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Abstract—Improving  spectral efficiency is becoming
increasingly important in mobile communications to keep up
with the ever-increasing amount of data traffic coming from
video streaming, Internet of Things, intelligent transportation
systems, and augmented and virtual reality. In this work, a
deep reinforcement learning algorithm (Deep Q-Learning) is
implemented to maximize the sum spectral efficiency of ground
users using Unmanned Aerial Vehicles (UAVs) as agents. The
agents and environment are created by using OpenAI’s Gym
library to create a custom implementation of the agent, reward
function, and environment. The problem is then relaxed by
assigning users to UAVs that lead to the highest Single-Input
Single-Output (SISO) Signal to Interference plus Noise Ratio
(SINR) and allowing the UAVs to assign multiple pilot signals
to ground users. Lastly, the implementation of the algorithm is
compared to a convex relaxed version of the original reward
function.
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Q-Learning; Reinforcement Learning; Nonconvex Optimization.

I.  INTRODUCTION

With recent technological innovations  in
telecommunications and the exponential increase in wireless
data traffic from video streaming, Internet of Things (IoT),
augmented reality, and surveillance, Unmanned Aerial
Vehicles (UAVs) are being considered for use as Mobile
Base stations (BSs) with massive Multiple-Input
Multiple-Output (MIMO) networking capabilities [1], [2].
By enabling UAVs with Massive MIMO, different
applications can be achieved, such as spectrum sharing
through beamforming, unlicensed spectrum sharing with
redeployable aerial drone base stations, secure wireless
networking in congested environments through directional
communication, and edge computing. Having UAVs act as
massive MIMO mobile BSs is done to provide spectral
efficient wireless networking for ground users. UAV BSs
maximize spectral efficiency by changing location,
controlling ground user transmit power, and assigning pilot
sequence to users that maximizes the sum spectral efficiency
of all users. It is worth noting that there are many factors
that go into the operation of a drone, and they are impacted
by many factors, such as weight, battery, energy
consumption, and flight trajectory [4]. There have been
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many new approaches to extend the operation of a drone,
such as battery swapping, using hybrid fuel cells and
batteries, and solar cells for an extra power source [5].
These advancements are not the focus of this article which
lets this article focus on the networking between ground
users and the UAV BSs.

Massive MIMO adds the ability for wireless links to
achieve higher throughput without the need of adding more
BSs or increasing bandwidth. At the same time, UAVs have
the advantage of being able to change location to follow
demand. To maximize throughput, a massive MIMO UAV
needs to find the best location and best pilot sequences to
assign to users that minimizes interference between users.
When multiple UAV BSs are used, each UAV BS has the
added constraint of minimizing their connected users’
interference with users connected to other BSs. It is
reasonable to mount massive MIMO on an UAV BS because
massive MIMO can reach smaller form factors if each
ground node has distinct spatial channel characteristics [3].
For example, in a 2 GHz frequency band, for 100
dual-polarized antennas, the antenna array only requires
0.75 x 0.75 meters of space.

Controlling ground users’ transmit power and pilot
sequence allocation and the UAV BSs’ movement is
important in order to maximize ground users’ sum spectral
efficiency. However, this is a difficult problem because
ground users can only be connected to one drone and can
only be assigned one pilot sequence. This makes it a Mixed
Integer Nonlinear Programming (MINLP) problem, which is
generally NP hard. This means there are no known globally
optimal  solutions with polynomial computational
complexity.

In recent literature, there are many solutions that do not
use reinforcement learning. [7], [8] look to minimize user
outage, [9] maximizes user spectral efficiency, [10], [11]
maximize throughput, and [12] maximizes the Received
Signal Strength Indicator (RSSI). There are also solutions
that do use reinforcement learning. [13], [14] minimize user
outage, [15], [16] maximize throughput, and [17] maximizes
the RSSI. The main goal of these approaches is to maximize
user experience. Some of these solutions, [7], [8] and [12]
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focus on assisting a central terrestrial BS, [9] - [11], [13] -
[15] focus on using UAVs, Long-Term Evolution (LTE)
small cells, and access points as the BSs, and [17] only
focuses on efficiently allocating spectrum for one cognitive
radio network.

While many of these solutions are used in real systems,
there are some drawbacks. First, LTE small cells, access
points, and hotspots are not able to achieve the same level of
spectral efficiency that massive MIMO can reach. Second,
using terrestrial BSs is too expensive if there is only a short
term spike in user demand. Finally, the last drawback is that
solutions only meant to allocate spectrum to one radio
network might not perform well if allocating resources to
multiple radio networks at the same time.

To deal with these drawbacks, UAVs are used as mobile
BSs mounted with massive MIMO antenna arrays. To
maximize spectral efficiency, the locations of all the UAVs,
the pilot signals assigned to the ground users and their
transmit power are all maximized using Deep Q-Learning.
Since this is a MINLP problem, the problem is relaxed by
allowing the UAVs to assign multiple pilot sequences to
ground users and users are assigned to UAVs that lead to the
highest SISO SINR. These two steps remove the binary
constraints in pilot assignment and user association. Results
so far show that with two UAVs and two users, the UAVs
are able to provide 95% of the optimum sum spectral
efficiency.

The rest of the paper is organized as follows. Related
work and background is reviewed in Section II. Problem
formulation and implementation details are described in
Section III. Sections IV goes over simulation results and
includes a discussion of future work. Lastly, conclusions are
drawn in Section V.

II. RELATED WORK

A. Unmanned Aerial Vehicle Base Stations

An unmanned aerial vehicle network consists of an area
with one or more UAVs mounted with BSs and multiple
users or user equipment that need to connect to the network.
The UAVs can change their location to provide better
coverage, throughput, or spectral efficiency for users. This
system could be paired with already existing ground BSs or
be part of a public safety network after the occurrence of a
natural disaster.

To see the advantages mobile BSs have over traditional
static BSs, [10] checks the practical limits of UAVs in a
cellular network and comes up with a mobility control
algorithm to maximize the spectral efficiency at different
UAV speeds. There are different scenarios where mobile
UAV BS positioning is important. When using UAVs as
mobile hotspots, [9] positions UAVs to minimize the
distance between UAVs and users to boost packet
throughput and the average packet throughput. UAV BSs
can also be used for IoT networking where [12] used a
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drone mounted with a Raspberry Pi to create an IoT mesh to
maximize the Received Signal Strength Indicator (RSSI).
Drones can also be paired with traditional terrestrial BSs to
further improve coverage. The authors in [8] use mobile
BSs to provide downlink connectivity to ground users when
their demand cannot be satisfied by the terrestrial station
alone.

B. Massive MIMO

The main characteristic of massive MIMO is that it
contains a massive number of antennas, generally 60 or
more. It can take on several forms, but the main one used in
this research is centralized massive MIMO where all the
antennas are packed together in a single BS. To ensure that
users receive their data stream with minimal interference,
most forms of massive MIMO take advantage of
spatial-division multiplexing. This form of multiplexing
sends data streams at the same time and frequency [6]. What
stops different users from receiving each other’s signal is
constructive and deconstructive interference with the
antennas. The large number of antennas allows the BS to
direct a signal at a specific user so only they will receive the
signal. Massive MIMO BSs estimate channels using a pilot
sequence that was sent by the user. One work that applies
massive MIMO to mobile BSs is [11]. In this work, the
authors applied a distributed algorithm price-based solution
to UAVs to maximize the sum rate of all users and they did
it by using convex relaxation to break the algorithm into
three steps of access association, joint pilot assignment and
power control and movement control. In this work, a
massive MIMO array is attached to each drone and each
drone controls a certain subset of users to control their pilot
assignments and transmit powers with the goal of
maximizing the sum of all the users’ spectral efficiencies.
[17] uses MIMO instead of massive MIMO and the only
difference is the use of 2 antennas instead of 60 or more
antennas.

C. Q-Learning

Q-Learning is an off-policy reinforcement algorithm that
seeks to optimize the expected return based on Markov
decision processes. The agent in Q-Learning starts by being
in a certain state in the environment usually called the
starting state and takes actions that will return a reward and
transition the agent into a new state. In Q-Learning, an agent
updates the g-value in its q-table where the rows are all the
possible states, and the columns are all the possible actions.
When an agent takes an action from an environment, it will
update its g-value for the state it is in and the action that it
took. All the values in the g-table are set to zero at the
beginning and the table is updated using the following
formula:

new

q, (s,a)=(1 — a)q(s,a)+ a(Rz+1 + ymaxq (sv, al))

where a is the learning rate and v is the discount rate.
The way the agent finds the best policy is by exploration

and exploitation. When the agent is exploring the

(M
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environment, it will select an action at random and when the
agent is exploiting its environment, it will select the action
with the highest g-value. At the beginning of training, the
agent will explore its environment and will start to exploit it
more and more as the episode number increases. This is an
important step because the agent does not know anything
about its environment in the beginning and once it starts to
learn more, it will want to exploit it to find the best possible
reward. One way this is achieved is by using the epsilon
greedy strategy. This strategy sets a variable ¢ = 1, which
decays exponentially and is updated using:

_ _nstt:p)\ 2
a= O(end * (astart - aend)(e ) ( )

where o is the exploration rate, ., is the ending exploration
rate, O, IS the starting exploration rate, and A is the
exploration decay rate.

Reinforcement learning has been used in other UAV BS
applications, such as determining the optimal positions for
mobile BSs and [13] applies this to an emergency
communication network. It may also be important to control
the transmit power as well to minimize the interference
between BSs, which is what [14] did by using a
reinforcement learning algorithm to control transmit power
and BS positioning to minimize user outage probabilities.
Lastly, [17] uses reinforcement learning to analyze radio
frequency channels to learn from past occupancy and
conditions of the channels.

D. Deep Q-Learning

Unlike Q-Learning, which uses a g-table to keep track of
its q-values, Deep Q-Learning uses a neural network where
the input is the current state, and the output is the g-value
for each action. The neural network can have any number of
hidden layers and the main purpose of the neural network is
to approximate the values of a g-table. For each action,
state, reward and next state the agent experiences, this tuple
is called experience replay. The experience replay includes
the state of the environment, the action taken from that state,
the reward given to the agent as a result of the previous
state-action pair and the next state of the environment. Each
experience replay is stored in an array called the replay
memory up to some amount of experiences N. When the
number of experiences gets larger than N, the first
experience gets replaced with the most current experience.
The replay memory gets sampled randomly to train the
network, which breaks the correlation between successive
samples to make the learning more efficient. When training
the neural network, the loss is calculated by subtracting the
g-value of the given state-action pair from the optimal
g-value of the same state-action pair. The optimal g-value is
calculated by passing the next state into the neural network
to find the max g-value among all actions that can be taken
in that state. The optimal g-values are not known at the
beginning of training, so they are estimated using the neural
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network and get updated when the weights of the neural
network get updated. To avoid instability, the optimal
g-values are updated and calculated using a separate
network called the target network. The target network is a
copy of the original policy network, but only gets updated x
timesteps.

Deep reinforcement learning has been used in [15] to
find the best way to allocate resources in a distributed
environment when the channel state information is not
known. [16] uses this tool to also control transmit powers to
mitigate interference, which helps maximize throughput.

E. Discussion of Related Work

Only one previous work [11] applies massive MIMO to
UAV BSs, but they use a pricing algorithm to get within
90% the global optimum. None of the previous works have
applied reinforcement learning or deep reinforcement
learning to control the user association, pilot assignment and
UAV movements to maximize the sum rate of the users.
While [17] did use reinforcement learning, it does not take
into account multiple BSs with multiple users. Therefore,
this paper proposes a solution using Deep Q-learning, where
each UAV is an agent that will try to maximize its reward
based on the sum spectral efficiencies of all users. This
approach is similar to [11] in that it is a distributed system
and each UAV does not need to collect the full statistical
Channel State Information (CSI), the locations of the other
UAVs, the noise power and other network parameters. Also,
since this is a distributed system, it does not encounter
failure from a single point like centralized systems. Also,
distributed systems scale better and have lower latencies
than centralized systems.

III. IMPLEMENTATION DETAILS

The deep reinforcement learning algorithm was written
and simulated in python. Python was used so PyTorch and
Gym can be used. Pytorch is used to create the target and
policy neural networks in the Deep Q-Learning model and
Gym is used to create the reinforcement learning
environment. The Gym library is a toolkit for developing
reinforcement learning algorithms and has many good
environments to choose from when building the massive
MIMO UAV agents and environment. A Gym environment
class has four main functions that are needed to manage the
agents in the environment. The init method is used to
initialize all variables and constants, the step method
executes one time step in the environment, the reset method
resets the environment to the initial state, and the render
method prints the current state of the environment to the
screen.

A. Massive MIMO UAV BSs

All UAV BSs can move freely in a 500 m* x 500 m? area,
but their heights are kept at a constant 100 m above the
ground. The number of UAV BSs is set to {I, 2} and the
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number of users is set to {1, 2, 3, 4}. The users do not move
through the environment and are randomly placed in the
grid at the start of the simulation. The number of antennas in
each UAV BS is set to {10, 20, 30, 40, 50, 100}. The range
of transmit powers the UAV BSs can set for the ground
users is in between [5, 500] mW and the total number of
power levels is set to {3, 4, 5}. The path factor is set to 2,
the average noise power is set to 10%, the length of each
pilot sequence is set to 10 symbols and the total number of
available pilot sequences is set to {2, 3, 4, 5, 6}.

B. Deep Reinforcement Learning Implementation

Since this problem is a MINLP problem, to find the best
sum spectral efficiency, the pilot assignment is relaxed to
allow a UAV to assign multiple pilot signals to a single user
and the problem was broken down into two subproblems. In
the first subproblem, the users are connected to the UAV
that has the best SISO SNR. The next subproblem is the
deep Q-Learning algorithm, which controls the UAVs’
movements and the power allocation for each pilot
sequence. For the implementation details of the
reinforcement learning algorithm:

Agent: UAV BSs
State: Includes the position on the agents, the users the
agents are connected to, the number of pilot sequences, and
the number of power levels. To limit the total number of
states, the agents operate in a square grid, and the total
number of transmit powers are divided into n power levels.
The level of different transmit powers is divided evenly
between the max and min user transmit powers.
Action: Includes moving up, down, left, right, increasing
user transmit power assigned to a pilot sequence, and
decreasing user transmit power assigned to a pilot sequence.
Reward: Based on the sum of the spectral efficiency for the
users connected to UAVs. The spectral efficiency is
calculated by dividing the capacity from (3) by B Hz.
Cy = Blog,(1 +7,) 3)
The capacity is then calculated with (3), which includes
channel-estimation error, the type of linear spatial
multiplexing/demultiplexing, power  control, and
noncoherent inter-cell interference (4) [11].
Lastly, to get the reward from the spectral efficiency
equation, it is multiplied by the power level the UAV
chooses for a pilot sequence divided by the max power
level. This was done to encourage the agents to choose only
one pilot sequence.

P
R =¢ (_7_) )
g g pmux
The neural network in this article has one hidden layer with
500 nodes. The input to the neural network is one-hot

encoded, which makes the input have as many nodes as the
number of states, and the number of nodes at the output is
determined by the total possible actions that the agent can
take. After each action, the agent stores the action-reward
pair in memory. After the agent takes a certain number of
actions, it updates the target network based on a random
batch of action-reward pairs from memory using the Adam
optimizer. The purpose of the target network is to help
reduce instability when both the training g-values and the
optimum g-values are both being updated throughout the
simulation. The loss is calculated using mean square error
between the g-value calculated in the training network and
the g-value calculated in the target network. The agent
repeats the above process until the training is over.

C. Relaxed Centralized Solution

The simulations were compared to a relaxed centralized
solution to see how close they were to the max possible
reward. This problem is solved by maximizing (6), which
finds the x,y, and z positions of the UAVs. This returns the
largest sum spectral efficiencies across all users. This
relaxed centralized solution is not the main focus of the
paper because the UAVs do not know the locations of the
users. Also, a centralized system is more prone to failure if a
single component fails while a decentralized system is more
resilient to failure.

Maximize: Y. C (x,y,2) 6)
geG g

In (6), all interferences are ignored and all users are
assumed to be using separate pilot sequences. Also,
Cg(x, y,z) = Blogz(l + yg(x, ¥, Z)), and since yg(x, Y, Z)
>>1, Cg(x, ¥, Z) can be approximated.

~ Blog,(v (x,y,2))
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<
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99

2
= Blog,(Mp p ) — xBlog,(d (xy,2)) (7
When looking at (7), the first term is constant since none of
the variables are a function of x, y, or z. Another way to

write this maximization problem is to write it as a
minimization of the second term.

®)

The exact solution to this problem is approximated by
calculating a 20000 x 20000 grid of all the possible x and y
positions of the UAV. This finds a solution very close to the

Minimize: Y, — logz(d (x,v,2))
o 99

(M - |gu(g) |)Tpgﬁ§gpgw

Yaow (f’) =
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optimum solution because there is only 25 mm separation
for each square in the grid.

IV. SmmuLAaTION RESULTS

For the experiment, the data that was recorded was the
cumulative reward and it is the total reward the agent
received during each episode. This benchmark is used
because it shows the agent gradually choosing better actions
that return a higher reward more often in a single episode.
The simulation parameters are stored in Table 2 and Table 1
describes the meaning of all the parameters in Table 2. In
Figure 1, there are 2 UAVs, 2 users, and 2 pilot sequences to
choose from. In the beginning of the graph, there are four
different colors stacked on top of each other. The blue line
on the bottom represents one or both of the UAVs assigning
the first pilot sequence to the first user. The orange line
above the blue line represents one or both of the UAVs
assigning the second pilot sequence to the first user. The
green line above the orange line represents one or both of
the UAVs assigning the first pilot sequence to the second
user. Lastly, the red line above the green line represents one
or both of the UAVs assigning the second pilot sequence to
the second user. Since this is the cumulative reward, for
each episode there are 2000 iterations where the UAV can
change the pilot sequence assigned to a user. In the
beginning of the simulation, the UAVs do not know which
pilot sequence to assign to the users, so it picks randomly.
As the simulation progresses, the UAVs learn that if a user
is assigned a pilot sequence by one or the other UAV, they
or the other UAV should assign the other pilot sequence to
the other user. This can be seen near the end of the
simulation where there is only a green line above an orange
line, or a red line above a blue line (Figure 1). This means
that either the first user was assigned the first pilot sequence
and the second user was assigned the second pilot sequence
or the first user was assigned the second pilot sequence and
the second user was assigned the first pilot sequence. There
is also an average in the graph which is represented by the
black line on top. The average takes into account the past 50

episodes and can be seen increasing until it levels out at
about the 20000th episode.

The optimum cumulative reward is found by finding the
optimum location for the UAVs using the relaxed
centralized solution and then multiplying it by the number
of iterations for one episode in the simulation. The optimum
cumulative reward is shown in the graph by a yellow
horizontal line on the top of the graph and it is also labeled
for clarity. The simulation in Figure 1 can be seen to come
very close to the optimum cumulative reward found using
the relaxed centralized solution. In this simulation, the drone
network average was able to come within 95% of the
cumulative relaxed centralized solution.

A. Discussion

The UAVs were able to find the optimum solution even
though the reward function was not fully convex. The
function that the reinforcement learning algorithm is
optimizing over greatly determines how quickly a solution
can be found. Further investigation will look into adding
more UAVs, more users, and simulations where there are
more users than pilot sequences. Further investigation will
also look into different ways the policy network can be
updated to improve convergence when more agents and
users are added. This will be done to test results with more
realistic scenarios where there are more users and not
enough pilot sequences for each user.

V. CONCLUSION

In this article, deep reinforcement learning was
implemented and evaluated to optimize the sum spectral
efficiency of ground users. To verify this, a simulation was
built in Python using OpenAI’s Gym library to create a
custom agent, reward function, and environment. Details
are included on how the deep reinforcement learning
algorithm is set up and the convex relation techniques used
to help the aerial drone find the maximum spectral
efficiency. Lastly, the results are compared to the log of the
euclidean distance to see how the simulations compare to
the near optimum sum spectral efficiency.
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Figure 1: Cumulative reward and average cumulative reward with 2 drone, 2 users, and 2 pilot sequences. The x-axis is the episode number and
the y-axis in the cumulative reward.
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TABLE L.
Variables Meaning
Batch Size Number of samples used to train the
neural network
Gamma Discount rate
Starting Epsilon Staring value of epsilon decay

Ending Epsilon Ending value of epsilon decay

Epsilon Decay Value to decrease epsilon by
Target Update Updates target network every N Episodes
Memory Size Max number of experiences in replay

memory

Learning Rate Learning rate of neural network

Number of Episodes | Max number of episodes in simulation

Max Steps Per Max number of steps before episode ends

Episode

TABLE II.
Values of Variables used in Simulation
Variables Values
Batch Size 10
Gamma 0.99
Starting Epsilon 0.9
Ending Epsilon 0.001
Epsilon Decay 4%10®
Target Update 60
Memory Size 1000
Learning Rate 0.0001
Number of Episodes 50000
Max Steps Per Episode 2000
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