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Abstract—SYN flooding attacks exploit the 3-way
handshake characteristic of TCP connection setup to
cause denials of service. Many techniques have been
proposed for the detection of flooding attacks; most are
stateless while a few are stateful. A stateful method
keeps specific information on flows of packets while
stateless methods will only keep counters on specific
packet features. The low performance impact of state-
less methods has led to their predominance in practical
deployments. We introduce a methodology to support a
comparison between methods, which allows to quantify
all key factors which can be used to assess and compare
performance and see how they can be built into a
metric. In this article, we evaluate and compare the
performance of two key DoS detection techniques, one
stateless and one stateful, and investigate their relative
merits.
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I. Introduction

Most internet based services rely on the TCP protocol.
Establishment of TCP connections is based on a hand-
shake, more specifically a 3–way handshake (exchange of
3 packets), to reserve and announce suitable resources
at both ends before data exchange can proceed. This
mechanism has however proven to be quite vulnerable to
denial of service (DoS) attacks on servers, which have for
objective to stop legitimate users from using a service
by overloading it with connection establishment requests.
A distributed DoS attack (DDoS) occurs when a large
number of nodes wage such an attack simultaneously.
SYN flooding attacks represent 90% of most DDoS

attacks [1]. The goal of the attack is to tie the memory
of server machines with half–open connections. A large
number of attack machines send an important number of
connection set-up requests to a single server and, conse-
quently, legitimate clients cannot connect any more to the
server, whose resources have been depleted.
Many techniques have been proposed for the detection of

flooding attacks; most are stateless while a few are stateful.
A stateful method keeps specific information on packets
crossing the router while stateless methods will only keep
counters. The low overhead of stateless methods has led to
their predominance in practical deployments; yet we would
want to know if a stateful method performs significantly
better than a stateless one: As we use more memory and,

to a lesser degree, more CPU in stateful techniques, we
want significant improvements in detection time, detection
rate and rate of false alarms to justify their use. We also
want to know if they are more robust towards evasion of
detection.
In this article, we describe several stateless and stateful

techniques for flooding attack detection and compare the
performance of two key techniques, representative of each
kind. The originality of this work lies in: (1) reviewing of
the state of the art in stateless and stateful attack detec-
tion, (2) presenting a method for evaluating performance
detection system, and (3) comparing stateless and stateful
methods to establish their relative merit.
This paper is organized as follows. Sections II looks

over previous work in detection and isolates two key
methods for our comparison. In Section III, we introduce
elements of comparison between methods and proceed to
an evaluation of one stateful technique vs. a stateless one in
Section IV. We discuss our results and conclude in Section
V.

II. State of the Art

Because of space constraint, we do not cover exten-
sively the full range of stateless and stateful techniques,
restricting our study to two, representative techniques and
highlight differences which are specific to each kind. The
reader will be referred to the bibliography for further
reading.

A. State of the Art for Stateless Techniques

Stateless techniques use packet counting and statisti-
cal analysis (e.g. CUSUM) to detect an attack. Packet
information is tallied in a random variable Xn over an
observation period (and not continuously). Xn has taken
many forms, based directly on protocols (Blazek and
al. [2]), traffic correlation (Jin and al. [3]) or behaviour
(Ohsita and al. [4]), the presence of specific packets or
packet sequences (Siris and al. [5], Shin and al. [6]).
Wang and al. [7] propose a simple mechanism to detect

SYN flooding attacks by monitoring the normal behaviour
of TCP. Their stateless Flooding Detection System (FDS)
has low computation overhead. For the normal behaviour
of TCP, there must be a match between the number of
TCP FIN (or RST) packets and TCP SYN packets over
all TCP connections. Using the CUSUM method, they
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record the number of SYN and FIN (or RST) packets and
detect discrepancies. The difference between the number
of SYN and FIN (RST) is normalized by an estimated
average number of FIN (RST), to ensure that the FDS is
independent of sites and access patterns. As most TCP
connections last from 12 to 19 s, they set the duration of
observation periods to 20 s.
The weakness of stateless detection methods is that the

attacker can send a mix of packets to thwart detection.
Also, such counting strategies are vulnerable because In-
ternet traffic is bursty and the detection may therefore
raise false alarms (see e.g. [8]). They also lead to rather
long detection periods.

B. State of the Art for Stateful Technique

Stateful techniques rely on a memory of past events such
as occurrence of source addresses (Schuba and al. [9]),
analysis of current condition changes in traffic patterns
due to congestion (Xiao and al. [10]) or other factors (Gil
and Poletto [11], Cheng and al. [12]).
In [13] we have proposed the Unusual Handshake De-

tection (UHD) method. TCP handshakes whose sequence
does not follow the 3 steps standard are recognized as un-
usual handshakes. Those are typically the result of network
congestion and—sometimes—router errors or unreachable
ports; but during DDoS, they can also be the result of
the attack. This work concentrates on detection from the
server side, at the last mile router, and looks at handshakes
from that perspective only. A dedicated data structure
stores all information on the TCP handshakes. For each
flow, the IP source and destination addresses, the source
and destination ports, the arrival time of the last SYN
packet of a new TCP flow and the flag of the TCP packet
are stored. The data structure keeps track of an estimate
of TCP connection latency (RTT, plus delay for memory
allocation for the TCP data structure) per source network,
to set the detection delay for the unusual handshakes.
Stateful techniques require memory to support monitor-

ing. How memory is managed is critical as the available
space may be exhausted with increasing traffic [10] [11]
[12] [13]. Such detection techniques must therefore be able
to detect attacks very quickly to be resource–effective.

III. Framework for Comparaison

As we are interested in comparing stateful and stateless
detection, we use and adapt the methodology we have
presented in [14] for detection. Our purpose is to quantify
all factors which can be used to assess and compare
performance. It is also possible to construct an aggregate
metric from the different factors used to evaluate the
quality of detection to end up with a unique performance
number.
In order to protect the victim efficiently, the essential

objectives are to detect attacks quickly, with accuracy
and with minimal deployment costs. Deployment costs
will reflect the complexity of the detection method, mea-
sured according to the changes it requires compared to a

defenceless service architecture. These overall objectives
translate into the following criteria: accuracy, latency—or
detection time, deployment cost and robustness, which can
be related to specific measures.

A. Performance Measures

a) Detection Rate: The detection rate is the per-
centage of attacks that are detected as compared to the
total number of attacks [5]. This metric—associated with
the detection time—validates the detection mechanism for
each attack. Similarly, the non-detection rate—or false
negative rate—is a way of determining the errors made
by defences for not identifying the attacks. It corresponds
to the percentage of non-detected attacks compared to
the total number of attacks. It is the complement of the
detection rate.

b) Rate of False Positives: The rate of false positives
or the rate of false detection alarms [15] is another way
of assessing detection errors made by identifying an at-
tack when none occurred. This rate is the ratio between
the number of erroneously-reported attacks and the total
number of attacks. This metric verifies that the detection
mechanism does not make (significant) mistakes. For ex-
ample, we want to know if an increase in traffic or a flash
crowd can cause false alarms.

c) Latency: The detection time—or latency—metric
reflects the delay in the detection of attacks. The detection
time of the attack is the duration of the time interval
between the beginning of an attack and its detection. The
detection time is important because an attack should be
detected before any severe damage is done.
The latency depends on a number of elements: there

are architectural constraints, for example a polling cycle
to acquire data, and algorithmic constraints, such as the
existence of a time window to average the information over
several acquisition cycles.

B. Deployment Costs

The deployment costs of the defence system depend on
the computation time, the memory overhead, the band-
width overhead and the system complexity as explained
below. In fact, we want to evaluate the increase of these
costs due to the deployment of the detection system.
To evaluate the different elements, we need to perform
two experiments: a first one to find the baseline value of
deployment costs, in the absence of attacks and a second
one to evaluate the increase from the baseline value.

1) Computation overhead in ms: The time required to
process the measured data.

2) Memory in Kbytes: The storage space necessary for
the implementation of the detection mechanism.

3) Bandwidth overhead in %: Should the detection
method imply the transmission of some form of con-
trol messages (e.g. throttle), then this in turn would
yield a reduction of the available bandwidth.

4) Deployment complexity : The deployment complexity,
measured from 1 (low) to 4 (high cost). This measure
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Deployment Cost fct. Priority

Complexity y fy(y) = y × Y py
Bandwidth overhead b fb(b) = B (%) pb
Computation overhead c fc(c) = C (ms) pc
Memory m fm(m) = M (KB) pm

TABLE I: Cost Functions

depends on whether the detection strategy involves
one or several nodes and whether it involves numerous
and substantial modifications to the network.

Finally, the installation of the detection system should
not increase the deployment costs, i.e. it should be inte-
grated with another network device.

C. A Composite Metric

We have shown in [14] how these different measures can
be combined into a composite metric, through a weighted
sum to emphasise certain metrics. Such a composite gives
a global evaluation of the objectives and quality of the
method. Here, we show how to effectively compute such
a metric. To that end, we need (1) a list of the relative
priorities of these elements, (2) a cost function for each
element to have uniform comparison units, (3) values for
the weighting coefficient determined by the priority list.
The priority values are attributed according to the cost

functions. A low priority value represents the cost of an
easy deployment. For example, the composite metric for
the deployment cost DC is expressed by:

DC = αc×fc(c)+αm×fm(m)+αb×fb(b)+αy×fy(y) (1)

with computation overhead c, memorym, bandwidth over-
head b, and deployment complexity y, and the matching
weighting factors α , the cost functions f and the priority
p between [1, 4] (see Table I).
Similarly, for the performance measure, we build D as

follows.
D = αl × l + αn × n+ αp × p (2)

with latency l in s, rate of false negatives n in %, and rate
of false positives p in %. Each performance measure has
a priority p between [1, 3]. As the performance measure is
not a cost, we do not use cost functions. An ideal detection
technique must have a short latency l, as well as, a rate of
false negatives n and positives p as low as possible.
We develop further in Section IV how the weighting

factors can be chosen to build a meaningful composite.

D. Robustness

Robustness is a critical evaluation of a defence and,
unlike previous metrics, it is difficult to define it in terms
of a specific cost.
What we require, in our evaluation of defences, is the

assessment of the effectiveness of the detection as an
attack proceeds. In this case we cannot simply reduce such
assessment to a unique metric, as we expect performance
not to be constant, but to depend on the legitimate traffic
load and characteristics.

For different quality factors, e.g. false positives, false
negatives, latency, and sensitivity (low threshold) we want
to identify the detection weaknesses:
1) False Positives (or False Alarms): which traffic

conditions increase the rate of false positives?
2) False Negatives: at which rate is it possible to avoid

detection?
3) Latency: how significantly does detection increase

latency?
4) Sensitivity: how do we establish a detection thresh-

old?
On this last point, we note that whereas the value of the
threshold is not too significant when a server is unloaded,
it must be kept as low as possible when we have a high
usage, to preserve useful traffic while providing detection.
Sensitivity is thus denoted by the ability to set a threshold
to allow detection while keeping rates of false positives and
false negatives low.
We therefore propose that robustness be examined as

a standardized test, at a specific usage level. We must
note however that this picture is not complete as stateless
measures can be fooled by specific forms of attacks which
supply the relative number of TCP messages they expect,
hence creating a large number of false negatives. Such an
assessment is required to complement sensitivity/quality
tests. In the following comparison, we will look at the be-
haviour of the specific parameters of robustness assessment
without attempting to build a composite picture.

IV. Comparison between Stateful and Stateless

Detection Methods

We choose the following techniques for a comparison
according to the methodology presented above: the FDS
of Wang and al. [7] for the stateless case and our own
UHD [13] for the stateful one. These techniques use for the
detection the behaviour observation of the TCP protocol
and the CUSUM algorithm to confirm the attack.
The α values are set as follows.
• As memory is cheap, we assign 1 to the priority be-

cause it is not a significant contribution to deployment
costs. We calculate αm = 0.1.

• As the processors are more and more powerful, for
the computation overhead, we assign 2 to the priority
and obtain αc = 0.2

• As we want save network resources, for the bandwidth
overhead, we assign 3 to the priority and set αb = 0.3.

• To encourage minimal deployment complexity, we
assign 4 to the priority αy = 0.4.

These values are chosen because some resources are easy
to obtain and are not too significant, while some elements
are very important and play a fundamental role in the
computation of the deployment cost (DC).

A. Evaluation of FDS

a) Performance Measures: From [7], the detection
rate is within the range [70%, 100%] and the rate of false
positives is null. The detection time is within [20 s, 487 s].
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We have set an interval for the overall evaluation of
detection of D = [6.6, 160.7]. But in practice (see Section
IV-A0c) the method can trigger false positives during flash
crowds.

b) Evaluation of Deployment Costs: The computa-
tion overhead for the FDS system represents the time
required for packet classification and addition, and is not
evaluated in the article. As the stateful technique also
needs packet classification, it is not very important to
determine its computation overhead. Also, the addition
operation time is rather insignificant. The computer over-
head is therefore fixed to 0. For storage, FDS uses only two
integers for compiling the number of SYN and FIN pack-
ets, so the memory is only 8 bytes. There is no bandwidth
overhead. We fix the level of the deployment complexity
to 1, because it is very easy. With the weighting coefficient
and the cost function, we evaluate the composite metric
to DC = 0.1× 8× 10−3 × fm(m) + 0.4× 1× fy(y).

c) Robustness: The count of SYN and FIN packets
of the FDS technique is not very reliable for the following
reasons:
False Positives or False Alarms. The FDS does not
consider whether a SYN packet is retransmitted, which
does not follow proper TCP behaviour that associates
one FIN packet for one SYN packet. This discrepancy
can lead to false alarms. In one observation period
we could observe a large number of TCP connections
with a duration significantly longer than average, or
alternatively a flash crowd, either of which could trigger
a false alarm because the FIN packet will be counted in
a later observation period and, as a consequence, would
lead to an imbalance between the count of SYN and FIN
packets.
False Negatives. The weakness of counting SYN–FIN
pairs is that the attacker can flood a mixture of SYNs and
FINs in equal numbers. As the consequence, the clever
attacker can evade the FDS detection technique.
Latency. As the observation period corresponds to the
duration of TCP connections (20 s), the detection time is
the number of the observation periods. In most cases, the
detection is therefore triggered after the TCP connection
ends.
Sensitivity. FDS fixes the threshold and varies the
attack rate to evaluate the detection rate.

For all these reasons, the robustness of FDS is low.

B. Evaluation of UHD

a) Performance Measures: As indicated in the paper,
the detection rate is 100% and the false alarm rate 0%.
The detection time is therefore between 30 s and 70 s.
With a weighting coefficient of 0.33, we evaluate the overall
evaluation in between [9.9, 23.1]

b) Evaluation of Deployment Costs: We have used
a form of XOR-folding, also called bit-folding or bit-
extraction as a hashing function. It is a practical ma-
nipulation of bits combining shifts, masking and logical

combinations. With XOR-folding, it is easy to construct
a function which will be robust to the permutation of
information; the only challenge is to find the combination
which generates the most dispersion and this can depend
on the nature (i.e. regional character) of the server. Such
issues are however beyond the scope of this paper.
On the Intel Duo processor at 3.00GHz used for our

experiments, the insertion time and the scanning time are
3.95ms and 20.62ms respectively. These values are very
small. As the networks are identified by 24 bits of an IP
address, the hashing function uses XOR-folding of the two
halves of the 24 bits address into 12 bits—for a basic table
size of 16384B. In this case, we have observed on the
same data an average length of the chains of 1.65, and
an occupancy rate of 31.7%. Under normal conditions, we
require extra memory which amounts to at most 21KB for
the handshake information.
The technique does not use any bandwidth for detection.

The deployment is very easy and this technique can be
built into a last mile router. With the weighting coefficients
and the cost functions, DC evaluates as: 0.1 × (21 +
16.384)×fm(m)+0.2×(3.95+20.62)×fc(c)+0.4×1×fy(y).

c) Robustness: As the principle of the detection is
stateful, the attack can exhaust the memory with enough
variety of unusual handshakes. But the detection is fast,
and flow information is reset every period, so the attack is
detected quickly, before using up all the router memory.
False Positives or False Alarms. As the technique does
not count the packets, UHD is not vulnerable to flash
crowds and consequently, it does not produce false alarms.
False Negatives. Of course, if the attacker knows the
principle of the detection, he can try to send a flood of
SYN packets followed by ACK packets to keep a reason-
able balance of SYN vs. non–SYN packets. This will be
undetected unless we also keep track of TCP sequence
numbers in the data structure. The server, however, would
quite likely reset the connection because of wrong sequence
numbers, which would lead again to another form of
unusual handshake.
Latency. The detection attack can be caught right from
the beginning as the technique observes the TCP hand-
shake. However, as the detection time is linked with
the observation period, such a short observation period
involves a quick detection time.
Sensitivity. From real traces and with merging fictitious
SYN flooding attacks, we have run tests with an attack
rate fixed at 25% of normal traffic. In Figure 1, we show
the importance of the value the entropy threshold. A
“wrong”—or too tight—value can lead to numerous false
alarms. As UHD detects attacks when the entropy value
is below the threshold, to evaluate the sensitivity of this
value to the detection of false alarms, we measure this rate
while increasing the threshold. Moreover, the start value of
the threshold represents the detection value of a trace. In
Figure 1 we see that, as the threshold increases linearly
beyond a threshold of .44, the number of false alarms
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increases exponentially. In practical terms, this shows that
the number of false alarms is highly sensitive to the level of
the threshold and decreases exponentially as the threshold
is set lower. This, in turn, means that 1) the threshold
does not need to be unduly low to be effective and 2) it
can be set to resist to some degree of fluctuations in traffic
characteristics.
For all these reasons, the robustness of UHD is high.
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Fig. 1: Number of false alarms as function of threshold

C. Summary

In Sections IV-A and IV-B, we have applied a method
for evaluating the performance of the detection mecha-
nisms. For a comparison of the deployment cost of the
two techniques, once we know the real value of the cost
functions, we can evaluate DC.
The greater value of the DC metric reflects a better

evaluation performance for the stateful technique. We can
observe a shorter detection time interval for the UHD
technique than for the FDS technique and we can conclude
that, as the technique is stateful, detection is faster and
more accurate. Also, the UHD stateful technique is robust
and the FDS mechanism is not as strong as an attacker
can evade the mechanism and it can produce false alarms
during flash crowds. While stateless methods have varying
degree of sensitivity to these issues, they are nevertheless
exposed to them.

V. Conclusion and Discussion

From our comparison of two detection techniques and
for other techniques, and following our assumption that
each technique is representative of its genre, we have
observed that stateless detection is slower and less reliable
than a stateful detection technique. Also stateless tech-
niques cannot respond to the detection as they do not store
information and, as a consequence, cannot as effectively
selectively stop the attack packets whereas stateful tech-
niques store data, which can be used to react to the attack
once it has been detected such as throttling or blocking
attack traffic [16].
Stateful techniques demonstrate significant improve-

ments in (1) the robustness of detection in the presence
of detection evasion techniques (false negatives) or errors
(false positives), (2) detection time, detection rate and
the false alarm rate, and (3) the possibility of using the
information collected by the technique to stop or control
the attack.

Stateful techniques however use more memory and, to
a lesser degree, more CPU cycles and have higher deploy-
ment cost: they would tend to require dedicated pieces of
equipment whereas stateless techniques would more easily
be embedded in routers.
Finally, we should remind the reader that these tech-

niques can be viewed as complementary. While we have
established the superiority of stateful techniques close to
the edge of the server’s network, stateless methods can be
useful closer to the core of the network, where resources are
scarce, but detection efficiency useful, albeit less critical.
Further research underway aims at better refining and

defining this complementarity to extend our framework to
hybrid models.
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