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Abstract - Depending on the targeted wireless application, a 
collaborative spectrum allocation strategy may offer additional 
advantages over a non-collaborative strategy. The challenge 
lies in combining the information received from users 
organized in a collaborative manner. The purpose of the 
present article is to propose a collaborative spectrum allocation 
model for a decentralized cognitive radio network. In this 
sense, the cognitive radio user shares his information with 
other neighboring network users. The shared information is 
characterized through five levels of collaboration (10%, 20%, 
50%, 80% and 100%) where each one represents the 
percentage of information that is to be shared for training and 
subsequent model validation. The comparative assessment is 
carried out with the decision-making multi-criteria algorithms 
SAW and TOPSIS. The results reveal that the SAW algorithm 
outperforms the alternatives under different scenarios and 
collaboration levels in terms of the handoff metric. 

Keywords - Cognitive Radio Networks; Cooperative; GSM; 
Handoff; SAW; TOPSIS. 

I. INTRODUCTION

The increasing use of wireless applications poses new 
challenges in the future of communication systems. Cisco 
states that the traffic from mobile data has grown 18 times 
over the past 5 years and it is expected that the total traffic of 
mobile data reaches 49 exabytes per month in 2021 [1]–[6]. 
This particular scenario and given that current allocation 
policies are fixed and regulated by the state [7], have led to 
overall scarcity in the radio-electric spectrum. However, the 
results show that certain bands between 50 and 700 MHz, are 
being underused since their duty cycles are practically non-
existent. In these bands, spectral usage times remain below 
10% [8], in contrast with other bands which are normally 
saturated and allocated to cellphone networks. 

Cognitive Radio (CR) is defined by the International 
Telecommunications Union (ITU) as “a radio or system that 
is aware and detects its surroundings and that can be adjusted 
dynamically and autonomously according to its radio 
operation parameters”. Its solution consists on Dynamic 
Spectrum Access (DSA), achieving an opportunistic and 
intelligent use of the frequency spectrum. Hence, an 
unlicensed cognitive radio user (Secondary User – SU) can 
take over an available licensed band, yet he must release said 
channel and seek another one whenever: 1. a primary user 
(PU) needs to occupy the same channel, 2. when the quality 
of the channel is downgraded by the SU or 3. when the 
mobility of the SU leaves him outside of the coverage area. 

Seeking a new channel or spectral opportunity (often called 
white space or spectral hole) in order to proceed with 
transmission is known as spectral handoff (SH) [9]–[13]. 
This gives CR the capacity to provide large bandwidth (BW) 
share to the SU, through heterogeneous wireless 
architectures. 

Centralized networks are architectures with an 
infrastructure controlled by a central coordinator. The 
information visualized by each SU feeds the central base, so 
it can make decisions to maximize communication 
parameters. However, this may not be the best option for 
large scale systems and public safety network applications. 
The increase in measuring costs, the complexity of the 
system, as well as the unbalance and potential chaos derived 
from possible failures (vulnerability) in the base station, turn 
this architecture into an unfeasible option for all CRN 
structures [14]. The problem can be solved by distributing 
the responsibility of the information among different control 
points, which are a crucial criterion in decentralized 
cognitive radio networks (DCRN). 

The focus of this research consists on establishing the 
decision-making process for a DCRN, by giving the nodes 
the capacity to learn from the environment and propose new 
strategies that enable SU to exchange information in a 
collaborative manner. The above is achieved from the 
analysis of the history of the spectral occupation data and the 
behavior of decision criteria such as the probability of 
availability, the average time of availability, the signal to 
noise ratio and the bandwidth of each frequency channel. 

Collaborative strategies have delivered new models to 
support the efficient use of radio resources and the decision-
making process in CRN. In collaborative decision-making, 
users communicate between each other by exchanging 
availability and interference measurements, among other 
information retrieved locally. Seeking to harness spatial 
diversity, unlicensed users share their information with 
neighboring users [15]. The information shared is 
characterized with the definition of five collaboration levels 
(10%, 20%, 50%, 80% y 100%), where each one represents 
the percentage of information that is to be shared for training 
and subsequent model validation. The collaborative approach 
offers additional advantages over its non-collaborative 
counterpart. One of the challenges in spectrum allocation 
relates to how to combine the information from users 
organized in a collaborative manner while maintaining 
transmission [16]. 
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This article presents a comparative assessment of Simple 
Additive Weighting (SAW) and Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) which 
are two multi-criteria decision-making algorithms most used 
in a Global System for Mobile communications (GSM) 
DCRN [17]–[22]. Both algorithms are assessed and 
compared in terms of the average number of handoffs 
generated during a 9-minute of data transmission using the 
same amount of data. The comparison is carried out in four 
different scenarios, depending on the type of service (real 
time and better effort) and the traffic level (low and high): 
real time (RT) with high traffic (HT), better effort (BE) with 
low traffic (LT), RT with LT and BE with HT. The main 
contribution of the present work is to include different 
collaboration levels (10%, 20%, 50%, 80% and 100%) 
between secondary users who share space-time data 
regarding the spectral occupation that ultimately feeds the 
database of the decision-making algorithms. 

The rest of the document is structured as follows. Section 
II shows a description of the simulation environment.. 
Section III presents the results obtained in the comparative 
analysis of the performance evaluation for the proposed 
algorithms. Finally, conclusions are drawn in Section V.

II. METHODOLOGY

For the comparative assessment of multi-criteria 
decision-making strategies, a simulator was developed based 
on information retrieved from 551 channels. The test-
validation technique is used for training and validation with 
an 83% - 17% proportion, which corresponds to 10800 
training data and 1800 validation data, equivalent to 1 hour 
for training and 10 minutes for assessment. The information 
corresponds to real data captured in a metering campaign in 
the GSM frequency band. 

The spectral occupancy data corresponds to a week of 
observation captured at Bogota City in Colombia. The 
energy detection technique was used to determine the 
occupation or availability of the analyzed GSM band, with a

decision threshold for the power of 5 dBm above the noise 
power. To determine whether a frequency channel is busy or 
not, the proposed decision threshold is based on the average 
noise floor for the frequency band used. Thus, the average 
noise floor is -113 dBm and the decision threshold is set to -
113 + 5 = -108 dBm. 

Figure 1 presents the general structure of the 
implemented model. The simulator is comprised of four 
processing blocks. The first block is called the “collaborative 
block” which segments the power matrix into five 
collaboration levels and distributes it among SU. The second 
block known as “MCDM” includes all the mathematical 
models needed in the decision-making process for SAW and 
TOPSIS algorithms. The third block is the “Search 
Algorithm” which is a structure in charge of simulating and 
quantifying throughput characteristics. The block “Figure” 
builds the respective charts.  

A. Functions of the collaborative block 

For the specific description of the collaborative 
algorithm, the three functions must be analyzed that can 
segment the matrix. Figure 2 presents the specific block 
diagram of the collaborative model. The blocks where the 
input and output signals converge correspond to the 
functions of the algorithm. The first function is called “User 
Division” and is in charge of dividing the matrix according 
to the adjustments of the number of users (Number of user 
and User Full). The second block is comprised of two 
functions: User Zone Continuous and User Zone Random. 
These functions are in charge of selecting the block of users. 
The selection method is parameterized by the 
“Segmentation” variable. If the continuous selection method 
is chosen, the function “User Zone Continuous” will be in 
charge of the selection. If the random method is chosen, then 
the “User Zone Random” function performs the selection. 
The following sections describe the characteristics and 
adjustments of each input and output variable of the 
implemented collaborative model.  
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Figure 1. General structure of the model 
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B. TOPSIS  

This algorithm is based on two parts: the solution which 
cannot be accepted under any situation and the ideal solution 
of the system. The decision matrix X is initially built and 
normalized using the square root method discussed in (1) 
[17][23][24]. 
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where ωi is the weight allocated to criterion i, and the 
sum of all weights must be equal to 1.  

Afterwards, the ideal solution and the worst solution are 
defined as described in (2) and (3). 

     ij ij 1 MA max |j X , min |j   X , ,           % % % %
(2) 

      ij ij 1 MA min |j X , max |j   X   , ,           % % % %
(3) 

where i = 1…M, y X+ y X- are the set of benefits and 
costs, respectively. 

Then, the Euclidian distance D is computed for each 
alternative as seen in (4) and (5). 
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Finally, the alternatives are organized in descending 
order based on the preference index given by (6). 

i
i

i i

D
C ,     i 1, , N.

D D




 
  


(6) 

C. SAW 

This algorithm builds a decision matrix comprised of 
criteria and alternatives. The algorithm assigns a weight to 
each intersection of the matrix based on the criterion set by 
the designer. This establishes a score for each assessed 
spectral opportunity (SO) and determines a ranking that 
includes all alternatives. The SO with the highest score is 
ultimately chosen [17][23][24]. In (7), ri,j belongs to the 
matrix and the sum of weights is equal to 1. 
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The steps used to develop this algorithm were: (1) 
identifying the objectives and alternatives; (2) assess the 
alternatives; (3) determine the weights of each combination; 
(4) add the aggregated values based on preferences; and (5) 
analyze sensitivity [17]. 
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III. RESULTS

Two applications were considered during performance 
assessment: Real Time (RT) and Better Effort (BE) as well 
as two traffic levels: High Traffic (HT) and Low Traffic 
(LT), to create four types of scenarios: GSM RT HT, GSM 
RT LT, GMS BE HT and GSM BE LT. They were analyzed 
in terms of the average accumulative handoff (AAH) both 
for the SAW (Figure 3) and the TOPSIS algorithms (Figure 
4). 

Figure 3 and Figure 4 show that there is a stronger 
variation of handoffs in LT than in HT. Another interesting 

finding is that the number of handoffs is fairly similar 
between BE and RT for the same traffic level, which 
undermines the importance of this variable within a spectral 
allocation model. It could also lead to redefining the 
operation of the chosen algorithm. 

In the case of the SAW algorithm, the collaboration level 
of 100% reaches a reduction of 4.5% for RT-HT, 9.5% for 
RT-LT, 2.3% for BE-HT, and 16.3% for BE-LT. 

In the case of the TOPSIS algorithm, the collaboration 
level of 100% reaches a reduction of 2.1% for RT-HT, 3.9% 
for RT-LT, 6.4% for BE-HT, and 15.4% for BE-LT. 

74Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks



Figure 3. AAH in GSM for SAW algorithm 
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Figure 4. AAH in GSM for TOPSIS algorithm 

The behavior of the handoffs and the failed handoffs are 
similar in the corresponding evaluation scenarios, with RT-
HT presenting the least variation of handoffs at different 
levels of collaboration, in contrast to the BE-LT scenario, 
which experiences the greater variation. In general, low 
traffic scenarios experience a high variation, around 20%, 
compared to high traffic, whose variation is low, around 7%. 
It is also noted that collaboration has a greater impact on the 
TOPSIS algorithm compared to the SAW algorithm.  

IV. CONCLUSIONS

A collaborative spectral assignment model was 
developed through the exchange of information between 
secondary users for two multi-criteria decision-making 
algorithms, SAW and TOPSIS. The comparative evaluation 
of these two techniques was carried out through the number 
of handoffs made during a 9-minute transmission. 

The spectral decision-making algorithm affects the 
results obtained in terms of handoff. However, the 
differences are not significant compared to the ones obtained 
with the variation of the cooperation level. The cooperation 
level between secondary users has a higher incidence in 
better effort and low traffic applications. 

When the secondary user chooses to access a channel, he 
should not only consider the quality of the channel, but also 
factor in the decisions to access channels incoming from 
other users.  

As future work we propose the implementation of 
machine learning techniques and consider multi-user access 
to the spectrum. 
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