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Abstract—We analyze higher-order statistics of the length of
the series of consecutive packet losses at the router’s output
buffer. So far, only the average length of the series of losses has
been studied, in the context of the quality of real-time multimedia
transmissions. In this paper, we compute the coefficient of
variation, skewness and excess kurtosis of the length of the
series of losses, using a complex traffic model. Then we study
the influence of properties of the queue and the traffic on these
higher-order statistics. In particular, we study the impact of the
autocorrelation of packet interarrival times, the batch structure
of the traffic, the buffer capacity and the load of the queue
on the coefficient of variation, skewness and kurtosis and discuss
their potential impact on the quality of multimedia transmissions
perceived by end users.

Index Terms—Internet; buffer overflows; series of losses;
higher-order statistics

I. INTRODUCTION

One of the consequences of the best-effort design of the
Internet are packet losses, which happen at the router’s output
buffer, when the temporary arrival rate from all input interfaces
exceeds the capacity of the output link. The mechanism of
these losses is simple - the buffer gets full and newly arriving
packets are deleted.

When analyzing and describing the packet loss process,
the most obvious and useful characteristic is the loss ratio,
i.e., the ratio of the number of lost packets to the total
number of packets, considered in some, usually not short, time
interval. This characteristics has been widely studied using
measurements [1]–[7] and mathematical models [8]–[15].

The second well known and useful characteristic of the
loss process is the burst ratio [16]. This characteristic is
just the average length of the series of consecutive packet
losses, properly normalized. Therefore, it describes not the
bare frequency of occurrences of losses, but their statistical
structure – tendency to cluster together in series. Such series
are known to impair significantly the quality of real-time audio
and video transmissions, via unpleasant pausing of freezing
[17]. There is also a substantial literature on the burst ratio,
with direct measurements [18]–[21] and mathematical models
[22]–[28].

As it was said, the burst ratio is proportional to the average
length of the series of losses. Hence, it does not contain any
detailed information about the distribution of the series of
losses, but its average value only. In particular, it does not
contain any information about the variability of the series of
losses and how heavy is the tail of this distribution. Intuitively,
such information may be of some value when analyzing the

impairment of real-time audio and video transmissions. For
instance, a heavy tail of this distribution indicates that we can
expect occasionally a very long series of losses.

In this paper, we compute and analyze higher-order statistics
of the distribution of the series of losses, i.e., the coefficient
of variation, skewness and excess kurtosis. They are based
on higher moments (the second, third and fourth moment,
respectively) and, combined together, contain much more
detailed information about this distribution, than the bare burst
ratio.

In calculations, we use a mathematical model of the buffer
fed by an aggregated traffic. The Batch Markovian Arrival
Process (BMAP) is used to model the traffic. It is perhaps one
of the most versatile and useful models, due to it broad mod-
eling capabilities. In particular, using BMAP we can model an
arbitrary interarrival time distribution and the autocorrelation
of packet interarrival times [29], [30], batch arrivals (useful in
TCP modeling [31]) and several other features of traffic. Some
of these features will be exploited in numerical examples. The
BMAP process is widely used in the performance evaluation
of networks, see [32]–[35] and the references there.

To the best of the authors’ knowledge, there are no pub-
lished results on higher-order statistics of the series of losses.
The only results we are aware of are those devoted to the
first-order statistic, i.e., the burst ratio, published in the papers
mentioned above.

The rest of the paper is structured as follows. In Section
II, the model of the buffer fed by the BMAP process is
described. In Section III, formulas for the coefficient of
variation, skewness and excess kurtosis of the series of packet
losses are presented. In Section IV, numerical results are given.
In particular, five different parameterizations of traffic are used
and accompanied by different buffer sizes, loads of the queue
and service times. Influence of all these factors on higher-
order statistics of the series of losses is discussed. Concluding
remarks are given in Section V.

II. THE MODEL

We use a finite-buffer queueing model with a single server.
Namely, the buffer size is K, including the service position.
If upon a packet arrival there are K packets present in the
buffer, a newly arriving packet is deleted. The service time
has general distribution given by distribution function F with
the average value of F . The load of the queue, ρ, is defined
as

ρ = ΛF , (1)
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where Λ is the rate of the arrival process.
The packet arrival process is modeled by the BMAP process

[36]. BMAP is a Markov process denoted by (N(t), J(t)),
t ≥ 0, where N(t) is the cumulative number of packets that
arrived in (0, t), while J(t) is the state of some Markov chain
(continuous-time type), called the modulating chain, with the
state space {1, . . . , s}. The infinitesimal matrix of (N(t), J(t))
is: 

D0 D1 D2 D3 · ·
D0 D1 D2 · ·

D0 D1 · ·
· · ·

 ,
where each Di, i ≥ 0, constitutes an s×s matrix. In addition,
each Di, i ≥ 1, is nonnegative, while D0 is negative on
its diagonal elements and nonnegative outside the diagonal.
Finally, D =

∑∞
i=0Di has to be an irreducible infinitesimal

matrix and has to differ from D0.
In the analysis of BMAP, the function Pi,j(n, t) is used

frequently:

Pn,m(k, t) = Pr{N(t) = k, J(t) = m|N(0) = 0, J(0) = n}.
(2)

In what follows, e is the column vector of length s of 1’s,
I is the s× s identity matrix, 0 is the s× s matrix of 0’s and
1 is the s× s matrix of 1’s.

III. HIGHER-ORDER STATISTICS

The higher-order statistics of the length of the series of
losses can be obtained in a similar way, as the burst ratio
parameter was obtained in [27]. Namely, following the proof
of Theorem 1 of [27], we can see that the probability that the
series of consecutive packet losses is of length k is:

Pk =
ur(k)

1− ur(0)
, k = 1, 2, . . . , (3)

where vector u of size s contains the distribution of the
modulating chain at the moment ending the buffer overflow
period in the stationary regime. It can be computed as the
stationary vector of stochastic s× s matrix V , i.e., the vector
fulfilling the set of equations: ue = 1,

uV = u,
(4)

where matrix V has the following form:

V = W−1

Z +

K∑
i=1

RK−iAi −
K∑
i=1

i∑
j=1

YK−iRi−jAj

 ,

(5)

with
Ak =

[∫ ∞
0

Pn,m(k, t)dF (t)

]
n,m

, (6)

Yk =

[
−(D0)nnpn(k,m)

λn

]
n,m

, (7)

R0 = 0, R1 = A−10 ,

Rj+1 = A−10

(
Rj −

j∑
i=0

Ai+1Rj−i

)
, j ≥ 1, (8)

Z =

∞∑
i=K

YiA0, (9)

Ai = A0 −
i−1∑
j=0

Aj , (10)

and

W =

K∑
i=0

RK−iAi −
K∑
i=1

i∑
j=0

YK−iRi−jAj . (11)

Moreover, pn(k,m) in (7) is the probability that in the
arrival process there will be a change of the modulating chain
to m together with an arrival of a batch of size k, if the
modulating chain is currently in state n. This probability is
equal to:

pn(0, n) = 0, for every n, (12)

pn(0,m) =
1

−(D0)nn
(D0)nm, n 6= m, (13)

pn(k,m) =
1

−(D0)nn
(Dm)nm, k ≥ 1. (14)

On the other hand, vectors r(k), which are present in (3),
are defined as follows. The n-th entry of vector r(k) is the
probability, that during the first buffer overflow period the
number of lost packets equals k, assuming X(0) = K−1 and
J(0) = n. Vectors r(k) have the following form, see [27]:

r(k) = W−1

·

K∑
i=1

RK−iAi+k−
K∑
i=1

i∑
j=1

YK−iRi−jAj+k +

K+k∑
i=K

YiAK+k−i

e.

(15)

Matrices Ak, which are present in (8), (10), (11) and (15),
can be computed using the uniformization method of [36].
Exploiting this method we get:

Ai =

∞∑
j=0

Ti,j
j!

∫ ∞
0

e−θt(θt)jdF (t), (16)

with
θ = max

n
{(−D0)nn}, (17)

and:

T0,0 = I, (18)
Tk,0 = 0, k ≥ 1, (19)

T0,j+1 = T0,j(I + θ−1D0), (20)

Tk,j+1 = θ−1
k−1∑
i=0

Ti,jDk−i + Tk,j(I + θ−1D0). (21)
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Now, using (3) with (4), (5) and (15), we can obtain higher-
order statistics of the series of losses. Namely, the coefficient
of variation, Cv , of the length of the series of losses is:

Cv =
S

G
, (22)

where G is the average length of the series of losses:

G =

∑∞
k=1 kur(k)

1− ur(0)
, (23)

while S is the standard deviation:

S =

√∑∞
k=1 k

2ur(k)

1− ur(0)
−G2. (24)

The skewness M of the length of the series of losses is:

M =

∑∞
k=1(k −G)3ur(k)

S3(1− ur(0))
. (25)

Finally, the excess kurtosis N of the length of the series of
losses is:

N =

∑∞
k=1(k −G)4ur(k)

S4(1− ur(0))
− 3. (26)

IV. EXAMPLES

In these examples, we will use the same parameterizations
of the system that were used in [27] to study the first-order
statistic. In particular, the following five BMAP parameteriza-
tions will be used:

BMAP1: D0 = −6.66666666 ·I, D1 = 6.66666666 ·I.
BMAP2:

D0 =

−2.66407491 0.21318153 0.06876823
0.28194977 −4.12978130 0.28194977
0.07564506 0.07564506 −14.6406033

 ,
D1 =

 1.30324098 0.60086202 0.47802213
0.28641400 2.92428551 0.35518224
0.80716673 0.28882659 13.3933198

 .
BMAP3: D0 = −I, D2 = 0.02222222 · 1, D4 =
0.07777778 · 1, D8 = 0.23333333 · 1.
BMAP4:

D0 =

−0.39961124 0.03197723 0.01031523
0.04229246 −0.61946720 0.04229246
0.01134675 0.01134675 −2.19609050

 ,
D2 =

 0.14544482 0.01134675 0.02166199
0.01134675 0.03197723 0.02166199
0.02166199 0.03197723 0.05260770

 ,
D4 =

 0.01134675 0.02166199 0.01134675
0.01134675 0.33111906 0.01134675
0.04229246 0.01134675 0.02166199

 ,
D8 =

 0.03869456 0.05712054 0.03869456
0.02026858 0.07554653 0.02026858
0.05712054 0.00000000 1.93472829

 .

BMAP5:

D0 =

−45.5935855 1.95261616 0.19526161
0.01952616 −4.55935855 0.19526161
0.00195261 0.01952616 −0.45593586

 ,
D2 =

 0.06508720 0.52069762 5.20697622
0.52069762 0.00065087 0.05792761
0.05076801 0.00650872 0.00065087

,
D4 =

 0.06508720 0.52069762 5.20697622
0.52069762 0.00065087 0.05792761
0.05076801 0.00650872 0.00065087

 ,
D8 =

 0.35797962 2.86383692 28.6383692
2.86383692 0.00357979 0.31860186
0.27922410 0.03579796 0.00357979

 .
On purpose, all of these arrival processes have the same

arrival rate, Λ = 20/3, but quite different internal statistical
properties. In particular, BMAP1 is in fact a simple Poisson
process, so it has no autocorrelation of interarrival times, nor
batch arrivals. BMAP2 is positively, strongly autocorrelated,
but has no batch arrivals. On the other hand, BMAP3

is not autocorrelated, but has batch arrivals. Finally, both
BMAP4 and BMAP5 are strongly autocorrelated and have
batch arrivals. The difference is that the autocorrelation of
BMAP4 is positive, while BMAP5 has an oscillating auto-
correlation, with positive and negative signs. It is important
that when batch arrivals are involved (in BMAP3, BMAP4

and BMAP5), the same batch sizes are used in every case.
Similarly, in two cases with positive autocorrelation (BMAP2

and BMAP4), exactly the same autocorrelation function is
used.

By default, we will use K = 50, ρ = 1 and exponential
service time with the mean of 3/20. There will be some
exceptions, but they will be clearly stated.

In Figure 1, the distribution Pk of the length of the series of
losses is presented for all considered arrival processes. As we
can see, for BMAP1 and BMAP2, which do not have the
batch structure, the distribution is regular and monotonic. A
heavier tail can be observed in the correlated case, BMAP2.
For BMAP3, . . . , BMAP5, which do have the batch struc-
ture, this distribution has an irregular form, with multiple
spikes.

TABLE I
HIGHER-ORDER STATISTICS OF THE SERIES OF LOSSES FOR DIFFERENT

ARRIVAL TRAFFIC. K = 50 AND ρ = 1.

traffic Cv M N

BMAP1 0.7071 2.1213 6.5000
BMAP2 0.8030 2.0786 6.3582
BMAP3 0.7414 1.8390 5.6675
BMAP4 0.7552 2.0258 6.3752
BMAP5 0.7378 1.6039 4.5386

In Table I, the higher-order statistics of the series of consec-
utive packet losses for BMAP1, . . . , BMAP5 are presented.
As we can see, the coefficient of variation assumes moderate
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Figure 1. Distribution of the length of the series of losses for
BMAP1, . . . , BMAP5. K = 50 and ρ = 1.

values in the range 0.7-0.8. The autocorrelated structure seems
to elevate Cv slightly (compare BMAP2 with BMAP1).
This is not so clear about the batch structure. If we compare
BMAP3 with BMAP1, it seems that the batch structure
makes the coefficient of variation greater. On the other hand,
Cv is less in the case of BMAP4, than in the case of BMAP2,
even though they share the same autocorrelation function,
BMAP4 has the batch structure, while BMAP2 does not.

The skewness in Table I is positive in all the cases, with the
values around 2. This is consistent with Figure 1, in which all
the tails are on the right side.

The most interesting statistic in Table I is the excess
kurtosis. As we can see, it assumes rather high, positive values
in all the cases, which indicate fat tails of the distributions of
the series of losses (much fatter than in the case of normal
distribution which has N = 0).

Contrary to Cv , the excess kurtosis seems to be less when
a positive autocorrelation or batch structure is involved -
compare again BMAP2 with BMAP1 and BMAP3 with
BMAP1, respectively. In the case of the oscillating autocor-
relation, BMAP5, the smallest value is observed, while still
rather high.

So far, only the buffer of size 50 was considered. Now we
will check the dependence of the higher-order statistics on the
buffer size.

In Figures 2, 3 and 4, the coefficient of variation, skewness
and excess kurtosis as functions of the buffer size are pre-
sented, for all the considered arrival streams. As we can see, all
three statistics are practically independent on the buffer size,
when the arrival process has no batch structure - the curves
are flat for BMAP1 and BMAP2. On the other hand, a high
dependence of the three statistics on the buffer size can be
observed when the arrival process does have the batch structure
and the buffer is rather small - see the spikes in Figures 2-4
for BMAP3, . . . , BMAP5. However, for a relatively small
K, about 25, all three statistics stabilize and do not change
anymore, when the buffer grows. Therefore K = 50 used
herein as a default value is already in the stable regime.

10 20 30 40
buffer size

0.6

0.7

0.8

0.9
coeff. of variation

BMAP5

BMAP4

BMAP3

BMAP2

BMAP

Figure 2. Coefficient of variation versus the buffer size for
BMAP1, . . . , BMAP5, ρ = 1.
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BMAP3
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Figure 3. Skewness versus the buffer size for BMAP1, . . . , BMAP5, ρ =
1.
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Figure 4. Excess kurtosis versus the buffer size for BMAP1, . . . , BMAP5,
ρ = 1.

Increasing the buffer e.g. to K = 100 would have a negligible
effect on the three statistics.

Now we get back to K = 50 and vary the load of the queue
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Figure 5. Coefficient of variation versus the system load for
BMAP1, . . . , BMAP5, K = 50.
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Figure 6. Skewness versus the system load size for BMAP1, . . . , BMAP5,
K = 50.
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Figure 7. Excess kurtosis versus the system load for
BMAP1, . . . , BMAP5, K = 50.

(it was unaltered so far, ρ = 1).
In Figures 5, 6 and 7, the coefficient of variation, skewness

and excess kurtosis as functions of the load of the queue are

presented for all the considered arrival streams. As we can
see in Figure 5, the behaviour of Cv depends strongly on the
presence of batches. Namely, Cv grows significantly with the
queue load if the arrivals are single (BMAP1, BMAP2), no
matter if the arrival process is correlated or not. Cv changes
much slower with load when the arrival process has the batch
structure.

In Figure 6, we can notice that the skewness is different for
all the arrival processes, when the load is low, ρ = 0.5. When
the load is high, ρ = 1.5, the skewness is almost identical for
BMAP1, BMAP2 and BMAP4, but different for remaining
BMAPs. A similar situation is in the case of excess kurtosis,
which can be observed in Figure 7.

TABLE II
HIGHER-ORDER STATISTICS OF THE SERIES OF LOSSES FOR DIFFERENT

SERVICE TIME DISTRIBUTIONS. BMAP5 , K = 50 AND ρ = 1 WERE
USED.

service time Cv M N

F1 0.6729 1.1257 2.1510
F2 0.6954 1.2963 2.8960
F3 0.7090 1.4159 3.5801
F4 0.7378 1.6039 4.5386
F5 0.9512 2.9188 14.2978

Now we get back to ρ = 1 and vary the service time
distribution, which was exponential in all the examples so far.
Namely, we use now the following five distribution functions
of the service time:

F1(x) = 0 if x <
3

20
, F1(x) = 1 otherwise, (27)

F2(x) =
20

6
x, 0 ≤ x < 6

20
, (28)

F3(x) = 1− 40

3
xe−

40
3 x − e− 40

3 x, x ≥ 0, (29)

F4(x) = 1− 20

3
e−

20
3 x, x ≥ 0, (30)

F5(x) = 1− 0.95e−9.5x − 0.05e−x, x ≥ 0. (31)

All of these distributions have the mean of 3/20, therefore all
of them produce the load of 1. They differ, however, in the
standard deviation, which is 0, 0.086, 0.107, 0.150 and 0.314
for F1-F5, respectively.

The results are shown in Table II. They can be summarized
in two points. First, the variation of the service time influences
significantly all three higher-order statistics. A particularly
great influence can be observed in the case of the excess
kurtosis. Second, the dependence is monotonic in each case,
i.e., the higher the variation of the service time, the higher Cv ,
M and N .

V. CONCLUSIONS

We analyzed higher-order statistics of the length of the
series of packet losses at a router’s output buffer, using a
queueing system with a complex, flexible traffic model. In
particular, we presented formulas and numerical examples for
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the coefficient of variation, skewness and excess kurtosis of
the length of the series.

A few observations were made. For instance, all three
statistics depended on the buffer size in a very complicated
way, but only for small buffer sizes. For a moderate buffer
size, they all stabilized and did not change anymore when the
buffer grew. All three statistics were significantly influenced
by the variance of the service time, in a monotonic manner.
The coefficient of variation of the series of losses grew rather
quickly with the system load when the arrival process did not
have the batch structure, and much slower, when it did.

Perhaps the most important observation made was that the
distribution of the series of losses was strongly leptokurtic in
all the considered examples. It means that this distribution has
usually a rather fat tail, so occasionally a long series of losses
can be expected. Naturally, such series may influence badly the
quality of real-time multimedia transmissions. Unfortunately,
no quantitative measure of such influence has been proposed
so far in terms of a higher-order statistic. For instance, the
impairment of voice transmission is estimated using the first-
order statistic only (see [17]). An interesting future work
would be proposing a formula for this impairment, taking into
account the kurtosis.
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