
Energy-efficient Optimizations of the Authentication and Anti-replay Security
Protocol for Wireless Sensor Networks

Laura Gheorghe, Răzvan Rughiniş, Nicolae Ţăpuş
University POLITEHNICA of Bucharest

Bucharest, Romania
{laura.gheorghe, razvan.rughinis, ntapus}@cs.pub.ro

Abstract - Wireless Sensor Networks are an emerging
technology used for environmental monitoring. Security is a
major concern when deploying a network for critical
applications, such as military or medical surveillance. We have
previously developed a security protocol that provides
authentication, anti-replay, integrity and reliability. This paper
presents further optimizations in order to minimize energy
consumption. We have implemented the Energy-efficient
Authentication and Anti-replay Security Protocol in TinyOS
and we have tested its functionality and performance using the
TOSSIM simulator. We have developed a mathematical model
to evaluate energy consumption, determining the control
overhead of the security protocol and the energy saved through
the optimizations and thus proving the efficiency of the
optimizations. The optimized EAASP represents a security
protocol that provides strong authentication and anti-replay,
integrity and reliability, and energy-efficiency.

Keywords - wireless sensor networks, security,
authentication, anti-replay, integrity, reliability, energy-
efficiency.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of a large

number of small embedded devices with limited capabilities
and low power consumption that have the abilities to self-
organize into a network and to perform sensing,
communicating and processing tasks [1].

WSNs are used to monitor their environment. Standard
applications that use WSNs are environmental, medical, and
military surveillance and emergency detection [2]. Such
applications require high levels of security.

Securing sensor networks is a challenging task because
of their specific constrains, such as the limited capabilities of
sensor node hardware, and the deployment context [3].

We have previously developed the Authentication and
Anti-replay Security Protocol (AASP), which provides
authentication, integrity, anti-replay and reliability. Our
contributions in this paper consist in several optimizations to
the AASP in order to reduce the energy consumption, such
as minimizing the control overhead, reducing the number of
handshake packets, using negative acknowledgements
instead of positive ones, and aggregating sensed data.

We have also developed a mathematical model that
evaluates the energy consumption introduced by the security
protocol, and we used it in order to perform a formal
evaluation of the control overhead and energy savings.

The rest of the paper is structured as follows: Section II
presents related work, Section III discusses the protocol

design, Section IV describes the implementation of the
protocol, Section V presents the mathematical model and the
evaluation results, and Section VI discusses the values of the
protocol and concludes the paper.

II. RELATED WORK
Several significant security solutions for WSNs include

the ZigBee Security Architecture, SPINS, and TinySec.
ZigBee Security Architecture consists in a coordinator

that acts as “Trust Center”, which allows other devices to
join the network and provides them keys [4]. ZigBee works
with three roles: the trust manager that authenticates devices
that want to join the network, the configuration manager that
manages and distributes keys, and the configuration manager
that provides end-to-end security. The infrastructure operates
in two modes: the Residential Mode that is used for low
security residential applications and the Commercial Mode
that is used by high-security commercial applications.

SPINS is a suite of security protocols optimized for
WSNs, consisting of two building blocks: the Secure
Network Encryption Protocol (SNEP) and the “micro”
version of the Timed, Efficient, Streaming, Loss-tolerant
Authentication Protocol (µTESLA) [5]. SNEP provides
confidentiality using encryption, authentication and integrity
by Message Authentication Codes (MAC). µTESLA
provides authenticated broadcast by emulating asymmetry
through a delayed disclosure of symmetric keys. SPINS has
been implemented on top of TinyOS [6].

TinySec has been designed as the replacement of SNEP
and provides confidentiality, authentication, integrity and
anti-replay protection [7]. It implements the Cipher Block
Chaining (CBC) mode with cipher text stealing for
encryption and the Cipher Block Chaining Message
Authentication Code (CBC-MAC) for authentication.
TinySec uses the TinySec-Auth format for authenticated
packets and the TinySec-AE for authenticated and encrypted
packets.

We aim to develop a security protocol that provides
strong authentication through the establishment of an
authentication connection, strong anti-replay through binding
the packet to its context, integrity and reliability, while also
being energy-efficient.

III. AN ENERGY-EFFICIENT SECURITY PROTOCOL
The purpose of this work is to develop a lightweight,

energy-efficient security protocol that provides
authentication, freshness and integrity for Wireless Sensor
Networks. EAASP has been designed by minimizing the

201

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

energy consumption of the Authentication and Anti-replay
Security Protocol (AASP) [8] [9].

In order to improve the energy efficiency of a protocol
one has to reduce the number of packets communicated by
nodes, and the average packet size. We aim to optimize the
security protocol by reducing the control overhead.

A. Authentication and Anti-replay Security Protocol
We have previously developed a security protocol that

provides two-way authentication, anti-replay protection and
integrity [8].

Authentication is ensured by the use of the Message
Authentication Code (MAC), which is computed from the
payload of the message and a secret key, by applying a
collision resistant hash function. We have used the Hash
Message Authentication Code (HMAC) implementation.

The anti-replay protection derives from binding the
packet to its context, specifically to the previous packet
between the same source and destination, and its sequence
number. The mechanism consists in including the MAC of
the previous packet in the current packet for all messages
sent between the same source and destination.

Integrity is ensured by including the MAC of the current
message in the packet.

For the first packet, authentication is performed by
checking the MAC of the current message. Still, this measure
does not protect against replay attacks. If the exact sequence
of packets between the same source and destination is
captured, it can be easily replayed later.

In order to further strengthen the authentication and anti-
replay protection, an authenticated connection has to be
established before sending any data packets. The
authenticated connection is established in AASP after a four-
step handshake.

In order to prevent the de-synchronization of the anti-
replay mechanism through loss of packets, we have
implemented an acknowledgement mechanism [9]. The next
packet is not sent until the previous packet is acknowledged
by the destination. The source node waits for the
acknowledgement for a specified period of time and, if it
times out, the packet is re-sent.

The authenticated connection has to be re-initiated if one
of the communicating nodes loses its connection data or if
the anti-replay mechanism is de-synchronized. The
connection times out after a specified period of time in which
no data or ACK message is received from the other node. In
that moment, connection data is erased and an authenticated
connection can be re-initiated.

The AASP is effective against malicious injection and
replay attacks. In order to increase its energy efficiency we
aim to reduce the number of control packets and the control
overhead from the data packets.

B. Energy-efficient Authentication and Anti-replay
Security Protocol
In this paper, we present a lightweight security protocol

that uses the basic mechanisms of AASP and has higher
energy efficiency. In order to reduce energy consumption,
we reduce the number of packets and the control overhead.

1) Reducing the control overhead
The AASP protocol has a header with the following

fields: Previous Hash (P_Hash) – 2 bytes, Current Hash
(C_Hash) – 2 bytes, Authentication (Auth) – 1 byte,
Acknowledge (ACK) – 1 byte and Sequence (Seq) – 1 byte.

 EAASP is designed with a protocol header as presented
in Table 1.

TABLE I. HEADER STRUCTURE

 EAASP Header Fields
Hash Type Seq

Number of bytes 2 1 1

The Hash field contains a MAC computed from the

current payload, the previous payload, the secret key and the
sequence number, as shown in Formula (1). The Type field
encodes the type of packet, as presented in section C.

The sequence number is taken into account when

computing the hash in order to avoid packet altering by
intermediate nodes.

2) Reducing the number of control packets
AASP has two types of control packets: handshake

packets and acknowledgement packets.
We aim at reducing the number of handshake packets,

while still providing powerful authentication. The
authentication method can be strengthened by sending
random challenges to each other.

We have reduced the number of handshake packets to
three, as presented in Figure 1.

Figure 1. Energy-efficient Three Step Handshake

The first packet, designated H1, contains a challenge
number randomly generated by the initiating node A. The
second packet, designated H2, is the answer from node B,
and it contains a hash based on the first challenge and the
secret key, and the challenge randomly generated by node B.
The third packet, designated H3, is the response of node A
and contains a hash based on the second challenge and the
secret key. After the three-step handshake is completed, data
packets can be exchanged.

We have used negative acknowledgements to reduce the
number of acknowledgement packets while still maintaining
a certain level of reliability.

The destination is able to detect packet loss when
receiving out-of-sequence packets. The destination stores the
sequence number of the last received and valid packet, and it

Hashi = MAC(Payloadi, Payloadi-1, Seq, K) (1)

202

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

expects the packet with the next sequence number. When it
receives a packet with a sequence number greater than the
expected one, it generates and then sends a Negative
Acknowledgement (NACK) packet back to the source node.

The out-of-order packet is not dropped at the destination
node, and it is stored until all previous packets are received.
The NACK packet contains the sequence number of the first
lost packet – L_Seq, and the sequence number of the
received out-of-order packet – R_Seq, in order to prevent the
source node to deliver the out-of-order packet again. The
source node resends all packets with a sequence number
greater or equal to L_Seq and less than R_Seq, when
receiving a NACK packet. The destination performs an
integrity and an anti-replay check on the re-sent and out-of-
order packets, and it delivers them to the application.

C. Protocol message structure
The EAASP header contains the following fields: Hash

(2 bytes), Type (1 byte) and Seq (1 byte), as presented in
Table 1. The Hash field contains the MAC computed from
the payloads of the previous and current packets, the secret
key, and the sequence number of the current packet. The
sequence number is used by the destination node to detect
lost packets. The Type field encodes the type of a certain
packet and contains the following fields: Auth (1 bit), NACK
(1 bit), PT (3 bits) and QoS (3 bits), as represented in Table
2.

The Auth flag is set to 0 during the three-step
authentication handshake, and it is set to 1 after the
authenticated connection has been established and data
packets have been exchanged. The NACK flag is set to 1 in a
NACK packet and to 0 otherwise.

TABLE II. TYPE FIELD STRUCTURE

 Type Field
Auth NACK PT QoS

Number of bits 1 1 3 3

PT represents the Packet Type and is 001 for H1 packets,

010 for H2 packets, 011 for H3 packets, 100 for Data
packets.

The QoS field is used for assigning a priority value to
packets. Because it is implemented on 3 bits, it provides for
8 priority levels. Certain packets can be assigned a higher
priority than others, such as the re-send or control packets.

IV. EAASP IMPLEMENTATION
The EAASP was implemented in TinyOS, an event-

driven, component-based operating system for Wireless
Sensor Networks [6].

1) Implementing the security protocol
EAASP consists of two layers, which were introduced in

the communication stack of the operating system: the MAC
layer and the Authentication layer.

The MACLayerSender component is placed between the
AMSenderC component and the ActiveMessageC
component, and it has access to all packets sent by the
application layer. In the AASP version this layer placed the
MAC of the previous and current payload in the analyzed

packet, and it stored the MAC of the current payload in the
component, for further use. In the current, optimized version,
this process has been moved into the Authentication layer,
because it stores a predefined number of sent packets for
further retrieval. If lost, they can be requested by a NACK
packet. This measure avoids duplicating the packet list.
Therefore, the MACLayerSender contains only the routing
protocol implementation.

The MACLayerReceiver is placed between the
ActiveMessageC component and the AMReceiverC
component, and it has access to all packets received by the
node before reaching the application layer.

If the component receives an out-of-order packet, it
stores it, and it delivers it to the upper layers only after all
packets with a lower sequence number have also been
delivered.

The MAC is computed from the payload of the current
packet, the payload of the previous packet, the secret key and
the sequence number of the current packet. If the MAC does
not match the one found in the Hash field of the packet, the
Altered flag is set. If the MAC is correct, the packet is stored
for further use when verifying the MAC of the next packet.
In either case, the packet is delivered to the upper layers.

 The Application layer is placed on top of the operating
system, and it uses the components AMSender and
AMReceiver to send to and respectively to receive packets
from the medium. We cannot send control packets, such as
handshake and ACK/NACK packets, from the MACLayer
components; therefore, we must divide the Application layer
into two sublayers: the Authentication layer and the actual
application layer.

Whenever a packet is received by the Authentication
layer from the actual application layer, without having an
authenticated connection with the destination node, the
Authentication layer initiates the three-step handshake by
sending an Authentication Request (H1) packet. The
Authentication layer performs the handshake in order to
establish the authenticated connection.

The Authentication layer keeps track of the sequence
number and stores a list of sent packets that can be used
when packets are lost and a NACK is received from the
destination. The layer computes and writes the protocol
header for each sent packet: sequence number, type and
hash. If it receives an out-of-order or altered packet, it
generates and sends a NACK to the source node. When
sending a NACK, a timer is configured to be fired after a
predefined period of time. If the lost data packets are not
retrieved in that interval, the NACK is considered to be lost
and the NACK is resent.

If the Authentication layer receives a NACK, it re-sends
all lost packets. If multiple packets are lost, the first packet is
re-sent from the Receive.receive() event, and the subsequent
packets, except for the out-of-order packet, are sent from the
AMSend.sendDone() event. If it receives a correct data
packet, it delivers it to the actual application layer and stores
the sequence number of this packet.

2) Implementing the routing protocol
TinyOS provides single-hop communication via the

Active Messages stack. In order to ensure multi-hop

203

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

communication, we introduce layer 3 information in packets
and we implement a routing protocol. We use the AM
addresses as layer 2 addresses and we introduce a layer 3
source ID and destination ID in the packets.

The MAC layer contains the implementation of a simple
routing protocol. This layer stores a routing table that
contains the next hop associated with a certain destination.
When the MACLayerSender component receives a packet
from the application layer, it checks the routing table in order
to determine the next hop towards the destination. After that,
it sends the packet to the next hop node by setting it as the
destination in the AM packet.

When the MACLayerReceiver receives a packet with the
layer 3 destination different from the node ID, it checks the
routing table to find the next hop and sends the packet to that
node. A discussion of routing procedures in the EAASP lies
beyond the scope of this article.

V. EVALUATION RESULTS
We evaluate EAASP by determining its energy

efficiency and its scalability.

A. Simulation results
A first evaluation relies on several test scenarios

implemented with TOSSIM, a simulation tool for TinyOS
applications [10].

1) Single-hop scenario
The first test scenario has the purpose of demonstrating

basic single-hop functionality. We determine the proportion
of lost packets by computing an average value across 20
instances of scenario execution.

Figure 2 presents the TOSSIM output for a single-hop
authentication initialization, connection establishment, and
data packets exchange.

Each line has the following format: The ID of the node,
the component that generates the output, the type of packet
sent or received, the fields, the source and destination of the
packet.

Figure 2. Handshake and data packets

We can observe from Figure 2 that the Authentication
layer is responsible for performing the handshake and for
establishing the connection, and the Application layer has the
role of sending and receiving data packets.

In Figure 3, we can observe that a packet with sequence
11 is lost and the subsequent packet is received by the
destination. It is detected as an out-of-sequence number and

a NACK packet is sent to the source node, which resends the
packet. The out-of-order packet is stored in the
MACLayerReceiver and it is delivered to the application
layer after the lost packet is received. After that, the next
packet is sent and received correctly at the destination.

Figure 3. Lost and recovered data packets

In order to determine the proportion of lost packets we
have used a scenario in which we have generated 100
packets, we have counted the number of lost packets and we
have computed the percent of lost packets. The scenario has
been run for 20 times in order to compute an average value.
The resulting average value for the single-hop case is 1.55%
lost packets.

2) The multi-hop scenario
As a simple multi-hop scenario we choose a 3 node chain

topology and we send packets from one end to another, as
presented in Figure 4.

Figure 4. Multi-hop packet routing

To determine the proportion of lost packets for a multi-
hop scenario, we have used 10 nodes placed in a chain
topology. We have generated 100 packets, we have run the
scenario for 20 times, and we have obtained an average of
9.55% lost packets for the 10 node chain topology. The
average distance (in hops) from the source node where the
packets are lost is 4.45.

B. Energy consumption
We have developed a mathematical model designated as

the Sent/Received Bytes Evaluation Model that allows us to
determine a measurement of energy consumption in order to

(3): AuthenticationLayer: H1 packet sent [payload=234 hash=56843
type=8 seq=1 (3->1)]
(1): AuthenticationLayer: H2 packet sent [payload=57195 hash=42756
type=16 seq=1 (1->3)]
(3): AuthenticationLayer: H3 packet sent [payload=56185 hash=47406
type=24 seq=2 (3->1)]
(3): AuthenticationLayer: Managed to authenticate myself to node 1
(1): AuthenticationLayer: Managed to authenticate myself to node 3
(3): ApplicationC: Data packet sent [payload=1235 hash=41396
type=160 seq=3 (3->1)]
(1): ApplicationC: Data packet received [payload=1235 hash=41396
type=160 seq=3 (3->1)]

(3): ApplicationC: Data packet sent [payload=1243 hash=43279
type=160 seq=11 (3->1)]
(3): ApplicationC: Data packet sent [payload=1244 hash=43260
type=160 seq=12 (3->1)]
(1): AuthenticationLayer: Out-of-order packet received [payload=1244
hash=43260 type=161 seq=12 (3->1)]
(1): AuthenticationLayer: NACK packet sent [payload=11
hash=42686 type=64 seq=2 (1->3)]
(3): AuthenticationLayer: NACK packet received [payload=11
hash=42686 type=64 seq=2 0 (1->3)]
(3): AuthenticationLayer: Data packet re-sent [payload=1243
hash=43279 type=162 seq=11 (3->1)]
(1): ApplicationC: Data packet received [payload=1243 hash=43279
type=162 seq=11 (3->1)]
(1): ApplicationC: Data packet received [payload=1244 hash=43260
type=160 seq=12 (3->1)]
(3): ApplicationC: Data packet sent [payload=1245 hash=43243
type=160 seq=13 (3->1)]
(1): ApplicationC: Data packet received [payload=1245 hash=43243
type=160 seq=13 (3->1)]

(0): RadioCountToLedsC: Data packet sent [payload=1257
hash=43030 type=160 seq=24 (0->2)]
(1): RoutingLayer: Routing packet through 2 [payload=1257
hash=43030 type=160 seq=24 (0->2)]
(2): RadioCountToLedsC: Data packet received [payload=1257
hash=43030 type=160 seq=24 (0->2)]

204

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

evaluate the control overhead and to compare EAASP with
AASP.

Similar mathematical models such as [11] include 2nd
layer information, which is not useful when analyzing a
security protocol.

In order to evaluate energy consumption, our
mathematical model takes in consideration only the number
of bytes sent and received by the nodes. We did not include
the relatively insignificant levels of energy consumed when
executing code on sensor nodes, given that 1 bit transmitted
in a sensor network consumes as much power as 800 -1000
instructions [12].

We consider 2 scenarios with the maximum number of
hops between two nodes of 10, and respectively 100 hops.
For each of these scenarios we transfer 10, 20, 50 and 100
packets between two nodes with the maximum number of
hops between them. We use data payloads of 4 and 8 bytes.

Formula (2) evaluates power consumption when no
packet is lost. NbH1, NbH2 and NbH3 represent the size (in
bytes) of the handshake packets; NbD represents the size of a
data packet; NP is the number of packets and NH is the
number of hops between source and destination.

Formula (3) evaluates power consumption when packets

are lost and NACKs are used. PPL represents the percentage
of lost packets; ADLP represents the average distance where
packets are lost, NbNACK represents the size (in bytes) of the
NACK packet. This formula takes into consideration that
packets go through a number of nodes before being lost and
that NACK packets are used to retrieve those packets.

1) 10 hops scenario
The results for sending 10, 20, 50 and 100 packets on a

10 hop chain are presented in Table 3 and Figure 5. All
values are computed in bytes. Energy consumption for a byte
depends on the hardware platform.

We assume that the average distance where the packets
are lost is 50% from the total number of hops, a similar
situation to the one determined experimentally.

TABLE III. 10 HOPS SCENARIO, 4 BYTE PAYLOADS

Packet loss rate Number of packets
10 20 50 100

No packet loss 2200 3960 9240 18040
10% packet loss 2420 4400 10340 20240
20% packet loss 2640 4840 11440 22440
30% packet loss 2860 5280 12540 24640
40% packet loss 3080 5720 13640 26840

Figure 5. 10 hops scenario, 4 byte payloads

2) 100 hops scenario
The results for the 100 hops scenario are presented in

Table 4 and in Figure 6.

TABLE IV. 100 HOPS SCENARIO, 4 BYTE PAYLOADS

Packet loss rate Number of packets
10 20 50 100

No packet loss 20200 36360 84840 165640
10% packet loss 22220 40400 94940 185840
20% packet loss 24240 44440 105040 206040
30% packet loss 26260 48480 115140 226240
40% packet loss 28280 52520 125240 246440

Figure 6. 100 hops scenario, 4 byte payloads

3) Control overhead
We aim to determine the control overhead (CO) of the

security protocol for 4 and 8 byte payloads. We use Formula
(4) to determine the control overhead. NbHD is the dimension
in bytes of the EAASP header.

Table 5 and Figure 7 present the control overhead for the

10 hops scenario, for 100 transferred packets.

TABLE V. CO FOR 4 AND 8 BYTE PAYLOAD PACKETS

Packet loss rate CO bytes CO for 4 bytes CO for 8 bytes
No packet loss 9240 51% 34%
10% packet loss 11000 54% 37%

CO = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH + 1) +
NP*PPL*NbHD*(1 + 2*ADLP*NH) + NP*PPL*NbNACK*2*(NH +
1) (4)

EC = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH + 1) + NP*PPL*NbD*(1
+ 2*ADLP*NH) + NP*PPL*NbNACK*2*(NH + 1) (3)

EC = (NbH1+NbH2+NbH3+ NP*NbD)*2*(NH+1) (2)

205

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

Packet loss rate CO bytes CO for 4 bytes CO for 8 bytes
20% packet loss 12760 57% 40%
30% packet loss 14520 59% 42%
40% packet loss 16280 61% 44%

Figure 7. Control overhead for 4 and 8 byte payload packets

The percentage of control overhead decreases as the
payload dimension is increased. For 4 byte payloads, CO
goes from 51% for no packet loss, to 54% for 10% packet
loss, to 61% for 40% packet loss. For 8 bytes, the CO goes
from 34% for no packet loss, to 37% for 10% packet loss, to
44% for 40% packet loss.

4) EAASP vs. AASP
We compare the two versions of the protocol in order to

determine the extent to which EAASP is more energy-
efficient.

The difference in energy consumption between the two
versions of the protocol is determined in Formula (5). NbH
represents the dimension of the handshake packets in AASP;
NbACK is the dimension of the ACK packet; NbDe is the
dimension of EAASP data packet and NbDa is the dimension
of the AASP data packet.

We present results for 10 hops scenario and 4 byte

payloads in Table 6 and Figure 8. All values are represented
in number of bytes, because the energy depends directly on
the number of sent and received bytes.

TABLE VI. AASP VS. EAASP – 10 HOPS, 4 BYTE PAYLOADS

Packet loss rate AASP EAASP Saved energy
No packet loss 42592 18040 24552
10% packet loss 43802 20240 23562
20% packet loss 45012 22440 22572
30% packet loss 46222 24640 21582
40% packet loss 47432 26840 20592

Figure 8. AASP vs. EAASP

Results indicate that EAASP is considerably more energy
efficient than AASP: the saved energy amounts to 24KB
when no packet is lost, to 23KB for 10% packet loss, and to
20KB when 40% packets are lost. The saved energy
decreases slightly as the percentage of lost packets increases.

5) Data aggregation
We consider sending two 4 byte values into a single

payload in order to reduce energy consumption.
In Table 7 and Figure 11 we compare energy

consumption when sending 50 packets with an 8 bytes
payload and when sending 100 packets with a 4 bytes
payload, for the 10 hops scenario.

TABLE VII. 8 VS 4 BYTE PAYLOADS

Packet loss rate 50 packets
8 bytes data

100 packets
4 bytes data Saved energy

No packet loss 13640 18040 4400
10% packet loss 14960 20240 5280
20% packet loss 16280 22440 6160
30% packet loss 17600 24640 7040
40% packet loss 18920 26840 7920

Figure 9. 8 vs. 4 byte payloads

We observe that, in each case, sending 50 packets with 8
byte payloads consumes less energy than sending 100
packets with 4 byte payloads. The saved energy is estimated
to 4.4 MB when no packet is lost, 5.2MB for 10% packet
loss, and 7.9MB when 40% of the packets are lost. As the
percentage of lost packets increases, the saved energy also
increases.

AASP – EAASP = [4*NbH + NP*(NbDa+NbACK – NbDe –
PPL*NbNACK) – NbH1 – NbH2 – NbH3]*2*(NH + 1) + NP*PPL*(NbDa –
NbDe)*(1 + 2*ADLP*NH) (5)

206

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

VI. CONCLUSIONS
We have previously developed a security protocol

(AASP) that provides authentication, integrity, anti-replay
and reliability. In this paper we present protocol
optimizations that reduce energy consumption: the control
overhead has been minimized, the number of handshake
packets has been reduced, NACKs have been used for
selective data retransmission, and benefits of data
aggregation have been evaluated.

We implemented the improved security protocol
(EAASP) in TinyOS as two layers in the communication
stack, and we have used TOSSIM to run several test
scenarios in order to demonstrate its functionality and to
evaluate its performance.

We have developed a mathematical model in order to
determine energy consumption. In several test scenarios we
have estimated the energy consumption, we have evaluated
the control overhead, and we have determined the energy
saved by optimizations and also by aggregating data.

The formal evaluation proves that EAASP provides
substantial energy savings in relation to AASP. Data
aggregation can be further used, when possible, to increase
energy efficiency.

The Energy-efficient Security Protocol is an appropriate
choice when authentication, integrity and anti-replay are
required for low-power devices. We have used simulation
and mathematical results to prove the energy-efficiency of all
introduced optimizations.

In further work we will use the QoS bits to prioritize
certain packets, such as negative acknowledgements and re-
sent packets, in order to speed up the retrieval of lost
packets. The QoS bits may also be used in order to reduce
energy consumption caused by traffic congestion.

In a future evaluation, we will compare our security
protocol with other state of the art security protocols, such as
TinySec and SPINS, regarding energy consumption, and the
strength of authentication, freshness and reliability
mechanisms.

ACKNOWLEDGEMENTS
The work has been partially funded from the Sectoral

Operational Programme Human Resources Development
2007-2013 of the Romanian Ministry of Labour, Family and
Social Protection through the Financial Agreement
POSDRU/88/1.5/S/60203, partially from the national project
"Excellence in research through postdoctoral programs in
priority areas of knowledge-based society(EXCEL)", Project
POSDRU/89/1.5/S/62557 and partially from POSCCE
project GEEA 226 - SMIS code 2471, which is co-founded
through the European Found for Regional Development
inside the Operational Sectoral Program "Economical
competivity improvement" under contract 51/11.05.200.

REFERENCES

[1] J. Zheng and A. Jamalipour, Wireless Sensor Networks: A
Networking Perspective, Wiley-IEEE Press, 2009.

[2] M. Winkler, K.D. Tuchs, K. Hughes, and G. Barclay,
“Theoretical and practical aspects of military wireless sensor
networks,” Journal of Telecommunications and Information
Technology, vol. 2, 2008, pp. 37-45.

[3] T. Kavitha and D. Sridharan, “Security Vulnerabilities In
Wireless Sensor Networks: A Survey,” Journal of Information
Assurance and Security, vol. 5, 2010, pp. 31-44.

[4] D. Boyle and T. Newe, “Security protocols for use with wireless
sensor networks: A survey of security architectures,” Third
International Conference on Wireless and Mobile
Communications, 2007, pp. 54-59.

[5] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D.E. Culler,
“SPINS: Security protocols for sensor networks,” Wireless
networks, vol. 8, 2002, pp. 521-534.

[6] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An
operating system for sensor networks,” Ambient Intelligence,
2004, pp. 115-148.

[7] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer
security architecture for wireless sensor networks,” Proceedings
of the 2nd international conference on Embedded networked
sensor systems, ACM, 2004, pp. 162-175.

[8] L. Gheorghe, R. Rughiniș, R. Deaconescu, and N. Țăpuș,
“Authentication and Anti-replay Security Protocol for Wireless
Sensor Networks,” The Fifth International Conference on
Systems and Networks Communications, ICSNC 2010, 2010, pp.
7-13.

[9] L. Gheorghe, R. Rughiniș, R. Deaconescu, and N. Țăpuș,
“Reliable Authentication and Anti-replay Security Protocol for
Wireless Sensor Networks,” The Second International
Conferences on Advanced Service Computing, SERVICE
COMPUTATION 2010, 2010, pp. 208-214.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate
and scalable simulation of entire TinyOS applications,”
Proceedings of the 1st international conference on Embedded
networked sensor systems, ACM, 2003, pp. 126-137.

[11] M. Amiri, “Evaluation of Lifetime Bounds of Wireless Sensor
Networks,” Arxiv preprint arXiv:1011.2103, vol. abs/1011.2,
2010.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,”
ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and
operating systems, vol. 35, Dec. 2000, pp. 93-104.

207

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

