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Abstract - Wireless Sensor Networks are an emerging 
technology used for environmental monitoring. Security is a 
major concern when deploying a network for critical 
applications, such as military or medical surveillance. We have 
previously developed a security protocol that provides 
authentication, anti-replay, integrity and reliability. This paper 
presents further optimizations in order to minimize energy 
consumption. We have implemented the Energy-efficient 
Authentication and Anti-replay Security Protocol in TinyOS 
and we have tested its functionality and performance using the 
TOSSIM simulator. We have developed a mathematical model 
to evaluate energy consumption, determining the control 
overhead of the security protocol and the energy saved through 
the optimizations and thus proving the efficiency of the 
optimizations.  The optimized EAASP represents a security 
protocol that provides strong authentication and anti-replay, 
integrity and reliability, and energy-efficiency. 

Keywords - wireless sensor networks, security, 
authentication, anti-replay, integrity, reliability, energy-
efficiency. 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) consist of a large 

number of small embedded devices with limited capabilities 
and low power consumption that have the abilities to self-
organize into a network and to perform sensing, 
communicating and processing tasks [1].  

WSNs are used to monitor their environment. Standard 
applications that use WSNs are environmental, medical, and 
military surveillance and emergency detection [2]. Such 
applications require high levels of security.  

Securing sensor networks is a challenging task because 
of their specific constrains, such as the limited capabilities of 
sensor node hardware, and the deployment context [3].  

We have previously developed the Authentication and 
Anti-replay Security Protocol (AASP), which provides 
authentication, integrity, anti-replay and reliability. Our 
contributions in this paper consist in several optimizations to 
the AASP in order to reduce the energy consumption, such 
as minimizing the control overhead, reducing the number of 
handshake packets, using negative acknowledgements 
instead of positive ones, and aggregating sensed data. 

We have also developed a mathematical model that 
evaluates the energy consumption introduced by the security 
protocol, and we used it in order to perform a formal 
evaluation of the control overhead and energy savings. 

The rest of the paper is structured as follows: Section II 
presents related work, Section III discusses the protocol 

design, Section IV describes the implementation of the 
protocol, Section V presents the mathematical model and the 
evaluation results, and Section VI discusses the values of the 
protocol and concludes the paper. 

II. RELATED WORK 
Several significant security solutions for WSNs include 

the ZigBee Security Architecture, SPINS, and TinySec. 
ZigBee Security Architecture consists in a coordinator 

that acts as “Trust Center”, which allows other devices to 
join the network and provides them keys [4]. ZigBee works 
with three roles: the trust manager that authenticates devices 
that want to join the network, the configuration manager that 
manages and distributes keys, and the configuration manager 
that provides end-to-end security. The infrastructure operates 
in two modes: the Residential Mode that is used for low 
security residential applications and the Commercial Mode 
that is used by high-security commercial applications. 

SPINS is a suite of security protocols optimized for 
WSNs, consisting of two building blocks: the Secure 
Network Encryption Protocol (SNEP) and the “micro” 
version of the Timed, Efficient, Streaming, Loss-tolerant 
Authentication Protocol (µTESLA) [5]. SNEP provides 
confidentiality using encryption, authentication and integrity 
by Message Authentication Codes (MAC). µTESLA 
provides authenticated broadcast by emulating asymmetry 
through a delayed disclosure of symmetric keys. SPINS has 
been implemented on top of TinyOS [6].  

TinySec has been designed as the replacement of SNEP 
and provides confidentiality, authentication, integrity and 
anti-replay protection [7]. It implements the Cipher Block 
Chaining (CBC) mode with cipher text stealing for 
encryption and the Cipher Block Chaining Message 
Authentication Code (CBC-MAC) for authentication. 
TinySec uses the TinySec-Auth format for authenticated 
packets and the TinySec-AE for authenticated and encrypted 
packets.  

We aim to develop a security protocol that provides 
strong authentication through the establishment of an 
authentication connection, strong anti-replay through binding 
the packet to its context, integrity and reliability, while also 
being energy-efficient. 

III. AN ENERGY-EFFICIENT SECURITY PROTOCOL 
The purpose of this work is to develop a lightweight, 

energy-efficient security protocol that provides 
authentication, freshness and integrity for Wireless Sensor 
Networks. EAASP has been designed by minimizing the 
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energy consumption of the Authentication and Anti-replay 
Security Protocol (AASP) [8] [9]. 

In order to improve the energy efficiency of a protocol 
one has to reduce the number of packets communicated by 
nodes, and the average packet size. We aim to optimize the 
security protocol by reducing the control overhead. 

A. Authentication and Anti-replay Security Protocol 
We have previously developed a security protocol that 

provides two-way authentication, anti-replay protection and 
integrity [8].  

Authentication is ensured by the use of the Message 
Authentication Code (MAC), which is computed from the 
payload of the message and a secret key, by applying a 
collision resistant hash function. We have used the Hash 
Message Authentication Code (HMAC) implementation. 

The anti-replay protection derives from binding the 
packet to its context, specifically to the previous packet 
between the same source and destination, and its sequence 
number. The mechanism consists in including the MAC of 
the previous packet in the current packet for all messages 
sent between the same source and destination.  

Integrity is ensured by including the MAC of the current 
message in the packet.  

For the first packet, authentication is performed by 
checking the MAC of the current message. Still, this measure 
does not protect against replay attacks. If the exact sequence 
of packets between the same source and destination is 
captured, it can be easily replayed later.  

In order to further strengthen the authentication and anti-
replay protection, an authenticated connection has to be 
established before sending any data packets. The 
authenticated connection is established in AASP after a four-
step handshake. 

In order to prevent the de-synchronization of the anti-
replay mechanism through loss of packets, we have 
implemented an acknowledgement mechanism [9]. The next 
packet is not sent until the previous packet is acknowledged 
by the destination. The source node waits for the 
acknowledgement for a specified period of time and, if it 
times out, the packet is re-sent.  

The authenticated connection has to be re-initiated if one 
of the communicating nodes loses its connection data or if 
the anti-replay mechanism is de-synchronized. The 
connection times out after a specified period of time in which 
no data or ACK message is received from the other node. In 
that moment, connection data is erased and an authenticated 
connection can be re-initiated.  

The AASP is effective against malicious injection and 
replay attacks. In order to increase its energy efficiency we 
aim to reduce the number of control packets and the control 
overhead from the data packets. 

B. Energy-efficient Authentication and Anti-replay 
Security Protocol 
In this paper, we present a lightweight security protocol 

that uses the basic mechanisms of AASP and has higher 
energy efficiency. In order to reduce energy consumption, 
we reduce the number of packets and the control overhead.  

1) Reducing the control overhead 
The AASP protocol has a header with the following 

fields: Previous Hash (P_Hash) – 2 bytes, Current Hash 
(C_Hash) – 2 bytes, Authentication (Auth) – 1 byte, 
Acknowledge (ACK) – 1 byte and Sequence (Seq) – 1 byte. 

 EAASP is designed with a protocol header as presented 
in Table 1. 

TABLE I.  HEADER STRUCTURE 

 EAASP Header Fields 
Hash Type Seq 

Number of bytes 2 1 1 
 
The Hash field contains a MAC computed from the 

current payload, the previous payload, the secret key and the 
sequence number, as shown in Formula (1).  The Type field 
encodes the type of packet, as presented in section C.  

 
 
 
 
The sequence number is taken into account when 

computing the hash in order to avoid packet altering by 
intermediate nodes. 

2) Reducing the number of control packets 
AASP has two types of control packets: handshake 

packets and acknowledgement packets. 
We aim at reducing the number of handshake packets, 

while still providing powerful authentication. The 
authentication method can be strengthened by sending 
random challenges to each other.  

We have reduced the number of handshake packets to 
three, as presented in Figure 1.  

 

 
Figure 1.  Energy-efficient Three Step Handshake 

The first packet, designated H1, contains a challenge 
number randomly generated by the initiating node A. The 
second packet, designated H2, is the answer from node B, 
and it contains a hash based on the first challenge and the 
secret key, and the challenge randomly generated by node B. 
The third packet, designated H3, is the response of node A 
and contains a hash based on the second challenge and the 
secret key. After the three-step handshake is completed, data 
packets can be exchanged.  

We have used negative acknowledgements to reduce the 
number of acknowledgement packets while still maintaining 
a certain level of reliability.  

The destination is able to detect packet loss when 
receiving out-of-sequence packets. The destination stores the 
sequence number of the last received and valid packet, and it 

Hashi = MAC(Payloadi, Payloadi-1, Seq, K) (1) 
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expects the packet with the next sequence number. When it 
receives a packet with a sequence number greater than the 
expected one, it generates and then sends a Negative 
Acknowledgement (NACK) packet back to the source node.  

The out-of-order packet is not dropped at the destination 
node, and it is stored until all previous packets are received. 
The NACK packet contains the sequence number of the first 
lost packet – L_Seq, and the sequence number of the 
received out-of-order packet – R_Seq, in order to prevent the 
source node to deliver the out-of-order packet again. The 
source node resends all packets with a sequence number 
greater or equal to L_Seq and less than R_Seq, when 
receiving a NACK packet. The destination performs an 
integrity and an anti-replay check on the re-sent and out-of-
order packets, and it delivers them to the application. 

C. Protocol message structure  
The EAASP header contains the following fields: Hash 

(2 bytes), Type (1 byte) and Seq (1 byte), as presented in 
Table 1.  The Hash field contains the MAC computed from 
the payloads of the previous and current packets, the secret 
key, and the sequence number of the current packet. The 
sequence number is used by the destination node to detect 
lost packets.  The Type field encodes the type of a certain 
packet and contains the following fields: Auth (1 bit), NACK 
(1 bit), PT (3 bits) and QoS (3 bits), as represented in Table 
2. 

The Auth flag is set to 0 during the three-step 
authentication handshake, and it is set to 1 after the 
authenticated connection has been established and data 
packets have been exchanged. The NACK flag is set to 1 in a 
NACK packet and to 0 otherwise. 

TABLE II.  TYPE FIELD STRUCTURE 

 Type Field 
Auth NACK PT QoS 

Number of bits 1 1 3 3 
 
PT represents the Packet Type and is 001 for H1 packets, 

010 for H2 packets, 011 for H3 packets, 100 for Data 
packets.  

The QoS field is used for assigning a priority value to 
packets. Because it is implemented on 3 bits, it provides for 
8 priority levels. Certain packets can be assigned a higher 
priority than others, such as the re-send or control packets. 

IV. EAASP IMPLEMENTATION 
The EAASP was implemented in TinyOS, an event-

driven, component-based operating system for Wireless 
Sensor Networks [6].  

1) Implementing the security protocol 
EAASP consists of two layers, which were introduced in 

the communication stack of the operating system: the MAC 
layer and the Authentication layer.  

The MACLayerSender component is placed between the 
AMSenderC component and the ActiveMessageC 
component, and it has access to all packets sent by the 
application layer. In the AASP version this layer placed the 
MAC of the previous and current payload in the analyzed 

packet, and it stored the MAC of the current payload in the 
component, for further use. In the current, optimized version, 
this process has been moved into the Authentication layer, 
because it stores a predefined number of sent packets for 
further retrieval. If lost, they can be requested by a NACK 
packet. This measure avoids duplicating the packet list. 
Therefore, the MACLayerSender contains only the routing 
protocol implementation.    

The MACLayerReceiver is placed between the 
ActiveMessageC component and the AMReceiverC 
component, and it has access to all packets received by the 
node before reaching the application layer.  

If the component receives an out-of-order packet, it 
stores it, and it delivers it to the upper layers only after all 
packets with a lower sequence number have also been 
delivered. 

The MAC is computed from the payload of the current 
packet, the payload of the previous packet, the secret key and 
the sequence number of the current packet. If the MAC does 
not match the one found in the Hash field of the packet, the 
Altered flag is set. If the MAC is correct, the packet is stored 
for further use when verifying the MAC of the next packet. 
In either case, the packet is delivered to the upper layers. 

 The Application layer is placed on top of the operating 
system, and it uses the components AMSender and 
AMReceiver to send to and respectively to receive packets 
from the medium.  We cannot send control packets, such as 
handshake and ACK/NACK packets, from the MACLayer 
components; therefore, we must divide the Application layer 
into two sublayers: the Authentication layer and the actual 
application layer.  

Whenever a packet is received by the Authentication 
layer from the actual application layer, without having an 
authenticated connection with the destination node, the 
Authentication layer initiates the three-step handshake by 
sending an Authentication Request (H1) packet. The 
Authentication layer performs the handshake in order to 
establish the authenticated connection. 

The Authentication layer keeps track of the sequence 
number and stores a list of sent packets that can be used 
when packets are lost and a NACK is received from the 
destination. The layer computes and writes the protocol 
header for each sent packet: sequence number, type and 
hash. If it receives an out-of-order or altered packet, it 
generates and sends a NACK to the source node. When 
sending a NACK, a timer is configured to be fired after a 
predefined period of time. If the lost data packets are not 
retrieved in that interval, the NACK is considered to be lost 
and the NACK is resent. 

If the Authentication layer receives a NACK, it re-sends 
all lost packets. If multiple packets are lost, the first packet is 
re-sent from the Receive.receive() event, and the subsequent 
packets, except for the out-of-order packet, are sent from the 
AMSend.sendDone() event. If it receives a correct data 
packet, it delivers it to the actual application layer and stores 
the sequence number of this packet.      

2) Implementing the routing protocol 
TinyOS provides single-hop communication via the 

Active Messages stack. In order to ensure multi-hop 
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communication, we introduce layer 3 information in packets 
and we implement a routing protocol. We use the AM 
addresses as layer 2 addresses and we introduce a layer 3 
source ID and destination ID in the packets.  

The MAC layer contains the implementation of a simple 
routing protocol. This layer stores a routing table that 
contains the next hop associated with a certain destination. 
When the MACLayerSender component receives a packet 
from the application layer, it checks the routing table in order 
to determine the next hop towards the destination. After that, 
it sends the packet to the next hop node by setting it as the 
destination in the AM packet.  

When the MACLayerReceiver receives a packet with the 
layer 3 destination different from the node ID, it checks the 
routing table to find the next hop and sends the packet to that 
node. A discussion of routing procedures in the EAASP lies 
beyond the scope of this article. 

V. EVALUATION RESULTS 
We evaluate EAASP by determining its energy 

efficiency and its scalability. 

A. Simulation results 
A first evaluation relies on several test scenarios 

implemented with TOSSIM, a simulation tool for TinyOS 
applications [10]. 

1) Single-hop scenario 
The first test scenario has the purpose of demonstrating 

basic single-hop functionality. We determine the proportion 
of lost packets by computing an average value across 20 
instances of scenario execution.  

Figure 2 presents the TOSSIM output for a single-hop 
authentication initialization, connection establishment, and 
data packets exchange.  

Each line has the following format: The ID of the node, 
the component that generates the output, the type of packet 
sent or received, the fields, the source and destination of the 
packet.  

 

 
Figure 2.  Handshake and data packets 

We can observe from Figure 2 that the Authentication 
layer is responsible for performing the handshake and for 
establishing the connection, and the Application layer has the 
role of sending and receiving data packets. 

In Figure 3, we can observe that a packet with sequence 
11 is lost and the subsequent packet is received by the 
destination. It is detected as an out-of-sequence number and 

a NACK packet is sent to the source node, which resends the 
packet. The out-of-order packet is stored in the 
MACLayerReceiver and it is delivered to the application 
layer after the lost packet is received. After that, the next 
packet is sent and received correctly at the destination. 

 

 
Figure 3.  Lost and recovered data packets 

In order to determine the proportion of lost packets we 
have used a scenario in which we have generated 100 
packets, we have counted the number of lost packets and we 
have computed the percent of lost packets. The scenario has 
been run for 20 times in order to compute an average value. 
The resulting average value for the single-hop case is 1.55% 
lost packets.  

2) The multi-hop scenario 
As a simple multi-hop scenario we choose a 3 node chain 

topology and we send packets from one end to another, as 
presented in Figure 4.  

 

 
Figure 4.  Multi-hop packet routing 

To determine the proportion of lost packets for a multi-
hop scenario, we have used 10 nodes placed in a chain 
topology. We have generated 100 packets, we have run the 
scenario for 20 times, and we have obtained an average of 
9.55% lost packets for the 10 node chain topology. The 
average distance (in hops) from the source node where the 
packets are lost is 4.45.  

B. Energy consumption 
We have developed a mathematical model designated as 

the Sent/Received Bytes Evaluation Model that allows us to 
determine a measurement of energy consumption in order to 

(3): AuthenticationLayer: H1 packet sent [payload=234 hash=56843 
type=8 seq=1 (3->1)] 
(1): AuthenticationLayer: H2 packet sent [payload=57195 hash=42756 
type=16 seq=1 (1->3)] 
(3): AuthenticationLayer: H3 packet sent [payload=56185 hash=47406 
type=24 seq=2 (3->1)] 
(3): AuthenticationLayer: Managed to authenticate myself to node 1 
(1): AuthenticationLayer: Managed to authenticate myself to node 3 
(3): ApplicationC: Data packet sent [payload=1235 hash=41396 
type=160 seq=3 (3->1)] 
(1): ApplicationC: Data packet received [payload=1235 hash=41396 
type=160 seq=3 (3->1)] 

(3): ApplicationC: Data packet sent [payload=1243 hash=43279 
type=160 seq=11 (3->1)] 
(3): ApplicationC: Data packet sent [payload=1244 hash=43260 
type=160 seq=12 (3->1)] 
(1): AuthenticationLayer: Out-of-order packet received [payload=1244 
hash=43260 type=161 seq=12 (3->1)] 
(1): AuthenticationLayer: NACK packet sent [payload=11 
hash=42686 type=64 seq=2 (1->3)] 
(3): AuthenticationLayer: NACK packet received [payload=11 
hash=42686 type=64 seq=2 0 (1->3)] 
(3): AuthenticationLayer: Data packet re-sent [payload=1243 
hash=43279 type=162 seq=11 (3->1)] 
(1): ApplicationC: Data packet received [payload=1243 hash=43279 
type=162 seq=11 (3->1)] 
(1): ApplicationC: Data packet received [payload=1244 hash=43260 
type=160 seq=12 (3->1)] 
(3): ApplicationC: Data packet sent [payload=1245 hash=43243 
type=160 seq=13 (3->1)] 
(1): ApplicationC: Data packet received [payload=1245 hash=43243 
type=160 seq=13 (3->1)] 

(0): RadioCountToLedsC: Data packet sent [payload=1257 
hash=43030 type=160 seq=24 (0->2)] 
(1): RoutingLayer: Routing packet through 2 [payload=1257 
hash=43030 type=160 seq=24 (0->2)] 
(2): RadioCountToLedsC: Data packet received [payload=1257 
hash=43030 type=160 seq=24 (0->2)] 
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evaluate the control overhead and to compare EAASP with 
AASP.  

Similar mathematical models such as [11] include 2nd 
layer information, which is not useful when analyzing a 
security protocol.  

In order to evaluate energy consumption, our 
mathematical model takes in consideration only the number 
of bytes sent and received by the nodes. We did not include 
the relatively insignificant levels of energy consumed when 
executing code on sensor nodes, given that 1 bit transmitted 
in a sensor network consumes as much power as 800 -1000 
instructions [12].    

We consider 2 scenarios with the maximum number of 
hops between two nodes of 10, and respectively 100 hops. 
For each of these scenarios we transfer 10, 20, 50 and 100 
packets between two nodes with the maximum number of 
hops between them. We use data payloads of 4 and 8 bytes. 

Formula (2) evaluates power consumption when no 
packet is lost. NbH1, NbH2 and NbH3 represent the size (in 
bytes) of the handshake packets; NbD represents the size of a 
data packet; NP is the number of packets and NH is the 
number of hops between source and destination. 

 

 
 
Formula (3) evaluates power consumption when packets 

are lost and NACKs are used. PPL represents the percentage 
of lost packets; ADLP represents the average distance where 
packets are lost, NbNACK represents the size (in bytes) of the 
NACK packet. This formula takes into consideration that 
packets go through a number of nodes before being lost and 
that NACK packets are used to retrieve those packets. 

 

 
 

1) 10 hops scenario 
The results for sending 10, 20, 50 and 100 packets on a 

10 hop chain are presented in Table 3 and Figure 5. All 
values are computed in bytes. Energy consumption for a byte 
depends on the hardware platform. 

We assume that the average distance where the packets 
are lost is 50% from the total number of hops, a similar 
situation to the one determined experimentally. 

TABLE III.  10 HOPS SCENARIO, 4 BYTE PAYLOADS 

Packet loss rate Number of packets 
10 20 50 100 

No packet loss 2200 3960 9240 18040 
10% packet loss 2420 4400 10340 20240 
20% packet loss 2640 4840 11440 22440 
30% packet loss 2860 5280 12540 24640 
40% packet loss 3080 5720 13640 26840 

 

 
Figure 5.  10 hops scenario, 4 byte payloads 

2) 100 hops scenario 
The results for the 100 hops scenario are presented in 

Table 4 and in Figure 6.  

TABLE IV.  100 HOPS SCENARIO, 4 BYTE PAYLOADS 

Packet loss rate Number of packets 
10 20 50 100 

No packet loss 20200 36360 84840 165640 
10% packet loss 22220 40400 94940 185840 
20% packet loss 24240 44440 105040 206040 
30% packet loss 26260 48480 115140 226240 
40% packet loss 28280 52520 125240 246440 

 

 
Figure 6.  100 hops scenario, 4 byte payloads 

3) Control overhead 
We aim to determine the control overhead (CO) of the 

security protocol for 4 and 8 byte payloads. We use Formula 
(4) to determine the control overhead. NbHD is the dimension 
in bytes of the EAASP header. 

 

 
 
Table 5 and Figure 7 present the control overhead for the 

10 hops scenario, for 100 transferred packets. 

TABLE V.  CO FOR 4 AND 8 BYTE PAYLOAD PACKETS 

Packet loss rate CO bytes CO for 4 bytes CO for 8 bytes 
No packet loss 9240 51% 34% 
10% packet loss 11000 54% 37% 

CO = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH + 1) +  
NP*PPL*NbHD*(1 + 2*ADLP*NH)  +   NP*PPL*NbNACK*2*(NH + 
1)  (4) 

EC = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH + 1) +  NP*PPL*NbD*(1 
+ 2*ADLP*NH) +   NP*PPL*NbNACK*2*(NH + 1)  (3) 

EC = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH+1)    (2) 
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Packet loss rate CO bytes CO for 4 bytes CO for 8 bytes 
20% packet loss 12760 57% 40% 
30% packet loss 14520 59% 42% 
40% packet loss 16280 61% 44% 

 

 
Figure 7.  Control overhead for 4 and 8 byte payload packets 

The percentage of control overhead decreases as the 
payload dimension is increased. For 4 byte payloads, CO 
goes from 51% for no packet loss, to 54% for 10% packet 
loss, to 61% for 40% packet loss. For 8 bytes, the CO goes 
from 34% for no packet loss, to 37% for 10% packet loss, to 
44% for 40% packet loss. 

4) EAASP vs. AASP 
We compare the two versions of the protocol in order to 

determine the extent to which EAASP is more energy-
efficient. 

The difference in energy consumption between the two 
versions of the protocol is determined in Formula (5). NbH 
represents the dimension of the handshake packets in AASP; 
NbACK is the dimension of the ACK packet; NbDe is the 
dimension of EAASP data packet and NbDa is the dimension 
of the AASP data packet.  

 

 
 
We present results for 10 hops scenario and 4 byte 

payloads in Table 6 and Figure 8.  All values are represented 
in number of bytes, because the energy depends directly on 
the number of sent and received bytes. 

TABLE VI.  AASP VS. EAASP – 10 HOPS, 4 BYTE PAYLOADS 

Packet loss rate AASP EAASP Saved energy 
No packet loss 42592 18040 24552 
10% packet loss 43802 20240 23562 
20% packet loss 45012 22440 22572 
30% packet loss 46222 24640 21582 
40% packet loss 47432 26840 20592 

 

 
Figure 8.  AASP vs. EAASP 

Results indicate that EAASP is considerably more energy 
efficient than AASP: the saved energy amounts to 24KB 
when no packet is lost, to 23KB for 10% packet loss, and to 
20KB when 40% packets are lost. The saved energy 
decreases slightly as the percentage of lost packets increases. 

5) Data aggregation 
We consider sending two 4 byte values into a single 

payload in order to reduce energy consumption.  
In Table 7 and Figure 11 we compare energy 

consumption when sending 50 packets with an 8 bytes 
payload and when sending 100 packets with a 4 bytes 
payload, for the 10 hops scenario.  

TABLE VII.  8 VS 4 BYTE PAYLOADS 

Packet loss rate 50 packets  
8 bytes data 

100 packets  
4 bytes data Saved energy 

No packet loss  13640 18040 4400 
10% packet loss 14960 20240 5280 
20% packet loss 16280 22440 6160 
30% packet loss 17600 24640 7040 
40% packet loss 18920 26840 7920 

 

 
Figure 9.  8 vs. 4 byte payloads 

We observe that, in each case, sending 50 packets with 8 
byte payloads consumes less energy than sending 100 
packets with 4 byte payloads. The saved energy is estimated 
to 4.4 MB when no packet is lost, 5.2MB for 10% packet 
loss, and 7.9MB when 40% of the packets are lost. As the 
percentage of lost packets increases, the saved energy also 
increases. 

AASP – EAASP = [4*NbH + NP*(NbDa+NbACK – NbDe – 
PPL*NbNACK) – NbH1 – NbH2 – NbH3]*2*(NH + 1) + NP*PPL*(NbDa – 
NbDe)*(1 + 2*ADLP*NH) (5) 

206

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-133-5



VI. CONCLUSIONS 
We have previously developed a security protocol 

(AASP) that provides authentication, integrity, anti-replay 
and reliability. In this paper we present protocol 
optimizations that reduce energy consumption: the control 
overhead has been minimized, the number of handshake 
packets has been reduced, NACKs have been used for 
selective data retransmission, and benefits of data 
aggregation have been evaluated. 

We implemented the improved security protocol 
(EAASP) in TinyOS as two layers in the communication 
stack, and we have used TOSSIM to run several test 
scenarios in order to demonstrate its functionality and to 
evaluate its performance. 

We have developed a mathematical model in order to 
determine energy consumption. In several test scenarios we 
have estimated the energy consumption, we have evaluated 
the control overhead, and we have determined the energy 
saved by optimizations and also by aggregating data. 

The formal evaluation proves that EAASP provides 
substantial energy savings in relation to AASP. Data 
aggregation can be further used, when possible, to increase 
energy efficiency. 

The Energy-efficient Security Protocol is an appropriate 
choice when authentication, integrity and anti-replay are 
required for low-power devices. We have used simulation 
and mathematical results to prove the energy-efficiency of all 
introduced optimizations. 

In further work we will use the QoS bits to prioritize 
certain packets, such as negative acknowledgements and re-
sent packets, in order to speed up the retrieval of lost 
packets. The QoS bits may also be used in order to reduce 
energy consumption caused by traffic congestion. 

In a future evaluation, we will compare our security 
protocol with other state of the art security protocols, such as 
TinySec and SPINS, regarding energy consumption, and the 
strength of authentication, freshness and reliability 
mechanisms. 
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