
Containerization Using Docker Technology

Alexandru Eftimie
University POLITEHNICA of Bucharest, Bucharest,

Romania
Department of Telecommunication, University

”Politehnica” of Bucharest, Romania
E-mail: alexandru.eftimie@gmail.com

Eugen Borcoci
University POLITEHNICA of Bucharest, Bucharest,

Romania
Department of Telecommunication, University

”Politehnica” of Bucharest, Romania
E-mail: eugen.borcoci@elcom.pub.ro

Abstract— This paper aims to provide a clearer view of
container technology, such as its advantages and
disadvantages, how it can cooperate with Openstack, and
document the improvements made by this cooperation. In
terms of containerization technology, this paper will illustrate
the components of Docker and the impact it has compared to
the already classic technology of virtual machines. Another
element to be addressed in this paper is the importance of
moving some of the computing power to the periphery of
networks. This can be done using existing peripheral devices to
the extent that the computing resources on this equipment
allow. This move is necessary to provide an infrastructure
capable of supporting services with low latency needs, minimal
delay (traffic sensor, vehicle sensors) and at the same time an
infrastructure that will free the core of networks from a large
volume of data. This paper will follow the comparison of
household equipment that can play an active role in computing
at the periphery of networks to highlight what types of
applications or calculations can be performed on them. We will
follow in this paper the comparison of household equipment
that can play an active role in computing at the periphery of
networks to highlight what types of applications or calculations
can be performed on them.

Keywords-container; Docker; Network Function
Virtualization (NFV).

I. INTRODUCTION

Currently, typical network architectures have three main
areas: access, transport, and core. Most of computational
resources for applications are in the cloud, far away from the
end user. Another element which will be addressed in this
paper is the importance of moving some of the computing
power to the periphery of networks. This can be done using
existing peripheral devices, like routers, dedicated gateways,
servers, to the extent that the computing resources on this
equipment allow [1]. This move is necessary to provide an
infrastructure capable of supporting services with low
latency needs, minimal delay and at the same time an
infrastructure that will free the core of networks from a large
volume of data. We will follow in this paper the comparison
of household equipment that can play an active role in
computing at the periphery of networks to highlight what

types of applications or calculations can be performed on
them.

Recently, we have seen a trend called "fog computing”
(an architecture that uses edge devices to carry out a
substantial amount of computation) and, therefore, the need
for processing on the periphery of networks. Hence, there is
a need to implement computing and processing machines in
this area, a need we have not encountered so far. Given that
the services that are liable to be moved to the edge of the
network ("edge computing") are diverse and offered by
various providers, a possible solution could be the
implementation of OpenStack on the periphery of networks
by Internet providers / transport providers.

In Section 2 an overview of the containerization
technology is going to be described, illustrating the
advantages it has compared with virtual machines. Section 3
will cover the Docker technology illustrating its components,
the architecture and how the isolation is achieved. In Section
4 we will describe the cooperation between Network
Function Virtualization (NFV) and containers and compare
current approaches and platforms used to migrate
computational resources to the edge of the network.

II. CONTAINERS AND MICROSERVICES

Containerization [2] has become a major trend in
software development as an alternative or companion to
virtualization [3]. This involves encapsulating or packaging
the software code and all its dependencies so that it can run
smoothly and consistently on any infrastructure. The
technology has matured rapidly, leading to measurable
benefits for developers and operations teams, as well as
general software infrastructure.

Containerization allows developers to create and deploy
applications faster and more securely. With traditional
methods, the code is developed in a specific computing
environment which, when transferred to a new location,
often leads to bugs and errors.

Containers are often referred to as "lightweight", which
means that they share the core of the machine's Operating
System (OS) and do not require the association of an
operating system within each application. Containers are
inherently smaller than a virtual machine and require less

41Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

start-up time, allowing many more containers to run on the
same computing power as a single Virtual Machine (VM).
This leads to higher server efficiencies and, in turn, reduces
server and licensing costs.

Simple containerization allows applications to be
"written once and run anywhere." This portability is
important in terms of the development process and supplier
compatibility. It also offers other notable advantages, such as
fault isolation and ease of management and security [4].

Containerization offers significant benefits to developers
and development teams. These include the following:

 Portability: A container creates an executable
software package that is abstracted (unattached or
unattended) from the host operating system and,
therefore, portable and able to run smoothly and
consistently on any platform or cloud.

 Agility: The open source Docker engine for running
containers has started the industry standard for
containers with simple tools for developers and a
universal presentation approach that works on both
Linux and Windows operating systems. The
container ecosystem has shifted to engines managed
by the Open Container (OCI) initiative.

 Speed: Containers are often referred to as
“lightweight,” which means they share the core of
the machine’s OS. Not only does this lead to higher
server efficiency, but it also reduces server and
licensing costs, while speeding up startup times
because there is no operating system to boot.

 Defect isolation: Each containerized application is
isolated and operates independently of the others.
The failure of one container does not affect the
continuous operation of other containers.
Development teams can identify and correct any
technical issues in one container without having to
consider other containers.

 Efficiency: Software running in containerized
environments shares the machine's operating core
and application layers in a container can be shared
across containers. Thus, the containers are inherently
smaller than a VM and require less start-up time,
allowing many more containers to run on the same
computing power as a single VM.

 Easy to manage: A container orchestration platform
automates the installation, scaling and management
of containerized tasks and services. Container
orchestration platforms can make management tasks
easier, such as scaling containerized applications,
running newer versions of applications, and
providing monitoring, recording, and debugging,
among other functions.

Software companies, large and small, accept
microservices as a superior approach to application
development and management, compared to the previous
monolithic model that combines a software application with
the associated user interface and the underlying database in a
single unit on a single server platform. With the help of

microservices, a complex application is divided into a series
of smaller, more specialized services, each with its own
database and its own business logic. Microservices then
communicate with each other through common interfaces
(such as APIs) and REST interfaces (such as HTTP). Using
microservices, development teams can focus on updating
certain areas of an application without impacting it, leading
to faster development, testing, and implementation.

Containers, microservices and cloud computing work
together to bring application development and delivery to
new levels, which are not possible with traditional
methodologies and environments. These next-generation
approaches add agility, efficiency, reliability, and security to
the software development lifecycle - all leading to faster
application delivery and improvements to end users and the
marketplace [4].

III. DOCKER

Docker is an open platform for developing, transporting,
and running applications. Docker allows applications to be
separated from the infrastructure so that software can be
delivered quickly. With Docker, the infrastructure can be
managed the same way the applications are managed. By
taking advantage of Docker's methodologies for fast code
forwarding, testing, and implementation, the delay between
writing code and running it in production can be significantly
reduced.

Docker offers the ability to wrap and run an application
in an isolated environment called a container. Isolation and
security allow multiple containers to run simultaneously on a
given host. Containers are light because they do not need to
be overloaded by a hypervisor, but run directly into the core
of the host machine. This means that more containers can be
run on a given hardware combination than if virtual
machines are used. One can even run Docker containers in
host machines that are virtual machines.

Docker provides tools and a platform to manage the
container lifecycle:

 The application and its support components can be
developed using containers.

 The container becomes the unit for distributing and
testing the application.

 Implementing the application in the production
environment, as a container or an orchestrated
service. This works the same whether the production
environment is a local data center, a cloud provider,
or a hybrid of the two.

Docker Engine is a client-server application with the
following major components, depicted also in Figure 1:

 A server that is a type of long-term program called a
daemon process.

 REST API that specifies the interfaces that programs
can use to talk to the daemon and instruct it on what
to do.

 A Command Line Interface (CLI) client.

42Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

Figure 1. Docker components [5]

The Docker container-based platform enables portable
workloads. Docker containers can run on the developer's
local laptop, on physical or virtual machines in a data center,
on cloud providers, or in a hybrid environment. Docker's
portability and lightweight nature make it easy to
dynamically manage workloads, extend or eliminate
applications and services, as required, in real time.

A. Docker arhitecture

Docker uses a client-server architecture. As illustrated in
Figure 2, the Docker client speaks to the Docker daemon,
which makes it difficult to lift the construction, run, and
distribute Docker containers. The Docker client and daemon
can run on the same system, or a Docker client can connect
to a remote Docker daemon. The Demon client and daemon
communicate using a REST API, through UNIX sockets, or
a network interface.

Figure 2. Docker architecture [5]

An image is a read-only template with instructions for
creating a Docker container. Often, one image is based on
another image, with some additional customizations. For
example, one can build an image that is based on the ubuntu
image, but installs the Apache web server and application, as
well as the configuration details needed to run the
application.

One can create new images or use only those created by
others and published in a register. To build a new image, a
Docker file is created with a simple syntax to define the
necessary steps to create the image and run it. Each
statement in a Docker file creates a layer in the image. When

the Docker file is changed and the image is rebuilt, only
those modified layers are rebuilt. This is part of what makes
images so light, small and fast compared to other
virtualization technologies.

A container is an executable instance. One can create,
start, stop, move, or delete a container using the Docker API
or CLI and it is possible to connect a container to one or
more networks, attach its storage, or even create a new image
based on its current state [5].

B. Isolation in Docker technology

Docker isolates different containers by combining four
main concepts:

 Groups.
 Namespaces.
 Stackable image layers and copy writing.
 Virtual network bridges.
Control groups are a way of assigning a subset of

resources to a particular process group. This can be common,
for example, if we make sure that even if the processor is
very busy with Python scripts, the PostgreSQL database still
receives dedicated CPU and RAM. Figure 3 illustrates this in
an example scenario with 4 processor cores and 16 GB
RAM:

Figure 3. Allocation of resources to control groups [6]

Figure 4 illustrates the parts of a typical process tree in
which the init process started a logging service (syslogd), a
scheduler (cron), and a connection shell (bash). Within this
tree, each process can see all other processes and can send
signals (for example to request that the process be stopped) if
desired. Using PID namespaces virtualizes the PIDs for a
specific process and all of its subprocesses, leading it to
believe that it has PID 1. It will also not be able to see any
process other than its own children.

Figure 4. Process tree [6]

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

To achieve file system isolation, the namespace will map
a node from the file system tree to a virtual root inside that
name. By searching for the file system in that namespace,
Linux will not allow user to go beyond the virtualized root.
Figure 5 shows a part of a file system that contains several
roots of the "virtual" file system in the / drives / xx folders,
each containing different data.

Figure 5. Part of a file system that contains multiple "virtual"
file system roots [6]

Docker has a persistence of images in stackable layers. A
layer contains changes to the previous level. For example, if
one installs Python first and then copy a Python script, the
image will have two additional layers: one that contains
Python executables and one that contains the script. In Figure
6 a Zeppelin, a Spring and a PHP image are showed.

Figure 6. Ubuntu-based Zeppelin, Spring and PHP images [6]

In order not to store Ubuntu three times, the layers are
immutable and shared. Docker uses copy-on-write to make a
copy of a file only if there are changes. When an image-
based container is started, the Docker daemon will provide
all the layers contained in that image and place it in an
isolated file system namespace for that container. The
combination of stackable layers, copy-on-write namespaces,
and file system allows a container to run completely
independent of things "installed" on the Docker host without
wasting much space. This is one of the reasons why
containers are lighter compared to virtual machines.

IV. CONTAINERS IN NFV

To cope with the growing use of networks, driven by new
mobile customers, and to meet the demand for new network
services and performance guarantees, telecom service
providers leverage virtualization on their network by

implementing network services in virtual machines. They are
disconnected from traditional hardware. This effort, known
as NFV, reduces operating expenses and offers new business
opportunities. At the same time, new mobile networks, new
enterprise and IoT networks introduce the concept of
"computing capabilities" that are pushed to the edge of the
network, in the immediate vicinity of users. However, the
strong footprint of current NFV platforms prevents them
from operating at the edge of the network [6].

Data consumption is growing exponentially in today's
communications networks. This irreversible trend is
determined by the increase in the number of end users and
the widespread penetration of new mobile devices
(smartphones, portable devices, sensors, etc.). In addition,
the consumption of mobile data is also accelerated by the
increased capabilities of mobile customers (e.g., higher-
resolution screens and HD cameras) and the user's desire for
high-speed, always-on, multimedia-oriented connectivity. At
the same time, the Telecommunications Service Provider
(TSP) market is becoming competitive as the number of “on
top” service providers increase, reducing user subscription
fees.

As a result, telecom service providers have begun to lose
existing revenue, while suffering increased capital
expenditures and operating costs that cannot be offset by
rising subscription costs. To meet the challenges mentioned
above, service providers have begun to migrate network
infrastructure to software. By virtualizing traditional services
providers can save operational and capital costs and meet
user requirements for personalized services. This
transformation, called network virtualization, is transforming
the way operators build their network architecture to
disconnect network functionality from physical locations for
faster and more flexible network provisioning.

In Table 1, some popular marginal devices are presented
along with their release date, architecture, CPU, and memory
parameters. The list includes residential equipment for large-
scale customers. As can be seen from Table 1, recent CPE
devices and home routers are equipped with powerful
computing capabilities (e.g., processors up to 1.6 GHz) and a
considerable amount of RAM (up to 1 GB) for run a Linux-
based operating system (OpenWRT or DD-WRT).

TABLE I. EDGE DEVICES SPECIFICATION [2]

Customer Device Architecture CPU Memory
Residential CPE home routers

Virgin SuperHub
3(Arris TG2492s)

Intel Atom 2x1.4 GHz 2x256 MB

Google Fiber Network
Box GFRG110

ARM v5 1.6 GHz N/A

Orange Livebox 4 Cortex A9 1 GHz 1 GB

Commodity wireless routers
TP-LINK Archer C9
home router

ARM v7 2x1 GHz 128 MB

Ubiquity Edge Router
Lite 3

Cavium MIPS 2500 MHz 512 MB

Netgear R7500 Smart
Wifi Router

Qualcomm
Atheros

2x1.4 GHz 384 MB

IoT edge gateways
Dell Edge Gateway
5000

Intel Atom 1.33 GHz 2 GB

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

NEXCOM CPS 200
Industrial IoT Edge
Gateway

Intel Celeron 4x2.0 GHz 4 GB

HPE Edgeline
EL4000

Intel Xeon 4x3.0 GHz Up to 64
GB

As demonstrated in “Container Network Functions” [2],
even a home TP-Link router with a 560 MHz processor and
128 MB of RAM can be used to run multiple VNFs using
Linux containers. In addition to low-cost marginal devices,
such as home routers and residential Customer Premises
Equipments (CPE), some vendors have also introduced IoT
gateways with state-of-the-art processors and up to 64 GB of
RAM to host new services, such as intelligent analysis at the
edge of the network.

While positioning at the edge of the network has many
advantages, traditional NFV platforms have been built on
high-power servers, mainly operating virtual machines
(using technologies, such as Xen Project [7] or Kernel
Virtual Machine [8]) for VNF. Table 2 summarizes the
features supported by some existing solutions. The
information presented reflects the public information
available at the time of writing. Cloud4NFV [1] is a platform
that promises to provide a new service to end customers,
based on cloud, defined software networks and WAN
technologies. The research projects UNIFY [3] and T-
NOVA [7] share a similar vision of the unification of cloud
networks and providers by implementing a system of
“network functions as a service”. The OPNFV Linux project
is the most popular open source NFV platform, with support
and implementations from many vendors and large vendors.
While all these platforms have made important contributions
in the field, none of them has so far featured a container-
based, network-focused and mobility-focused NFV system.

TABLE 1. SUMMARY OF EXISTING APPROACHES [2]
GNF Cloud

NFV [1]
UNIFY T-

NOVA
[7]

OPNFV

Virtualizati
on
technology

Container VM VM VM VM

End-to-end
service
mgmt.

Yes Yes Yes Yes Yes

Distributed
infrastructu
re

Yes Yes Yes Yes Yes

Traffic
steering

Yes Yes Yes No Yes

Runs on the
network
edge

Yes No No No No

SFC
support

Yes Yes Yes No Yes

Roaming
VNFs

Yes No No No No

In [2], there were highlighted some basic features of
containerized VNFs that were measured on an Intel i7 server
with 16 GB of memory: Delay: maintaining the low delay
introduced by VNF is important to implement transparent
services and is therefore a key benchmark for VNF
technologies. In Figure 2a, the delay introduced by different

virtualization platforms by displaying the idle time (round
time trip) is expressed. While ClickOS [8] achieves a slightly
lower delay than containers, ClickOS is built on top of a
modified, specialized hypervisor that optimizes packet
forwarding performance. On the other hand, container-based
functions use unmodified containers on a standard Linux
kernel, allowing deployment on devices that do not support
hardware virtualization (for example, all CPE devices and
home routers). Other VM-based technologies, such as KVM
or Xen VM, result in a much longer delay, which is mainly
attributed to copying packages from the hypervisor to the
VM.

Figure 7. Performances of virtual functions as containers: a) ping delay; b)
creation, start and stop times; c) idle memory consumption [2]

V. CONCLUSION

Containers give a false sense of security. There are many
pitfalls when it comes to securing applications. It is wrong to
assume that one way to secure them is to place them in
containers. Containers do not provide anything in
themselves. If one keeps his web application containerized, it
could be locked into namespaces, but there are several ways
to get rid of it depending on his configuration.

Considering that there are Docker images that require the
exposure of more than 20 ports for different applications
inside a container, Docker's philosophy is that a container

45Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

should do a single job and user should compose them instead
of making them heavier. If one ends up packing all the tools
in one container, all the benefits will be lost, user may have
different versions of Java or Python inside, and he might end
up with a 20GB image that can not be managed.

The paper managed to provide an overview of the current
options for implementing "fog computing": whether it is
devices already in production at the end user, or we are
talking about native equipment, dedicated to perform
functions specific to information processing on the periphery
network. Observing these things, a variant that can be
adopted is the use of dedicated servers at the periphery of the
networks on which to build special functions using Docker
technology. This has the advantage of a fast implementation
of functions, rapid scaling, as well as the advantage of
having a platform shared by many entities given the isolation
discussed in Section 4. The problem that remains open is
where to implement this dedicated server: it is necessary
aggregate and respond to a large number of requests to
justify the investment and available computing resources.
Physical distance from end users (mobile devices, sensors,
etc.) must also be considered in order not to lose the main
advantage offered by the concept of "fog computing":
latency and low delay.

In this paper, we provided an overview of Docker
technology and how this technology can contribute to a
better exploitation of virtual network functions. This is
because Docker provides very good isolation between
instances and at the same time does not require the presence
of dedicated software (hypervisor), offering greater
flexibility than classic virtual machines.

There are a significant number of benefits to using VNFs
on containers rather than on the hypervisor. However, if we
look at the technological innovation there is no outstanding
progress, and this is due to the lack of a model of common
guidelines. Now, 5G networks are starting to be
implemented and tested in some cities by service providers
with the help of top providers. The development will lead to
targeting more innovative features that 5G brings, such as
network tracing, Mobile Edge Computing (MEC) and cRAN
(Cloud Radio Access Networks). These new 5G features will
certainly require the dynamism and benefits offered by
containers for the highly automated deployment of services
to each edge of the 5G network. We can expect all service
providers and network solution providers to be aware of the
benefits of the container to be used to achieve high
efficiency.

Container technologies such as Docker are becoming the
leading standards for building containerized applications.
They help organizations free from a complexity that limits
the agility of development. Containers, container
infrastructure and container implementation technologies
have proven to be very powerful abstractions that can be
applied to several different use cases. Using something like
Kubernetes, an organization can deliver a cloud that uses
containers exclusively for application delivery.

The growing interest of users and the widespread
adoption of Docker and container technology have forced
old retailers to deliver at least their first container products,
but it should be noted in the long run how these technologies
can integrate seamlessly and meet the technical requirements
of old systems.

REFERENCES

[1] S. João, D. Miguel and C. Jorge, "Cloud4NFV: A Platform for
Virtual Network Functions," in in 3rd Intl. Conf. on Cloud
Networking (CloudNet). IEEE, 2014, 2014.

[2] R. Cziva and D. P. Pezaros, "Container Network Functions:
Bringing NFV to the Network Edge," in Communications
Magazine. IEEE, June 2017, 2017.

[3] C. András et al., "Unifying Cloud and Carrier Network," in
Utility and Cloud Computing (UCC), 2013.

[4] IBM Cloud Education, [Online]. Available:
https://www.ibm.com/cloud/learn/containerization. [Accessed
7 March 2021].

[5] Docker Docs, "Docker," [Online]. Available:
https://docs.docker.com/get-started/overview/. [Accessed 7
Feb 2021].

[6] F. Rosner, "CodeCentric Blog," [Online]. Available:
https://blog.codecentric.de/en/2019/06/docker-demystified/.
[Accessed 7 Feb 2021].

[7] X. George et al., "T-NOVA: Network Functions as-a-Service,"
IEEE Explore, 2015.

[8] M. Joao and A. Mohamed, "ClickOS and the Art of Network,"
in 11th USENIX Symposium on Networked Systems, Seattle,
WA, USA, 2014.

46Copyright (c) IARIA, 2021. ISBN: 978-1-61208-837-2

ICN 2021 : The Twentieth International Conference on Networks

