
Design and Implementation of a BitTorrent Tracker
Overlay for Swarm Unification

Călin-Andrei Burloiu, Răzvan Deaconescu, Nicolae T, ăpus,
Automatic Control and Computers Faculty

Politehnica University of Bucharest
Emails: calin.burloiu@cti.pub.ro,{razvan.deaconescu,nicolae.tapus}@cs.pub.ro

Abstract—The deployment of the BitTorrent protocol in the
early 2000s has meant a significant shift in Peer-to-Peer tech-
nologies. Currently the most heavily used protocol in the Internet
core, the BitTorrent protocol has sparked numerous implementa-
tions, commercial entities and research interest. In this paper, we
present a mechanism that allows integration of disparate swarms
that share the same content. We’ve designed and implemented a
novel inter-tracker protocol, dubbed TSUP, that allows trackers
to share peer information, distribute it to clients and enable
swarm unification. The protocol forms the basis for putting
together small swarms into large, healthy ones with reduced
performance overhead. Our work achieves its goals to increase
the number of peers in a swarm and proves that the TSUP
incurred overhead is minimal.

Index Terms—Peer-to-Peer, BitTorrent, tracker, unification,
TSUP, swarm

I. INTRODUCTION

The continuous development of the Internet and the increase
of bandwidth capacity to end-users have ensured the context
for domination of content-distribution protocols in the Internet.
Currently, most Internet traffic is content Peer-to-Peer traf-
fic, mostly BitTorrent. Peer-to-Peer protocols have positioned
themselves as the main class of protocols with respect to
bandwidth usage.

The arrival of the BitTorrent protocol in the early 2000s has
marked a burst of interest and usage in P2P protocols, with the
BitTorrent protocol currently being accounted for the biggest
chunk in Internet traffic [3]. Modern implementations, various
features, focused research and commercial entities have been
added to the protocol’s environment.

In this paper, we address the issue of unifying separate
swarms that take part in a session sharing the same file. We
propose a tracker unification protocol that enables disparate
swarms, using different .torrent files, to converge. We define
swarm unification as enabling clients from different swarms to
communicate with each other. The basis for the unification is a
“tracker-centric convergence protocol” through which trackers
form an overlay network send peer information to each other.

A. BitTorrent Keywords
A peer is the basic unit of action in any P2P system, and, as

such, a BitTorrent system. It is typically a computer system
or program that is actively participating in sharing a given
file in a P2P network. A peer is generally characterized by its
implementation, download/upload bandwidth capacity (or lim-
itation), download/upload speed, number of download/upload

slots, geolocation and general behavior (aggressiveness, entry–
exit time interval, churn rate).

The context in which a BitTorrent content distribution
session takes place is defined by a BitTorrent swarm which is
the peer ensemble that participate in sharing a given file. It is
characterized by the number of peers, number of seeders, file
size, peers’ upload/download speed. swarm, one that allows
rapid content distribution to peers, is generally defined by a
good proportion of seeders and stable peers. We define stable
peers as peers that are part of the swarm for prolonged periods
of time.

Communication of peers in a swarm is typically mediated
by a BitTorrent tracker or several trackers which are defined
in the .torrent file. It is periodically contacted by the peers
to provide information regarding piece distribution within the
swarm. A peer would receive a list of peers from the tracker
and then connect to these peers in a decentralized manner. As
it uses a centralized tracker, the swarm may suffer if the tracker
is inaccessible or crashes. Several solutions have been devised,
such as PEX (Peer EXchange) [1] or DHT (Distributed Hash
Table) [11]. The tracker swarm unification protocol presented
in this article enables redundancy by integrating multiple
trackers in a single swarm.

B. Tracker Swarm Unification Protocol

The goal of the tracker swarm unification protocol is the
integration of peers taking part in different swarms that share
the same file. These swarms, named common swarms, use
the same content but different trackers.

We have designed and implemented a tracker network
overlay that enables trackers to share information and integrate
peers in their respective swarms. The overlay is based on the
Tracker Swarm Unification Protocol (TSUP) that allows up-
date notification and delivery to trackers from the overlay. The
protocol design is inspired by routing protocols in computer
networks.

At this point, as proof of concept, the tracker overlay is
defined statically. All trackers know beforehand the host/IP ad-
dresses and port of the neighboring trackers and contact them
to receive required information. The integration of dynamic
tracker discovery is set as future work. Each tracker may act
as a “router”, sending updates to neighboring trackers that may
themselves send them to other trackers.

217

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

II. TRACKER UNIFICATION

A. Motivation

It is also possible that different users create different .torrent
files, but with the same files for sharing. If the .torrent files
don’t refer the same tracker, each one will represent another
swarm. The peers from different swarms do not know each
other and integration is not accomplished.

By unifying swarms the communication between peers is
possible. Every client will have the opportunity of increased
connections to other peers, increasing the download speed and
decreasing the download time. By having more peers in the
swarm, the number of stable seeders also increases and the
client can approach its maximum potential.

B. Solution

The protocol proposed in this article, named Tracker
Swarm Unification Protocol (TSUP), renders possible the
unification of swarms which share the same files, by employ-
ing a tracker network overlay. A tracker which implements
this protocol will be referred here as an unified tracker.

Figure 1. Unified trackers

Torrent files created for the same content have the same
info hash. So in swarms that share the same file(s) (common
swarms), peers will announce to the tracker the same info -
hash. Therefore, TSUP capable trackers can “unify” them by
communicating with each other in order to change information
about peers which contribute to shared files with the same
info hash. In order to accomplish this, unified trackers send
periodic updates to each other, containing information about
the peers from the network.

III. TSUP

As mentioned above, TSUP is the acronym for Tracker
Swarm Unification Protocol. TSUP is responsible with the
communication between trackers for peer exchange informa-
tion in common swarms.

A. Protocol Overview

For transport layer communication, the protocol uses UDP
(User Datagram Protocol) to reduce resource consumption. A
tracker already possesses a lot of TCP (Transport Control
Protocol) connections with each other peers. Adding more
TCP connections to each neighboring tracker would increase
TSUP overhead too much for a big tracker overlay. The
messages passed from one tracker to another do not need
TCP’s flow control and need a lower level of reliability than
TCP as it will be explained below. The simplicity of the
UDP protocol gives the advantage of a smaller communication
overhead.

In TSUP’s operation the following processes may be iden-
tified:

• Virtual connections establishment process: A three-
way-handshake responsible with establishing a UDP
“connection” between two linked trackers at the appli-
cation layer. The process is started by a SYN packet
(synchronization packet).

• Unification process: The trackers exchange unification
packets (named SUMMARY packets) during a three-way-
handshake in order to find out which are the common
swarms.

• Updating process: The trackers exchange peers from
common swarms, encapsulated in UPDATE packets.

• Election process: The establishment of a swarm leader
which is responsible with receiving all updates from
the neighboring linked trackers, aggregating them and
sending the results back.

The unification process includes an updating process in its
three-way-handshake, such that the two operations, unification
and update, are run in pipeline. Whenever a new torrent file
is registered to the tracker, a new swarm is created. The
unification process is triggered and a SUMMARY packet is
immediately sent to each neighboring tracker, informing the
others of the new swarm.

The updating process is started periodically, such that
UPDATE packets are sent at a configurable interval of time to
each tracker in a common swarm. A typical update interval is
30 seconds.

In order to maintain the virtual connections between track-
ers, HELLO packets are sent periodically, acting as a keep-
alive mechanism. A typical HELLO interval is 10 seconds,
but its value may be changed from protocol configuration. If
no HELLO packet is received during a configurable interval,
called disconnect interval, the virtual connection is dropped
and the virtual connection establishment process is restarted
for that link by sending a SYN packet.

Some packets, such as UPDATE packets, must be acknowl-
edged. If no answer or acknowledgement is received, the
packet is retransmitted. For example, UPDATE packets are
resent at each hello interval until an acknowledgement is
received.

It is not a problem if some UPDATE packets are lost
and arrive later to destination. However they need to be

218

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

acknowledged and they are retransmitted in order to increase
the probability of their arrival. TCP, by offering reliability, pro-
vides a faster delivery of updates in case of a network failure
which is not needed in the case of TSUP. Lower overhead is
considered here more important that fast retransmission. Thus
TSUP implements a timer-driver retransmission, as opposed
to data-driven used by TCP [10].

Periodically sent packets, the keep-alive mechanism, ac-
knowledgements and retransmissions contribute to the low
reliability needed in TSUP. They help exceed the drawbacks
of the UDP transport protocol, and also give a more efficient
communication than a TCP one.

B. Tracker Awareness

Tracker communication is conditioned by awareness. For
this purpose, in the current version of the protocol, each tracker
is configured statically with a list of other communicating
trackers. Each element of the list represents a link which
is identified by the tracker host name (URL or IP address)
and port. Other parameters for the link may be configured;
some of them may be specific to the implementation. If the
virtual connection establishment process is successful, the link
becomes a virtual connection, which is conserved with keep-
alive packets (HELLO packets).

A future version of the protocol will incorporate the design
of a tracker discovery mechanism capable of generating the list
of communicating trackers for each tracker dynamically, with
the benefit of scalability and reduction of the administrative
overhead.

C. Tracker Networks

To improve TSUP’s scalability, trackers may be grouped
together in networks named tracker networks. Connections in
all tracker networks are full mesh. Two networks are connected
with the aid of border trackers (see Figure 2).

Figure 2. Tracker Networks

To configure a topology which contains multiple networks,
each link of each tracker must be set as an internal link or an

external link (see Figure 2). Trackers connected with internal
links are part of the same tracker network; trackers connected
with external links are part of other networks. However, the
ones from the first category may also be classified as belonging
to an internal network and the ones from the second category
as being from an external network. A complete graph,
using internal links as edges is an internal network, and a
complete graph with external links as edges is an external
network (see Figure 2). A tracker which has both internal and
external links is a border tracker. Peer information received
from an internal network originates from internal peers while
information received from an external network originates from
external peers. Peers connected to a tracker with TCP, via the
BitTorrent protocol, are called own peers. The links between
trackers in a network, whether internal or external, must be
full mesh.

In order to use a scalable and low resource consuming
communication within a network, trackers are organized in
groups depending on the unified swarm. Therefore a tracker
may belong to more than one group at the same time, the
number of groups it belongs being equal with the number of
swarms present on that tracker. Each group contains a swarm
leader responsible for sending peer updates to peers in the
group. The other group members, instead of sending updates
to other members on a full mesh graph, it sends updates to
the swarm leader on a tree graph, reducing updating overhead.
These updates propagate to other peers in the group.

In accordance to graph theory, the number of updates sent
in a swarm without the swarm leader mechanism (full mesh)
is computed by using the formula below:

UPDATESfullmesh = 2 · n(n− 1)

2
= n(n− 1) (1)

The number of updates sent within a swarm using the swarm
leader mechanism (tree) are:

UPDATESswarmleader = 2(n− 1) (2)

As may be observed from the formulas above the complex-
ity decreases from O(n2) in a full mesh update scheme to
O(n) with the swarm leader scheme.

Each swarm contains two swarm leaders, one for the internal
network (which sends updates through internal links), called
internal swarm leader and one for the external network (which
communicates updates through external links), named external
swarm leader.

As connections are full mesh in an internal network, the
internal peers (received from other trackers from the internal
network) are distributed to other internal trackers only by
the internal swarm leader and in no other circumstance by
another tracker. Through analogy, in an external network, peers
(received from other trackers from the external network) are
distributed to other external trackers only through the external
swarm leader. On the other hand, internal peers are distributed
to external trackers and external peers to the internal trackers.

219

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

Own tracker peers are distributed both to the internal and the
external network.

Swarm leaders are automatically chosen by trackers during
the election process which is started periodically. There are
metrics used in order to choose the most appropriate leader.
The first and most important one prefers as swarm leader a
tracker which possesses the smallest number of swarm leader
mandates. The number of mandates is the number of swarms
where a tracker is swarm leader. This balances the load of the
trackers – as the number of mandates of a tracker increases,
its load also increases. In the current version of the protocol
the grouping of trackers into networks and the selection of
border trackers is done manually (statically) by the system
administrator.

When two network trackers A1 and A2 are connected
indirectly through other network trackers Bj , if A1 and A2 use
a common swarm and Bj doesn’t use this swarm, then the Ai

trackers cannot unify unless the border trackers are specified in
the configuration. This happens because the configured border
trackers must unify with any swarm, although they do not have
peers connected from that swarm.

Grouping trackers in networks increases system scalability,
but also network convergence time. The update timers can be
set to a lower value for border trackers to limit convergence
overhead. The system administrator should opt between scal-
ability and convergence and adapt the protocol parameters to
the specific topology.

IV. IMPLEMENTATION DETAILS

TSUP is currently implemented in the popular XBT Tracker
[9], implemented in C++. The extended TSUP capable tracker
was dubbed XBT Unified Tracker.

The original tracker implements an experimental UDP Bit-
Torrent protocol known as UDP Tracker. Because TSUP also
uses UDP and communication takes place using the same port,
TSUP-specific packets use the same header structure as the
UDP Tracker, enabling compatibility.

XBT Tracker uses a MySQL database [8] for configuration
parameters [7] and for communication with a potential front
end. XBT Unified Tracker adds parameters for configurations
that are specific for TSUP and uses a new table in order
to remember links with other trackers and their parameters.
Tracker awareness, as described in III-B, is implemented in
the database.

Besides the HTTP announce and scrape URLs, the original
tracker uses other web pages for information and debugging
purpose. The unified tracker adds two extra information web
pages for monitoring. The trackers web page shows details
about every link and the state of the connection for that link.
For every swarm, the swarms web page shows the list of peers
and the list of trackers connected for that swarm.

V. EXPERIMENTAL SETUP

TSUP testing activities used a virtualized infrastructure and
a Peer-to-Peer testing framework running on top of it. We
were able to deploy scenarios employing various swarms,

ranging from a 4-peer and 1-tracker swarm and a 48-peer
and 12-tracker swarm. Apart from testing and evalution, the
infrastructure has been used to compare the proposed tracker
overlay network with classical swarms using a single tracker
and the same number of peers. We will show that a unified
swarm has similar performance when compared to a single
tracker (classical) swarm.

In order to deploy a large number of peers we have used a
thin virtualization layer employing OpenVZ [5]. OpenVZ is a
lightweight solution that allows rapid creation of virtual ma-
chines (also called containers). All systems are identical with
respect to hardware and software components. The deployed
experiments used a single OpenVZ container either for each
tracker or peer taking part in a swarm. A virtualized network
has been build allowing direct link layer access between
systems – all systems are part of the same network; this allows
easy configuration and interraction.

The experiments made use of an updated version of hrktor-
rent [2], a lightweight application built on top of libtorrent-
rasterbar [4]. Previous experiments [13] have shown libtorrent-
rasterbar outperforming other BitTorrent experiments leading
to its usage in the current experiments. The experiments we
conducted used a limitation typical to ADSL2+ connections
(24 Mbit download speed limitation, 3 Mbit upload speed
limitation).

Figure 3. Sample Run Graphic

An automatically-generated sample output graphic, describ-
ing a 48 peer session (12 seeders, 36 leechers, 12 trackers)
sharing a 1024 MB file is shown in Figure 3. The image
presents download speed evolution for all swarm peers. All
of them are limited to 24 Mbit download speed and 3 Mbit
upload speed.

All peers use download speed between 2 Mbit and 5 Mbit on
the first 2000 seconds of the swarm’s lifetime. As the leechers
become seeders, the swarm download speed increases rapidly
as seen in the last part of the swarm’s lifetime, with the last
leechers reaching the top speed of 24 Mbit.

220

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

VI. SCENARIOS AND RESULTS

In order to test the overhead added by TSUP to BitTorrent
protocol, we have made a set of test scenarios which compare
the average download speed for a swarm with unified trackers
and for another swarm with just one non-unified tracker, but
the same number of leechers and seeders. Each test scenario
is characterized by the shared file sizes, the number of peers
and, in the case of tests with unified trackers, by the number
of trackers. We shared 3 files of sizes 64MB, 256MB and
1024MB. In the test scenarios with unified trackers for each
file we tested the swarm with 1, 2, 4, 8 and 12 trackers. On
each tracker there were connected 4 peers, from which 1 is a
seeder and 3 are leechers. So, for example, in a scenario with
8 trackers there are 8 seeders and 24 leechers, totalizing 32
peers. Having 3 files and 12 trackers in the biggest scenario we
needed to create 36 .torrent files, because for each shared file
we made a .torrent file for each tracker. In the corresponding
test scenarios with non-unified trackers, there is just one
.torrent file for each shared file. We varied the numbers of
seeders and leechers connected to the tracker so that they have
the same cardinality with the corresponding unified trackers
scenarios.

Each test scenario has been repeated 20 times in order to
allow statistical relevance. The average download speed was
calculated as an average value from the 20 sessions.

Results may be seen in the table from Figure 4, which
depicts the results for each file size, in the top (64MB), middle
(256MB) and bottom part of it (1024MB), respectively. For
each of this two situations the mean download speed (“mean
dspeed”) and relative standard deviation (“rel.st.dev.”) is de-
picted. In the right part, titled “perf. Decrease” (performance
decrease), shows the percent of download speed decrease
induced by the overhead of the TSUP. In the left side of the
table the number of seeders and leechers for each scenario is
shown. The percentage value for download speed decrease is
computed using the standard formula:

d = 100% · dsSingleTracker − dsUnifiedTrackers

dsSingleTracker
, (3)

where ds is an abbreviation from mean download speed.
All positive percentage values from the “perf. decrease”

header mark a decrease of performance caused by TSUP
overhead. A negative download speed decrease percentage
shows that there is an increase instead of a decrease.

The unification which takes place in XBT Unified Tracker
introduces an overhead in the BitTorrent protocol in compari-
son to XBT Tracker. In theory the performance decrease must
always be positive. But there are situations where the percent-
ages are negative, which could suggest that TSUP increases the
speed, thus reducing the download time. But this performance
increase is not due to TSUP, but is caused by another fact.
In all scenarios, in the Single Tracker experiments, at the
beginning all peers are started almost simultaneously, creating
a flash crowd. So in this situation the communication between
peers will start immediately, but when multiple trackers are

unified, the TSUP imposes a delay before each peer finds
out of all the others, because of the convergence time. It is
known that sometimes it is better when peers enter the swarm
later [12], explaining the presence of negative values for the
performance decrease.

Figure 4. Tracker Networks

From results in Figure 4 several conclusions are drawn.
The TSUP overhead becomes more insignificant, on the first
hand, when the number of peers increases (and proportionally
the number of seeders) and, on the other hand, when the
file size increases. When the overhead is insignificant, the
percentages have lower values. TSUP convergence time causes

221

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

the avoidance of a flash crown at the beginning of each
scenario, thus inducing a small performance increase. Starting
from 8 seeders and more TSUP performance decrease becomes
smaller that the performance increase caused by avoiding
the flash crowd. That is why some performance decrease
values are negative. The relative standard deviation is generally
increasing with the number of peers, but is decreasing when
the file size increases. The values can be considered normal,
taking into account the number of peers that are part of a
swarm.

Due to the small values of performance decrease and relative
standard deviation, we concluded that TSUP overhead is
insignificant for small to medium-sized swarms (less than 50
peers) which share big files (1GB). BitTorrent is generally
used for sharing large files and TSUP allows the increase of
swarms size; these two factors come as an advantage for this
technology.

Swarm unification increases the number of peers for a
shared file, but this fact does not always grant a bigger
download speed, as it can be seen in Figure 4. However, having
a swarm with a bigger number of peers has three advantages.
First of all increases the chance that more seeders will later
be available and a big proportion of stable seeders increases
download speed. The second reason is that bigger swarms
increase shared file’s availability by making redundancy. The
third reason is that a bigger swarm is more attractive for new
users, giving the possibility of creating a big social network,
which is an important thing these days.

VII. CONCLUSION AND FURTHER WORK

A novel overlay network protocol on top of BitTorrent,
aiming at integrating peers in different swarms, has been pre-
sented. Dubbed TSUP (Tracker Swarm Unification Protocol),
the protocol is used for creating and maintaining a tracker
network enabling peers in swarms to converge in a single
swarm. Each initial swarm is controlled by a different tracker;
trackers use the overlay protocol to communicate with each
other and, thus, take part in a greater swarm.

We have used an OpenVZ-based Peer-to-Peer testing infras-
tructure to create a variety of scenarios employing an updated
version of the XBT Tracker, dubbed XBT Unified Tracker. The
protocol incurs low overhead and overall performance. The
unified swarm is close to the performance of single-tracker
swarm consisting of the same number of seeders and leechers
with the benefit of increased number of peers, which boosts
download speed. The increased number of peers provides the
basis for improved information for various overlays (such as
social networks) and allows a healthier swarm – given enough
peers, if some of them decide to leave the swarm, some peers
will still take part in the transfer session.

Experiments have involved different swarms, with respect
to the number of peers and trackers, and different file sizes
using simulated asymmetric links. The table at the end of the
article shows a summary of results, which prove the fact that
the protocol has a low overhead.

At this point each tracker uses a statically defined pre-
configured list of neighboring trackers. One of the main
goals for the near future is to enable dynamic detection of
neighboring trackers and ensure extended scalability. We are
currently considering two approaches: the use of a tracker
index where trackers’ IP/host addresses and ports are stored or
the use of a completely decentralized tracker discovery overlay
similar to DHT’s discovery methods.

As proof of concept, our test scenarios have focused on
homogeneous swarms. All peers in swarms are using the same
implementation and the same bandwidth limitation. All peers
enter the swarm at about the same time, with some delay until
swarm convergence, in case of the unified tracker protocol.
We plan to create heterogeneous swarms that use different
clients with different characteristics. The number of seeders
and leechers in initial swarms are also going to be altered and
observe the changes incurred by using the unification protocol.

ACKNOWLEDGMENT

This paper is suported from POSCCE project GEEA 226 -
SMIS code 2471, which is co-founded through the European
Found for Regional Development inside the Operational Sec-
toral Program ”Economical competivity improvement” under
contract 51/11.05.2009, and from the Sectoral Operational
Programme Human Resources Development 2007-2013 of the
Romanian Ministry of Labour, Family and Social Protection
through the Financial Agreement POSDRU/6/1.5/S/19.

Special thanks go the the P2P-Next [6] team who is working
enthusiastically to deliver the next generation peer-to-peer
content delivery platform. Their dedication, professionalism
and vision are a constant factor of motivation and focus for
our work.

REFERENCES

[1] DHT & PEX. http://lifehacker.com/5411311/bittorrents-future-dht-pex-
and-magnet-links-explained. [Online, accessed 31-March-2011].

[2] hrktorrent. http://50hz.ws/hrktorrent/. [Online, accessed 31-March-
2011].

[3] ipoque Internet Studies. http://www.ipoque.com/resources/internet-
studies/internet-study-2008 2009. [Online, accessed 31-March-2011].

[4] libtorrent (Rasterbar). http://www.rasterbar.com/products/libtorrent/.
[Online, accessed 31-March-2011].

[5] OpenVZ. http://wiki.openvz.org/. [Online, accessed 31-March-2011].
[6] P2P-Next. http://www.p2p-next.org/. [Online, accessed 31-March-2011].
[7] XBT Configuration Options. http://www.visigod.com/xbt-

tracker/configuration. [Online, accessed 31-March-2011].
[8] XBT Table Documentation. http://www.visigod.com/xbt-tracker/table-

documentation. [Online, accessed 31-March-2011].
[9] XBT Tracker by Olaf van der Spek. http://xbtt.sourceforge.net/tracker/.

[Online, accessed 31-March-2011].
[10] H. Balakrishnan. Lecture 3; Coping with Best-Effort: Reliable Transport.

2005.
[11] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.

Looking up Data in P2P Systems. Commun. ACM, 46:43–48, February
2003.

[12] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Understanding
and Deconstructing BitTorrent Performance. Technical Report MSR-TR-
2005-03, Microsoft Research, 2005.

[13] R. Deaconescu, G. Milescu, B. Aurelian, R. Rughinis, , and N. T, ăpus, . A
Virtualized Infrastructure for Automated BitTorrent Performance Testing
and Evaluation. International Journal on Advances in Systems and
Measurements, 2(2&3):236–247, 2009.

222

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

