engineers often refer to
the call rate value in industrial contracts and Service Level
Agreements. It is very important to note that the feedback
driven overload control mechanisms work with call rate infor-
mation too (see [13]). On the other hand a server with queue
is a common model in the academic literature for the CPU
capacity and Token Bucket (or versions of it) is proposed in
many standards (e.g., [13] again) and implemented into nodes.

As a consequence we say that although it is rather difficult
to give an exact definition for Requirement-A we can give a
certain definition grabbing a few properties depending on the
method we use.

Definition 5: Call rate bound. Requirement-A is met if∑
E[ai(tn)] ≤ c(tn) (the throughput rate is bounded in

expected value).
Theorem 1: The throttle with strategy γg meets the call rate

bound requirement.
Proof: The proof relies on the fact that the estimator is

asymptotically unbiased i.e., limT→ +∞ E[â;Ti] = E[ai] with
negative bias if T ≥ 1/ai (thus E[âi] < E[ai]). The proposed
strategy γg limits ai in a way that ai ≤ gi, thus showing
g(t) :=

∑
gi(t) = c(t) competes the proof.

Define u1(t) :=
∑

i:ρ̂i(t)<sic(t)
ρ̂i(t) and u2(t) :=∑

i:sic(t)<ρ̂i(t)
sic(t) thus u = u1 + u2 and then gi =

min{ρ̂i, sic + (ρ̂i(t) − sic(t))
c−u
ρ−u}. Although the system is

non-stationary it is homogenous in time so f(t) = const. for
all functions. Now calculate g(t):

g =
∑

gi =
∑

min{ρ̂i, sic+ (ρ̂i − sic)
c− u

ρ− u
} =

=
∑

i:ρ̂i<sic

ρ̂i +
∑

i:sic<ρ̂i

sic+ (ρ̂i − sic)
c− u

ρ− u
=

g = u1 + u2 + (ρ− u1 − u2)
c− u1 − u2

ρ− u1 − u2
= c. (7)

Corollary 1: The following calculation of g can also be
used:

gi(t) = min{ρ̂i, sic(t) + (ρ̂i(t)− sic(t))
c(t)− u(t)

ρ− u(t)
}, (8)

where u(t) =
∑

i:ρ̂i(t)<sic(t)
ρ̂i(t) = α(t). Then (7) becomes:

g′ = u1 + u2 + (ρ− u1 − u2)
c− u1 − u2

ρ− u1 − u2
= c. (9)

The difference between the two strategies is that in case
of g the remaining capacity is split between the classes with
higher offer rates proportionally to their weights while using g′

the remaining capacity is split proportionally to the remaining
offer rates. Both satisfies Requirement-A and Requirement-
Cas we will show. From now on g means either g or g′ and
the results will be obviously the same.

2) Requirement-B: As pointed out before, the priority re-
quirement for call gapping is the most complex one in a way,
since in the gapping algorithms it is supposing that we make
decisions using measures on the past and the present offer.
No future events can be used, thus Requirement-B is always
satisfied. There is always one offer in the system and the
throttle can admit or reject it according to Requirement-A
and Requirement-B.

In the case of the Token Bucket call gapping, different
watermarks Wj are introduced for each priority level j. One
interpretation is that the bucket allows larger peaks for traffics
with higher priority, thus Wj < Wk whenever k represents the
higher priority level. Doing this, the bucket implicitly reduces
the throughput for lower priority traffics (the extra peak in the
bucket has to be refilled with tokens i.e., b(t) has to decline
below the low watermarks to admit low priority traffic). Note
that the different watermark levels have no effect if the offer
rate is low with small peaks thus the rejection probability is
small i.e., if there is no overload. Supposed that the true bound
is W = max{Wj}, this system preserves capacity for high
priority traffic.

We give a similar solution for the problem through the timer
parameter of the estimators: T . As defined above, we introduce
a function of T : j 7→ Tj where Tk ≤ Tj if k represents the
higher priority. (Note that it is the other way round for Wjs.)
The interpretation is that the estimator forgets the high offer

61

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

rates faster for the traffic of the higher priority. Let Tm =
min{Tj} the true bound on the throttle using different Tjs.
This means that for low priority traffic it remembers the high
peaks for a longer period, thus reserves capacity for the higher
priorities similarly to the Token Bucket.

The two methods have different characteristics, but one
thing is common. Both reserve capacity for higher priority
traffic. Now we say that to meet Requirement-B the system
has to have this ability and define it in the following way.

Definition 6: Requirement-B. Suppose that the throttle has
rejected an offer at time tn−1. Let tn;j be the closest time
the throttle is able to admit an offer of priority level j.
Requirement-B is met iff ∀k, l(tn;k ≤ tn;l) ⇔ (k ≥ l) (k
represents a higher priority).

The exact proof of this statement is not ready yet. The
simulation results show that the proposed strategy satisfies
Requirement-B. We discuss the statement in the Numerical
Results Section.

3) Requirement-C: This is referred to as the throughput
share requirement and tells us that there should be at least an
si portion of the capacity dedicated to traffic class i.

Definition 7: Requirement-C. The Minimum share re-
quirement is met if ∀i : (ρi(tn) ≤ sic(t)) ⇒ E[ai(tn)] =
ρi(tn) i.e., if the offer rate of a traffic class is less than the
agreed share, it should be fully admitted.

Theorem 2: The throttle with strategy γg meets
Requirement-C in expected value.

Proof: We have the asymptotical unbiasedness for our
estimators, thus limT→ +∞ E[ˆa;T i] = E[ai], meaning that
the proof is true for the expected value of ai.

Statement âi(tn) = ρ̂i(tn) whenever ∀iρ̂i(tn) ≤ sic(t) is
equivalent to the statement (gi(tn) ≥ α̂i(tn) thus) gi(tn) ≥
âi(tn) whenever ρ̂i(tn) ≤ sic(t). According to strategy γg:
gi(tn) = ρ̂i(tn) whenever ρ̂i(tn) ≤ sic(t) and since α̂i(tn) ≤
ρ̂i(tn) because âi(tn−1) ≤ ρ̂i(tn−1), it is true that α̂i(tn) ≤
gi(tn) thus the offer is admitted (and also âi(tn) ≤ gi(tn)).

C. Rate model for Token Bucket and a joint algorithm merging
the methods

In this section we introduce a model for Token Bucket that is
equivalent to the definition in Section II but makes calculations
easier.

Definition 8: Token Bucket Rate Model Strategy: γ̃t(r,W)
Let us define T (t) = W/r(t) and use the following equation
for updating the bucket rate variable:

ã(tn) =
χ(tn)

T
+max{0, T ã(tn−1)− (tn − tn−1)r(tn)+

T
}

where χ(t) = 1 iff there is an offer at time t. Admit the
offer iff ã(tn) ≤ r(tn). If the offer is admitted then the above
definition is the used for the next value of the bucket rate
variable ã(t). If the offer is rejected then ã(tn) is recalculated
with χ(t) = 0.

Theorem 3: The Token Bucket and the Token Bucket Rate
Model Strategy are the same: γt = γ̃t.

Proof: It is easy to show that b(tn−1) = ã(tn−1)T ⇒
b(tn) = ã(tn)T and the decision is b = T ã(t) ≤ Tr(t) = W
also trivial.

If one extends the Token Bucket for traffic class handling
with some role like in the proposed mechanism it will not
provide traffic class fairness. The reason is hidden in the
fact that unlike ρ̃, α̃, ã, β̃ and all such estimators is not
asymptotically unbiased i.e., E[λ̃] = λ as t → + ∞ is not
true for the estimators defined with:

λ̃(tn) =
χ(tn)

Tj
+max{0, T λ̃(tn−1)− (tn − tn−1)r(tn)

T
}.

(10)
The bucket fill does not represent at all the used capacity in

the system it only measures the peakedness of the traffic but
these peaks can happen on low offer rates too.

On the other hand, the proposed method does not allow
such big transient peaks in the traffic. Now we aim to make
the proposed new call gapping to behave like Token Bucket.
We define the following strategy that is a mixed architecture.

Definition 9: Rate Based Call Gapping with Bucket-type
Aggregate Characteristics: γx Take all the definition from
the new call gapping mechanism γg for ρ̂, α̂, â, u, gi and
define Tj(t) = Wj/r(t). Take Wj and the bucket fill change
definition b from the original token bucket γt. Perform all
the steps like in γg but decide using the following constraint
equation: b(tn)

Wj
âi(tn) ≤ gi(tn).

We will show numerically that the mixed algorithm behaves
like Token Bucket on aggregate level and meets all the
requirements. The source of the idea comes from the fact that
â(t) places a strict bound on the rate thus â(t) ≤ r(t) is always
true as required. However we decrease the value of â thus
allow peaks in the traffic like Token Bucket does. (See that
Token Bucket γt allows temporary bounding violation rate-
wise unlike γg but like γx. The bucket size related to the
whole bucket is a kind of measure of this violation.)

1) γt′ and γx and Requirement-A : Here we discuss
how the different algorithms meet the maximal throughput
requirement. It is obvious that Token Bucket cannot meet
Requirement-A in the way it was defined before since that
definition assumed that the target has an infinite queue.

We do not aim to give an exact definition to Requirement-
A but we derive relations between the bucket and the estimator
based throughput characteristics. The number of admitted
offers i.e., the probability of admission is in the center of our
interest.

The probability of admission for token bucket depends on
the offer rate with the following formula: 1 − Erlang[ρ, r].
Thus the probability of losing calls is only defined at given
values of ρ.

For rate based call gapping, since the estimator always over-
estimates the rate (λ < λ̂) and cuts the traffic strictly with c
the admission rate is always below the target. But for the same
reason it is possible that the offer is rejected although it could
have been accepted according to the bound. The probability of
this is the probability of estimating higher rate than c while the

62

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

true offer rate is lower: P [α̂ > c|α < c] = 1 − P [α<c−B[T]]
P [α<c] ,

where B[T] = 1/(T (1 − F [T]) + E[∆t|t < T]) − α is the
bias. (Knowing the exact bias if constant intensity is supposed
for the offer rate, the bound can be modified to have maximal
throughput and strict bound at the same time.)

The two methods can only be compared at a given value
of the intensity. For all those values when the value of the
intensity is not between c − B[T] and c the γg strategy
works perfectly. The Token Bucket drops a call with positive
probability for any value of the offer rate and also might admit
when the intensity is higher than allowed. This means that we
cannot tell which method is better or has the higher throughput
since it depends very much on the offer rate.

Theorem 4: The mixed strategy γx meets Requirement-A
with appropriate watermark settings.

Proof: It is shown in Theorem 1 that
∑

gi(t) = g(t) =
c(t) and since the definition of g was not changed we should
only examine what means to compare gi to b

Wj
â rather than

to â.
When we admit a request then 1 ≤ b(tn) ≤ Wj ≤ Wmax

thus 1
Wmax

âi ≤ 1
Wj

âi ≤ b(tn)
Wj

âi ≤ âi. This tells us that γx

lets through more messages than γg since E[b(tn)Wj
âi] ≤ E[âi].

Fortunately the maximal watermark limits this overflow error
1

Wmax
E[âi] ≤ E[b(tn)Wj

âi]. It tells us that there is a setting of
watermarks that guarantees bounding. (It is obvious that if
Wmax → + ∞ then b

Wmax
â becomes very small and we

always admit the request thus the theorem cannot be proved
for any watermark settings.)

2) γx and Requirement-B: Some simple theorems are
proved to show that the mixed strategy meets the priority and
the throughput share requirements.

Theorem 5: Token Bucket strategy γt meets Requirement-
B.

Proof: Obviously, the time to accept the next offer of
priority level j is the time when the bucket level declines
sufficiently to b(t) ≤ Wj . For all levels k > j, Wk > Wj i.e.,
b(t) declines under the lower threshold later in time and the
requirement is met.

Again it is rather hard to show that the mixed strategy
γx meets Requirement-B. However, it seems to be trivial
that γx satisfies Requirement-B more drastically than γt
does. We have interesting simulation results presented about
this property. We can see numerical results about this in
Section IV.

3) γx and Requirement-C:
Theorem 6: The mixed strategy γx meets Requirement-C.

Proof: As pointed out γx admits at least all the offers
γg does since ∀i, b

W α̂i ≤ α̂i is compared to sic while a
comparison of α̂ would be enough. This means that the
mixed strategy provides minimum throughput share and fulfills
Requirement-C.

IV. NUMERICAL RESULTS AND ANALYSIS

Although we have nice proofs on the good behavior of
the proposed rate based call gapping mechanism the complete

mathematical discussion about the differences and similarities
with Token Bucket is not ready yet. It is also true that
the requirements can be interpreted with definitions slightly
different from those we gave. Therefore, we would like to
present some simulation results and show that the findings are
valid.

The simulation is written in Mathemat-
ica [15] and a notebook is available at
http://www.math.bme.hu/ kovacsbe/rbcg/BENEDEK-KOVACS-
rate-based-call-gapping-PRELIMINARY-VERSION.nb as an
electronic appendix.

A. Requirement-A

The figure shows that all the mechanisms limit the admitted
offer rate while trying to keep the highest throughput. In this
scenario we examine the traffic on aggregate level i.e., there
is only one traffic class for which the capacity of the throttle
should be maximized and limited. The capacity is 1 offer/sec
for the simple simulation case while the average number of
offers per sec increases from 0.8 to 2 meaning that there is a
200% load on the node.

0 100 200 300 400 500 600

0.5

1.0

1.5

2.0

8Number<

Fig. 3. The new algorithm (γg) on aggregate level. (Black: nominal offer
rate, red: the token bucket’s, blue: γg’s, green: γx’s throughput.)

As it can be seen in Figure 3 all three mechanisms limit the
admitted traffic although Token Bucket allows considerable
peak at the beginning. (The size of the peak depends on the
parameters we set. Here the 1 offer/sec capacity is very small
compared to the watermark which is set to 10.) On the other
hand, rate based call gapping seems to under-utilize the system
while the joint mechanism seems to have the smoothest and
also maximal throughput.

After a total 600 offers from each traffic with the same
exact trajectory the results show that γt, γg, γx has admitted
415, 386, 404 number of calls respectively.

The problem with the mathematical discussion of maximal
throughput is that the results depend very much severely on
the value of the offer rate and capacity. It is only possible to
compare the mechanisms at given rates, which is useless for
real applications.

63

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

90 100 WH = 10 {0.,1.} {0.38,0.62} {0.01,0.99}
WL = 15 [.002,.002] [.015,.015] [.006,.006]

150 100 WH = 10 {0.2,0.98} {0.4,0.6} {0.05,0.95}
WL = 15 [.003,.003] [.007,.007] [.005,.005]

10 10 WH = 10 {0.,1.} {0.31,0.69} {0.,1.}
WL = 20 [.000,.000] [.014,.014] [.000,.000]

10 10 WH = 10 {0.5,0.5} {0.5,0.5} {0.5,0.5}
WL = 10 [.008,.008] [.009,.009] [.007,.007]

TABLE I
IN EACH ROW THE FOLLOWING QUANTITIES ARE PRESENTED

RESPECTIVELY: TOTAL OFFER RATE: ρ, MAXIMAL THROUGHPUT: c,
WATERMARK SETTINGS: WHIGH,WLOW WHILE Tj := Wj/c. THEN
PORTION IN REJECTED MESSAGES FOR TOKEN BUCKET, RATE BASED

CALL GAPPING AND THE MIXED MECHANISM RESPECTIVELY.

B. Requirement-B

To discuss Requirement-B we provide the reader with some
statistical results. The sample is generated with our simulation
program. Generally there are two priority levels: normal and
emergency calls. Each call is one of the two types with
1/2 probability. The means and the standard deviations are
presented of 100 samples with 10 000 offers handled in each
sample. The further setups for the simulation can be seen in
Table IV-B.

It can be seen that all three methods reject less offer from
those of higher priority but Token Bucket (γt) and the mixed
mechanisms (γx) enforce a more strict priority handling than
the simple proposal. Note that in case of sustained overload
(row 2) almost all dropped offers are the lower priority ones.

C. Requirement-C

The results tell explicitly that unlike the new rate based call
gapping proposal the original Token Bucket algorithm does
not meet Requirement-C. We consider a scenario when there
are two traffic classes Class A and Class B. The agreed share
for Class A is the 20% of the total capacity of the node while
the share for Class B is the remaining 80%. The offer rates
set for the simulator are exactly the inverse of this for the two
types of traffic.

The aggregate offer rate increases from 0.7 offers/sec to
2 offers/sec and reaches the scenario of 100% overload (the
capacity of the node is 1 offer/sec while the offered rate is
a 2 offers/sec on average). The offer rate of traffic Class B
is 0.4 i.e., it is still under its provided share, thus all such
calls are admitted. On the other hand, the whole remaining
capacity should be granted to traffic Class A and it should
be admitted on a higher level than the agreed share and only
those exceeding the capacity limit are to be rejected.

Figure 4 shows the behavior of the rate based call gapping
mechanism. With the proposed mechanism the minimum share
is guaranteed for traffic Class B (the admission line is around
the offered), while the requirement fails for Token Bucket.
With the proposed method there is no rejected message of
Class B, since it never offers on a higher rate than the
agreed share. The throughput of the throttle is limited but also
maximized, since Class A is granted all remaining capacity.

0 100 200 300 400
Number of offers

0.5

1.0

1.5

2.0

Rate Hmessage�secL
Showing that the proposed method meets Req-B.

Fig. 4. The new algorithm (γg) with two traffic classes. Black: aggregate
throughput rate, Red and Blue: the throughput rate of each traffic class, Solid:
throughput, Dashed (large): nominal capacity, required minimal throughput,
Dashed (small): nominal offer rates

V. CONCLUSION

We have presented a weighted fair sharing mechanism with
no delay and its extension with the original Token Bucket
to provide good network characteristics as well. These unique
mechanisms meet the maximal throughput with bound require-
ment, handle priority messages and offers, and give minimum
share for different traffic classes without using message buffers
or queues. New ways of measuring traffic intensities are also
proposed.

Examining the properties of the mechanisms we gave math-
ematical definitions of the three requirements and accompa-
nied the mathematical model with several theorems. Still, the
proof of priority handling is missing for the new methods, we
presented statistical analysis instead. We used simulation that
we implemented to underpin our proposal and findings.

Our rate based call gapping strategy can use different traffic
intensity estimators. It is still remains an open task to find the
optimal estimator and the optimal parameter setting of the
estimators considering Poissonian input traffic with variable
intensity or even a non-Poissonian (e.g., general renewal or
Hawkes type) input process. The mathematical background
on to prove the properties of the estimates of the intensity of
a point process is to be published in the near future.

64

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

VI. APPENDIX

Notations:

a, a(t) Real admission rate
â, α̂(t) Estimated admission rate
b, b(t) Actual bucket fill
c(t) Maximal capacity of the target (rate)
gi, gi(t) Goal rate for traffic class i
g, g(t) Sum of goal rates of all traffic classes
r, r(t) Token Bucket’s token generation rate
T Parameter of the estimator
Tj Parameter of the estimator for priority level j
u, u(t) Used capacity according to Requirement-B
W Watermark for Token Bucket
Wj Watermark for offers of priority level j
α̂, â(t) Estimated preliminary admission rate
β, β(t) Preliminary bucket size
γt The token bucket throttle function
γg The rate based call gapping throttle function
γg′ The variant of the rate based

call gapping throttle function
γx The rate based call gapping throttle function

with Token Bucket extension
λ, λ(t) Intensity (rate) of a Poisson process
λ̂, λ̂(t) Estimated rate (intensity)
ρ, ρ(t) Real offer rate
ρ̂, ρ̂(t) Estimated offer rate

ACKNOWLEDGEMENTS

The research was motivated by Ericsson Research Hungary
(Ericsson Telecommunications Hungary Ltd.) and the High
Speed Network Laboratory, and was partially funded by the
Hungarian Ministry of Culture and Education with reference
number NK 63066 and the National Office for Research and
Technology with reference number TS 49835. Special thanks
to János Tóth (Budapest Univ. of Tech. and Eco., Dept. of
Math. Analysis) for the careful reviews and support.

REFERENCES

[1] A. Demers, S. Keshav, and S. Shenker: Analysis and simulation of a
weighted fair queuing algorithm, Journal of Interworking Research and
Experience, pp. 3–26, 1990

[2] A. K. Erlang: “Solution of some problems in the theory of probabilities
of significance in automatic telephone exchanges”, Post Office Electrical
Engineer’s Journal 10 (1917–18), pp. 189–197.

[3] A. K. Parekh and R. G. Gallager: “A generalized Processor Sharing
Approach to Flow Control in Integrated Services Netwokrs: The Single-
Node Case”, IEEE/ACM Transactions On Networking, Vol. 1, No. 3, June
1993, pp. 344–357.

[4] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong: Scalable Architec-
tures of Integrated Traffic Shaping and Link Scheduling in High-Speed
ATM Switches, IEEE Journal On Selected Areas in Communications, vol
15, issue 5, pp. 938–950, 1997.

[5] K. E. Crawford: “Method of controlling call traffic in a communication
system”, U.S. patent, no. 4224479, 1980.

[6] L. Takács: “Introduction to the theory of queues”, Oxford University
Press, New York, 1962, pp. 186–188.

[7] M. A. Gilfix: Method for Distributed Hierarchical Admission Control
Across a Cluster, United States Patent, no. 0008090, 2006.

[8] P. P. Tang, Tsung-Yuan C. Tai: Network traffic characterization using
token bucket model, INFOCOM’99 conference proceedings, vol 1. pp.
51–62

[9] Y. Ogata: “The asymptotic behavior of maximum likelihood estimators
for stationary point processes”, Annals of Institute of Satatistics and
Mathematics, 30 (1978), Part A, pp. 243–261

[10] B. Kovács: ”Mathematical remarks on Token Bucket“, IEEE Conference
on Software Telecommunications and Computer Networks, 24-26 Sept.
2009, pp. 151-155.

[11] M. Whitehead: ”GOCAP – one standardised overload control for next
generation networks“, BT Technology Journal, Volume 23, Issue 1
(January 2005), pp. 147–153

[12] H.248 v2 protocol specification: http://tools.ietf.org/html/draft-ietf-
megaco-h248v2-04, Last Access: 19 Mar. 2011.

[13] H.248.11 extension specification: ITU-T recommendation H.248.11
[14] “verload control in a quality-of-service aware telecommunications net-

work”, European Patent Office, The Hague, no. PCT/EP2008/059693,
2008, WO/2010/009764, App. no.: PCT/EP2008/059693, Publication:
28.01.2010, filing date: 24.07.2008

[15] Mathematica, Wolfram Research Inc. http://www.wolfram.com, Last
Access: 19 Mar. 2011

65

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

