
Using Distributed Ledger Technology for Command and Control and Decentralized

Operations

David Last, Michael Atighetchi, Partha Pal,

Edward Lu
Raytheon BBN Technologies

Cambridge, Massachusetts, USA

{david.last, michael.atighetchi, partha.pal,

edward.lu}@raytheon.com

Ryan Toner
Air Force Research Laboratory

Rome, New York, USA

ryan.toner@us.af.mil

Abstract — The US military is developing the warfighting philoso-

phy of Multi-Domain Command and Control (MDC2), which inte-

grates land, sea, air, space, and cyberspace into a unified operation en-

vironment. MDC2 depends on the consistent sharing of operational

plans and intelligence reports, which will be contested by adversary ad-

vances in communications-denying technology. Thus, the MDC2 sys-

tem of the future must enable to development and dissemination of

plans within the context of intermittent communications. We are devel-

oping a proof-of-concept MDC2 prototype to explore the requirements

and constraints of this space. This system will be built on top of a dis-

tributed database; after evaluating the available options, we believe

that Distributed Ledger Technology (DLT) is a strong candidate to

meet the particular requirements of the MDC2 use case. Here, we in-

vestigate several DLT options and compare their capabilities to the

MDC2 requirements, analyzing the design tradespace. We also exam-

ine several DLT alternatives and identify why they do not meet these

requirements. We develop two initial prototype MDC2 systems, a base-

line system based on an SQL-type relational database and one based on

DLT. We run experiments to compare the performance of the two pro-

totypes, and we discuss how these results relate to their suitability for

MDC2. Finally, we outline the future path for this research in order to

complete a full-functionality prototype MDC2 system.

Keywords—Distributed Ledger Technology; blockchain; Command

and Control; Multi-Domain Command and Control.

I. INTRODUCTION

With a view towards the battlefield of the future, Depart-
ment of Defense (DoD) policy over the past half-decade has
been moving towards the Multi-Domain Command and Con-
trol (MDC2) concept (also called Distributed Maritime Oper-
ations, Multi-Domain Operations, and All-Domain C2) [1]
[2] [3]. MDC2 integrates the warfighting domains of land,
sea, air, space, and cyberspace into a unified planning process
under a single Joint Forces Commander. At the same time,
adversaries are advancing their battlefield capabilities for
jamming and otherwise hindering communications. Thus,
the battlefield of the future will not resemble communica-
tions-permissive battlefields the DoD has enjoyed the last few
decades. Based on these two trends, there is an increased
need for front line units to share military plans and intelli-
gence, but also the potential for significant barriers to doing
so.

In order to address this situation, the DoD needs to de-
velop a next-generation MDC2 system that allows command-
ers to share plans and orders across an entire theater of oper-
ations, but also empowers frontline units to collaboratively
update plans in response to changing battlefield conditions.
This MDC2 system must maintain a consistent view of the
data among all parties (when in communication) and recon-
cile conflicts in the data (when re-connecting after a period of
denied communication).

This MDC2 system should be built on top of a distributed
database that can operate through intermittent communica-
tion and also reconcile divergent database copies that result

from evolving data during network disconnection. Upon
analysis of the system requirements, we believe that Distrib-
uted Ledger Technologies (DLT) are a promising option for
this MDC2 system. The research presented in this paper de-
scribes an investigative study to evaluate the suitability of
DLT for such a system.

This paper is organized as follows. In Section II, we pre-
sent the MDC2 use case that motivates our research. Section
III explores our reasons for selecting DLT as a solution for
this problem, and Section IV details the different DLT imple-
mentations we considered. There are other solutions to this
problem besides DLT; Section V presents some industry-
standard alternatives and discusses their advantages and dis-
advantages compared to DLT for our use case. Section VI
discusses our experiments with our DLT-based prototype,
and Section VII recommends avenues for future research
(both experimentation and development).

II. MULTI-DOMAIN COMMAND AND CONTROL USE CASE

Consider the following scenario: an Air Force base in a
war zone is under threat of imminent attack. In an effort to
protect his forces, the Air Commander divides his air units
into small groups called Dispersed Units (DU); these DUs are
organized into a hierarchy of Parent Dispersed Units (PDU).
These DUs are then deployed to forward operating bases to
geographically separate them (Figure 1).

Prior to dispersing the DUs, the Air Commander and his
planning staff plan out the air war for the next 2 weeks. They
assign different DUs to destroy or recon different targets, and
they distribute these plans to the DUs. During the mission,
the forward-deployed DUs are disconnected from the mission
planners and other DUs due to geography, adversary jam-
ming, cyber attack, etc. Additionally, the DUs discover that
the battlefield is changing from its initial state as seen by the
mission planners. Targets are in different locations than orig-
inally thought, new threats are discovered, etc. These changes
invalidate the original mission plans, and necessitate up-
dates/modifications to the plans in order to achieve mission
success and deal with these new threats. Normally, the DUs
would request plan updates from the mission planners, but
they are now out of communication. Therefore, front line
units in the DUs must be delegated authority to re-plan and
re-task local units, and they must record these updates to the
plan. When the DUs re-establish communications with the
home base, these changes must be communicated to the Air
Commander and mission planners. The original plans and the
updated plans must be reconciled into a consistent, updated
view of the plans so that all parties will be on the same page.

There are several critical requirements for a database to
store these plans and enable decentralized operations. First,
the database must provide consistent data between different
network participants (to the extent possible). Second, when
plans do diverge due to disconnected communications, dif-
ferent versions of the plans must be deconflicted once com-
munications are re-established. Third, this database must be

35Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

leaderless; there can be no single point of failure where dis-
rupted communications means that network participants are
unable to update or disseminate the plans. Fourth, the data-
base must provide immutable, auditable provenance; any
party examining the database should be able to examine the
entire evolution history of the plans to see who made what
changes, when, and why. This provenance history must be
tamper-proof so that adversaries and bad actors cannot mod-
ify the history after the fact. Fifth, the database must also pro-
vide non-repudiation guarantees so that parties writing to the
database can be held accountable for their updates.

Although we have presented a Department of Defense use
case here, such a system would have wide applications. Con-
sider a wilderness search and rescue scenario. Drones and hu-
man volunteers are collaborating to search a National Park
for a lost hiker. This is a remote, austere environment where
the searchers (human and drone) use relatively low-powered
radios for communication, and communications will often be
interrupted due to distance and geography. The search is led
by a single Search and Rescue Coordinator, and on-the-
ground searchers are divided into groups (DUs) and assigned
to different search areas. The different groups need to collab-
oratively re-plan and re-assign roles during the search in re-
sponse to changing intelligence and environmental condi-
tions, and they need to communicate their search results back
to the Coordinator after they complete their search pattern.

This type of command and control system has many other
applications. It could be used to coordinate Border Patrol
units or to manage drug enforcement operations. This system
would be useful for collaborative planning between groups of
autonomous drones working towards a common goal, such as
mapping a remote area. It could even be used to manage lo-
gistics systems like the United States Postal Service (USPS),
UPS, FedEx, or DHL.

III. WHY DLT?

The Command and Control system described here re-
quires a distributed database that allows multiple parties to
modify the same data. It must allow updates to the data in
disconnected network partitions, and it must automatically
reconcile data conflicts taking into account mission context
in order to determine which version of the data is authorita-
tive. In this research, we explore Distributed Ledger Technol-
ogy (DLT), e.g., blockchain, as a potential solution for this
system. DLT/blockchain was designed as a leaderless, dis-
tributed database that can tolerate network disconnection, and
it has properties that are attractive for distributed Command
and Control systems.

A. How DLT\blockchain works

In a DLT/blockchain network, all network participants
maintain a local copy of the distributed database (ledger). All

data operations on this database (create/update/delete) are en-
coded as Transactions and submitted to a pool of Proposed
Transactions. Certain network participants (called “miners”
in Bitcoin networks) select a set of Proposed Transactions,
check them for “correctness” (according to a set of rules
based on the characteristics of the system), bundle them into
a Block, append that Block to the end of a chain of Blocks
(hence blockchain), and advertise the new Block to other net-
work participants. Other network participants verify the cor-
rectness of the Transactions and then accept the new Block.
The Block contains a cryptographic hash of its own contents
and the contents of the previous Block in the chain, which
makes the Block immutable (any tampering with the Block
will invalidate the hash, making the tampering instantly de-
tectable).

In some cases, two different miners will create and adver-
tise two different next Blocks. This results in different net-
work participants having different versions of the blockchain;
this is called a blockchain fork. Different blockchain imple-
mentations have methods for avoiding forks, and they also
have methods for determining which fork will be accepted as
the authoritative blockchain; the other fork will be discarded.

A key aspect of DLT/blockchain is the consensus algo-
rithm. If it is easy for miners to generate and propose new
Blocks, then it will be easy for bad actors to manipulate the
system. The consensus algorithm makes it difficult to gener-
ate a valid Block, but easy to check the validity of the Block.
The consensus algorithm is also used to limit the blockchain
mining speed, which reduces the frequency of blockchain
forks and makes it more difficult for bad actors to manipulate.
There are different types of consensus algorithms. Proof of
Work requires a large amount of compute power to solve a
difficult, but easily verifiable, math problem to generate a
new Block; this algorithm is used in the Bitcoin network [4].
Proof of Stake requires network participants to “stake” a cer-
tain amount of owned cryptocurrency in order to become val-
idators (same role as miners) who are randomly selected to
create the next Block; this algorithm is used in the Ethereum
network [5]. Proof of Authority is similar to Proof of Stake
except that validators are chosen to create the next Block with
probability of being chosen being proportional to the valida-
tor’s reputation (based on its past behavior in the network)
[6].

B. Design tradeoffs

Distributed Ledger Technology has a number of ad-
vantages related to the requirements of the distributed Com-
mand and Control use case. First, DLT/blockchain guaran-
tees eventual consistency of the data (when all nodes have the
same copy of the blockchain). Second, blockchain is designed
for leaderless management so that there is no single point of

Figure 1. Organizational Hierarchy of Dispersed Units.

36Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

failure that can bring down the network. Although the com-
mand hierarchy in Figure 1 seems to indicate the Joint Forces
Commander as a single leader for the C2 system, once au-
thorities to modify plans are conditionally delegated to front-
line units, this situation more closely resembles a leaderless
network. Third, blockchain provides the required immutable
provenance auditing and non-repudiation. Finally, DLT also
enables smart contracts, which can be used for the delegation
of authority described previously.

However, there are also drawbacks to using blockchain
for distributed databases. Because the system is leaderless, it
relies on the consensus algorithm to reach a consistent data
state (rather than a single leader dictating the data state). The
consensus algorithm is necessarily slower and more complex
than a single master database. This has significant implica-
tions for the latency and throughput of Write transactions for
a blockchain-based distributed database.

Based on these design tradeoffs for blockchain-based dis-
tributed databases, we evaluate that blockchain is best suited
for data that evolves slowly and can tolerate latency. There-
fore, high-volume data like sensor information or video
streams are not well-suited for blockchain. The Command
and Control data for collaborative mission planning are a
good fit for blockchain-based systems; however, C2 applica-
tions with real-time requirements may not be suited for block-
chain databases.

This paper outlines an investigatory effort that explores
the feasibility of using blockchain for Command and Control
collaborative planning.

IV. DLT FRAMEWORKS
As part of this research, we investigated a number of dif-

ferent open-source DLT implementations to serve as the basis
for a distributed, collaborative Command and Control sys-
tem. The final Command and Control system has the follow-
ing requirements, so the basis DLT implementation should
support these:

• Flexible roles/leaderless operation for network nodes (no
single point of failure)

• Network partitions must support continued operation to
some degree

• Configurable access control/authorities management

• Support for blockchain forking and reconciliation

• Not resource intensive (operation on mobile platforms
with constrained communications)

• Permissioned network – all participants are known and
authorized

With these requirements in mind, we evaluated to applica-
bility of several different DLT implementations.
Option 1: Hyperledger Fabric

Hyperledger Fabric is an open-source project developed
under the Linux Foundation. In contrast to many blockchain
implementations (like the Bitcoin network), Fabric is permis-
sioned, rather than permissionless. All network participants
are known, and only certain network participants are author-
ized to add Transactions to the blockchain. Network partici-
pants are authorized with X.509 security certificates issued
by a certificate authority. Network participants are divided
into organizations, which share a single distributed ledger.
Organizations can be grouped into a consortium, which al-
lows participants from different organizations to access the
distributed ledger of the other organizations. Hyperledger
Fabric encodes access control policies into chaincode, which
is used to govern database read/write operations. Because

Hyperledger Fabric uses X.509 certificates and defined net-
work validators, it does not require a resource-intensive con-
sensus algorithm like Proof of Work [7].
Option 2: R3 Corda

R3 Corda is a distributed ledger that was developed for
the financial services sector [8]. It uses the Unspent Transac-
tion Output (UTXO) model (similar to Bitcoin) for managing
data assets. R3 Corda does not use Proof of Work as a con-
sensus algorithm; rather, it defines the concept of a Notary,
where a single Notary must control all data assets consumed
by a Transaction. If a single Notary does not control all the
data assets, then control most be transferred before the pro-
posed Transaction can be executed. The need for Notaries
poses a significant problem for Command and Control in dis-
connected environments. A disconnected Command and
Control system will require multiple ownership of data assets
since we do not know a priori which node will need to modify
which assets.
Option 3: Algorand

Algorand is a blockchain-based digital currency like
Bitcoin that was created in 2017 by MIT professor Silvio Mi-
cali [9] to address some of the shortcomings of Bitcoin. Al-
gorand uses Proof of Stake as a consensus algorithm. The
Algorand network is permissionless, so any party can join as
a network node. Additionally, Algorand supports only one
class of user; all nodes in the system have the same authority
level (although weighted by their stake in the system). This
disallows the designation of “trusted” parties with varying
levels of authority, which is necessary for the Command and
Control delegation of authority. Because of these reasons,
Algorand is not suitable for a Command and Control system.

There are many more blockchain implementations in this
technology space, but most of them share basic characteris-
tics with these three systems. Based on our analysis, we se-
lected Hyperledger Fabric as the basis for our Command and
Control system. Hyperledger Fabric supports some of the re-
quirements for the Command and Control system (leaderless
operation, configurable authorities, operation of network par-
titions, permissioned network), but other capabilities will
need to be built around it as part of our prototype (blockchain
forking and reconciliation). One key point in favor of Hy-
perledger Fabric is that since it does not use a resource-in-
tensive consensus algorithm like Proof of Work, it does not
suffer from well-known energy consumption concerns about
cryptocurrency implementations like Bitcoin.

V. NON-DLT ALTERNATIVES

Blockchain is a relatively new approach to distributed da-
tabases. There are a number of more traditional distributed
database solutions that should be considered as direct com-
petitors to a blockchain-based system; any blockchain system
should be evaluated against these other solutions.

SQL (Structured Query Language)–type databases
are relational databases organized into tables with columns
and rows. In a standard configuration, a single SQL-type da-
tabase serves Read and Write requests from multiple Clients.
SQL databases like MySQL, PostgreSQL, and Microsoft
SQL Server do not natively support a distributed database
configuration, but they can be configured into a single mas-
ter/multiple replica configuration to support distributed Read
operations but not distributed Write operations [10].

Git is a popular open-source Distributed Version Control
System (VCS) that was developed in 2005 to manage soft-

37Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

ware development projects with multiple contributors. Git us-
ers can download local copies of a master database, make up-
dates to the data, and then push the updates to be merged with
the master database. Any local updates that do not conflict
with the master database are merged automatically, but local
updates that conflict with updates to the master database are
flagged to the human user for manual merging. Git records a
full history of who made what changes to the database, at
what time [11]. Git works as a distributed database, but it is
not leaderless; it relies on one database node serving as the
authoritative master node.

The Interplanetary File System (IPFS) was designed as
a Peer-to-peer file sharing system that works as a distributed
database. Users of the database create files locally and IPFS
divides the files into chunks, generates a cryptographically
hashed Content ID (CID) for each chunk, and advertises the
CIDs to other users in the network. If other users wish to
download the file, IPFS queries the network for the location
of the data associated with the relevant CIDs and downloads
the chunks. That user then becomes a secondary provider for
those CIDs until they are deleted. When new versions of a file
are added to IPFS, they are stored using new CIDs; old ver-
sions of the file cannot be tampered with or erased (unless all
providers of the CID delete their local copy). Within IPFS
each file exists as an independent entity; there is no concept
of conflicting versions of the same data and no merge/recon-
cile functionality [12].

VI. EXPERIMENTATION

A. Prototypes

The goal of this research and the initial experiments it en-
compasses is to evaluate the feasibility of using Distributed
Ledger Technology as a distributed database for a Command
and Control system, as opposed to other distributed database
solutions. To fulfill this goal, we built two prototypes for ex-
perimentation: one representing the state of the practice (built
on top of PostgreSQL, a relational database), and one repre-
senting the state of the possible (built on top of Hyperledger
Fabric). These two prototype networks each contain three
nodes that function as a distributed database (Figure 2). Post-
greSQL is not natively a distributed database, so that proto-
type is set up with a single master and two replicated copies.
In this configuration, clients can only write to the master
node, and these write operations are propagated to the repli-
cated copies.

It is important to note that these two prototypes do not
provide the same functionality. Because the PostgreSQL pro-
totype is not a true distributed database, it has no need for a
consensus algorithm, because only one node (the master
node) is the arbiter of the correct data state; this also repre-
sents a single point of failure. Because there is no need for
consensus in the PostgreSQL database, the message ex-
change between nodes will necessarily be much more com-
plex in the Hyperledger Fabric prototype than the Post-
greSQL prototype. Therefore, we fully expect that the Post-
greSQL prototype will outperform the Hyperledger Fabric
prototype in terms of throughput and latency when processing
Write operations. The main advantage of Hyperledger Fabric
over a more traditional database is that it does not contain a
single point of failure, and that a partition of the network can
continue operation even when disconnected from the rest of
the network. The PostgreSQL prototype does not support ei-
ther of these capabilities. The following experiments demon-
strate how much of a performance downgrade Hyperledger

Fabric suffers as opposed to a more traditional approach in
order to analyze the tradeoffs between basic performance
metrics and the special functionality that blockchain pro-
vides. These experiments also provide indications as to
which use cases are best suited for a blockchain-based ap-
proach.

B. Experimentation

We ran several experiments to compare the performance
of the Hyperledger Fabric- and PostgreSQL-based proto-
types. The different nodes of the network were run in Docker
containers on an Ubuntu Linux VM. We used the Pumba tool
[13] to simulate bandwidth degradation and disconnection
between different network nodes. For these experiments, we
use Write Transactions that write representations of Link 16
J2.2 messages to the distributed database (Link 16 J2.2 mes-
sages are Air Force self-position reports for military aircraft)
[14].

C. Experiment 0 – Hyperledger Fabric parameters

Our first experiment was an initial exercise of the Hy-
perledger Fabric prototype to explore its capabilities and ex-
periment with major configuration parameters to identify the
optimal configuration for our use case. We experimented
with two independent variables: Batch Timeout and Traffic
Density.

One of the major configuration parameters for Hy-
perledger Fabric is Batch Timeout. This value, expressed in
fractions of a second, instructs the Hyperledger Fabric nodes
that once they receive a Write Transaction, how long they
should wait for additional Transactions before bundling all
available Transactions into a new Block to be added to the
blockchain. If this parameter is set to a low (short) value, then
new Transactions will be bundled into Blocks almost as soon
as they are received. This may improve the Transaction
throughput, but an increased number of Blocks being pro-
cessed by the consensus algorithm can increase Transaction
latency. On the other hand, if this parameter is set to a high
(long) value, it can increase Transaction throughput (because
there are fewer Blocks, there is less network overhead per
Transaction), but because there are fewer Blocks, it can also
(counterintuitively) decrease the average Transaction la-
tency. In this experiment, we vary the value of Batch
Timeout to find the optimal setting for our use case.

For the Batch Timeout experiment, we use the 3-node net-
work configuration shown in Figure 2. Two Clients commit
Link 16 J2.2 Write Transactions at a frequency of 500 milli-
seconds for each Client. These Clients commit Transactions

Figure 2. Hyperledger-based MDC2 Initial Prototype.

38Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

for a period of 300 seconds. We vary the Batch Timeout pa-
rameter between 0.05s, 0.25s, 0.5s, and 1s, and we also vary
the bandwidth of the Hyperledger Fabric network to simulate
degraded communications. We measure the Transaction
throughput and latency to determine the optimal Batch
Timeout for Hyperledger Fabric. The experimental results are
shown in Figure 3; we determine that the optimal Batch
Timeout parameter is 0.5 seconds.

We also run an experiment to determine the maximum
traffic density the Hyperledger Fabric network can handle be-
fore it begins to affect performance. We use 1-4 Clients,
which each submit Link 16 J2.2 Write Transactions to the
network at a frequency of 500 milliseconds, and we run the
experiment for 300 seconds. We use a Batch Timeout vale of
0.5 seconds based on the previous experiment. We measure
the Transaction throughput and latency, and the results are
shown in Figure 4. We also ran these experiments for 5 and
6 Clients, but those results are similar to the results for 4 Cli-
ents. Based on the experimental results, we determine that
the amount of traffic generated by 2 or 3 Clients represents
the best tradeoff between throughput and latency, depending
on the situation.

D. Experiment 1

Following the Hyperledger Fabric parameter tuning in
Experiment 0, we run the first experiment that compares the
Hyperledger Fabric and PostgreSQL prototypes head-to-
head. In this experiment, 2 Clients write Link 16 J2.2 mes-
sages to the distributed database at a frequency of 300 milli-
seconds per client; the database Transactions are approved
(according to the prototype’s approval mechanism) and then
propagated to all nodes in the network. The experiment lasts
for a period of 300 seconds. We vary the bandwidth available
to the networks to simulate degraded communications, and
we measure the throughput and latency of the networks.

Based on the difference in complexity of the Transaction
approval mechanism between the two prototypes, we expect
the PostgreSQL prototype to outperform Hyperledger Fabric

in both throughput and latency; however, we wish to see if
the difference between these metrics is sufficiently low to jus-
tify the benefits of Hyperledger Fabric in our Command and
Control use case. We show the experimental results in Figure
5.

E. Experiment 3

We also run an initial experiment to compare the perfor-
mance of the two prototype systems in a disconnected com-
munications scenario. In this experiment, we measure how
long it takes to merge new database Transactions into a data-
base node that has not yet received them. At the beginning
of this experiment, a set of Clients write 500 Link 16 J2.2
Transactions to the database; these Transactions are propa-
gated to all nodes in the network. Then, one of the database
nodes is partitioned from the rest of the network (in Post-
greSQL, this is one of the replicated nodes). The Clients write
an additional 500 J2.2 Transactions to the main network; the
partitioned node does not receive these Transactions. We
then reconnect the partitioned node to the network, and the
network automatically pushes the new Transactions to the re-
connected node. We measure how long it takes for the recon-
nected node to be brought fully into sync with the rest of the
distributed database nodes. The results are shown in Figure
6.

F. Future Experiments

In the future, we plan to run additional experiments to fur-
ther evaluate the performance of the Hyperledger Fabric pro-
totype against the PostgreSQL prototype.
Experiment 2 – Hardware and Network Requirements:
This experiment will use the same procedure as Experiment
1. We will measure the disk storage required at each node, the
processing power for 1 Write Transaction, and the network
overhead for submitting 1 Write Transaction and propagating
it to all distributed nodes.
Experiment 4 – Dynamic Data Merging: This experiment
will use the same procedure as Experiment 3, except that the

Figure 3. Experiment 0 - Hyperledger Fabric prototype Write Transaction throughput and latency vs. Batch Timeout.

Figure 4. Experiment 0 - Hyperledger Fabric prototype Write Transaction throughput and latency vs. Traffic Density.

39Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

Clients will continue to write new Transactions to the data-
base during the Merge period. We will measure how long it
takes for the partitioned node to come back into synchroniza-
tion with the rest of the nodes, and what is the effect of the
increased network traffic due to the new Write Transactions.

G. Discussion

The experiments discussed here show that in initial per-
formance tests, a blockchain-based Command and Control
system performs worse in terms of latency and throughput
than a simpler, non-collaborative SQL-type relational data-
base. The key distinction between the two is the consensus
algorithm; it enables leaderless operation and disconnected
communication tolerance, but it introduces significant com-
plexity in validating and committing Write Transactions.
Therefore, the key questions for evaluating the suitability of
blockchain are:

• Based on its performance constraints, what type of data is
blockchain best suited for?

• Do the benefits of blockchain (security, leaderless opera-
tion to tolerate degraded communications) outweigh its
performance penalties for our specific use case?

The Experiment 0 results indicate that a blockchain-based
system is best-suited for low Write volume data with a mod-
erate tolerance for Write latency. Therefore, blockchain is
most applicable to high value data that does not change fre-
quently (like military campaign plans), but not high-volume,
low latency data (like real-time control signals, sensor data,
or video streams). Experiments 1 and 3 bolster this determi-
nation. Over the course of a multi-day military engagement,
plans will probably be added to the database at less than 3-5
Transactions per second, and the Command and Control sys-
tem can tolerate a 1-10 second latency on the dissemination
of these plans to frontline units (Figure 5). Additionally, iso-
lated frontline units re-establishing communication with the
main group can tolerate 20-100 seconds to download Com-
mand and Control updates (Figure 6).

VII. RECOMMENDED FUTURE WORK

The research discussed in this paper was performed as a
study to answer the question, “Is it feasible to use blockchain
as a Command and Control distributed database?” Since this
research has answered this question in the affirmative, the
next step in this research is to build a full prototype. This
prototype will incorporate several innovations beyond the in-
itial study.

The first innovation will be blockchain branching and
merging. Most current blockchain implementations address
blockchain forks by requiring a majority of network nodes to
write to the blockchain, thus explicitly preventing forks (Hy-
perledger Fabric uses this approach), or they resolve forks by
determining one fork branch to be authoritative and discard-
ing the other branches (Bitcoin’s blockchain implementation
uses this approach). Neither of these approaches are sufficient
for the Command and Control scenario: requiring a majority
of nodes to write new Transactions prevents minority parti-
tions from writing new data, and discarding a blockchain fork
(which represents the collaborative planning of a minority
partition) invalidates previous planning and decision-making,
throwing the entire Command and Control system into chaos.
Therefore, the full prototype needs new functionality to allow
blockchain forks in minority partitions, as well as merging
these blockchain forks within an understanding of the context
of the larger mission.

The second innovation for the full prototype will be the
implementation of a conditional authority calculus. In a full
communications environment, planning decisions should be
made by the highest-ranking authority and disseminated to
lower-ranking units. If communications are disconnected,
these lower-ranking units must be authorized to make these
planning decisions. However, if there are no constraints on
which units can make which planning decisions, this can lead
to an explosion of blockchain branches that will be very com-

Figure 5. Experiment 1 - Hyperledger Fabric vs. PostgreSQL Prototypes Write Transaction throughput and latency.

Figure 6. Experiment 3 - Hyperledger Fabric vs. PostgreSQL prototypes Write Transaction throughput and latency.

40Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

plex to maintain and merge. Our conditional authority calcu-
lus will use a dynamic ruleset that is evaluated in the context
of the mission environment to determine which parties are al-
lowed to make which planning decisions at a specific point in
time. This will constrain the complexity of the planning pro-
cess and the resultant blockchain merges.

As we develop this full prototype, we will also pursue op-
portunities to deploy it during Department of Defense field
exercises in order to evaluate its performance in operational
scenarios and begin building acceptance within the user com-
munity.

VIII. CONCLUSION

In recent years, the DoD has been moving towards the
Multi-Domain Command and Control philosophy as the most
effective way to integrate warfighting domains. However, ad-
versary advances in communications-denying technologies
jeopardize the ubiquitous communications needed to realize
MDC2. Therefore, the DoD needs an advanced MDC2 sys-
tem that enables collaborative planning and information shar-
ing in the presence of constrained, intermittent communica-
tions. Based on our investigation, we believe that Distributed
Ledger Technology is a strong candidate for such a system
that supports the communication requirements of the MDC2
scenario. In this paper, we investigate different DLT imple-
mentations and evaluate them against the MDC2 scenarios;
we identify Hyperledger Fabric as meeting the key require-
ments for MDC2. We built two different MDC2 prototypes:
one based on standard distributed database technology, and
one based on Hyperledger Fabric. We ran a number of ex-
periments to evaluate the performance of the two systems,
and to evaluate whether Hyperledger’s performance is suffi-
cient for an MDC2 system. Our experimental results are en-
couraging, so we chart a path forward to build a production-
grade DLT-based MDC2 system that can operate in modern,
communications-denied environments.

 STATEMENTS/DISCLAIMERS

Distribution Statement “A” (Approved for Public Re-
lease, Distribution Unlimited). Case # AFRL 2022-0076.
This effort is sponsored by the Air Force Research Labora-
tory (AFRL).

The views expressed are those of the authors and do not
reflect the official guidance or position of the United States
Government, the Department of Defense or of the United
States Air Force.

Statement from DoD: The appearance of external hyper-
links does not constitute endorsement by the United States
Department of Defense (DoD) of the linked websites, or the

information, products, or services contained therein. The
DoD does not exercise any editorial, security, or other control
over the information you may find at these locations.

REFERENCES

[1] US Air Force, “Air Force future operating concept: A view of

the Air Force in 2035.” Washington, DC: Government Printing

Office, 2015. Accessed: Apr. 20, 2022. [Online]. Available:

https://www.af.mil/Portals/1/images/airpower/AFFOC.pdf

[2] J. M. Richardson, “A design for maintaining maritime superi-

ority, Version 2.0.” Naval College War Review, Dec. 17, 2018.

Accessed: Apr. 20, 2022. [Online]. Available: https://me-

dia.defense.gov/2020/May/18/2002301999/-1/-

1/1/DESIGN_2.0.PDF

[3] US Army Training and Doctrine Command, “The U.S Army

in multi-domain operations 2028.” Training and Doctrine

Command, Ft. Eustis, VA, Dec. 06, 2018. Accessed: Apr. 20,

2022. [Online]. Available: https://adminpubs.tra-

doc.army.mil/pamphlets/TP525-3-1.pdf

[4] “Proof of work,” bitcoin.it.

https://en.bitcoin.it/wiki/Proof_of_work (accessed Apr. 20,

2022).

[5] “Proof of stake (POS),” ethereum.org, Dec. 09, 2021.

https://ethereum.org/en/developers/docs/consensus-mecha-

nisms/pos/ (accessed Apr. 20, 2022).

[6] “Proof of authority explained,” binance.com, Dec. 09, 2020.

https://academy.binance.com/en/articles/proof-of-authority-

explained (accessed Apr. 20, 2022).

[7] E. Androulaki et al., “Hyperledger Fabric: A distributed oper-

ating system for permissioned blockchains,” 2018.

[8] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: an

introduction,” R3 CEV August, vol. 1, p. 15, Aug. 2016.

[9] E. Auditore, “Algorand: origins,” Algorand: Origins.

https://community.algorand.org/blog/algorand-origins/ (ac-

cessed Apr. 20, 2022).

[10] M. Kamaruzzaman, “Top 10 databases to use in 2021,” to-

wardsdatascience.com, Jan. 20, 2021. https://towardsdatasci-

ence.com/top-10-databases-to-use-in-2021-d7e6a85402ba

(accessed Apr. 20, 2022).

[11] D. Spinellis, “Git,” IEEE Softw., vol. 29, no. 3, pp. 100–101,

Jun. 2012.

[12] “Interplanetary File System (IPFS),” IPFS. https://ipfs.io/ (ac-

cessed Apr. 20, 2022).

[13] A. Ledenev, “Pumba: chaos testing tool for Docker (Github),”

Pumba: chaos testing tool for Docker (Github).

https://github.com/alexei-led/pumba (accessed Apr. 20, 2022).

[14] Air Land Sea Application Center, “Introduction to Tactical

Digital Information Link J and quick reference guide (TADIL

J).” Jun. 2000. Accessed: Apr. 20, 2022. [Online]. Available:

https://apps.dtic.mil/dtic/tr/fulltext/u2/a404334.pdf

41Copyright (c) The Government of USA, 2022. Used by permission to IARIA. ISBN: 978-1-61208-940-9

ICN 2022 : The Twenty-First International Conference on Networks

