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Abstract—As the 5th telecommunication Generation (5G) 
deployments are spreading around via various mobile 
operators, the capabilities behind 5G are becoming more and 
more understandable. Infrastructure vendors, operators, and 
end users now have a clear picture of the 5G potential and, for 
that reason, the research and the development of 5G are surely 
continuing. The one-to-one mapping between 5G and Software 
Defined Network - Network Function Virtualization (SDN-
NFV) architecture is not in discussion, but the impact of 
porting SDN-NFV into the Radio Access Network (RAN) is still 
under investigation. Sometimes, the RAN requirements set 
strong limitations even in the basic hardware and software 
setup. For example, the most complete and very well integrated 
SDN-NFV infrastructure distributions require specific 
hardware capabilities in terms of available nodes, in contrast 
with the RAN requirement to be economic, power consumption 
limited and with limited overhead due to operating system and 
middleware cost. For that reason, this study uses only a 
minimal set of OpenStack components in order to evaluate 
what is the minimal hardware capability needed to set up a 
basic, but fully working environment for NFV, highlighting the 
pros and cons of embracing a solution solely based on standard 
OpenStack components. 

Keywords-5G; RAN; SDN-NFV, edge computing; server at 
the edge; Service deployment; OpenStack, E2E deployment. 

I. INTRODUCTION

2019 is the year in which 5G started to be a practical and 
viable commercial solution available to mobile operators [1]. 
The importance of 5G architecture is now widely understood 
and shared: the new technology has the potential to drive 
economic growth. Its possibilities are so broad that we 
probably cannot even imagine what and how many new 
services will be possible. Today, all operators see 5G as the 
enabler for full connectivity between people, for the creation 
of the Internet of Things (IoT) and as a startup for the so-
called Industry 4.0. However, although this is already very 
stimulating and large enough to justify the investment in the 
new architecture and infrastructure, 5G is beyond all of that. 
Smart cities, Industrial IoT, augmented reality, autonomous 
transport, digital health, are just some of the countless 
commercial opportunities that could be possible when 5G 
will be fully deployed. To allow such an enormous 
commercial opportunity to become real, it is necessary to be 
able to count on a very well-defined ecosystem, where a new 

approach to the network is needed, including (RAN), to 
address the wide distribution of functions, applications, and 
data. The distribution of services requires an End-to-End 
architecture (E2E) where, thanks to a high-level 
programmability and “software-ability” of the architecture, it 
will be possible to offer new advanced services to consumers 
by dedicating portions of the network. In this mode, it will be 
possible to guarantee precise levels of service quality and to 
respond to the increasingly demanding application needs of a 
wide variety of sectors (Figure 1). 

SDN-NFV is the most suitable system architecture to 
support the necessary 5G ecosystem [3]. To make it 
successful, however, the solution must rely on an NFV 
infrastructure (NFVI) optimized to support the rapid 
implementation of new generation services with low latency 
and a varied and distributed group of terminals and devices. 
As mentioned in our previous work [4], the infrastructure 
shall be designed to remove inefficiencies in the modern 
cloud due to a distance between the design of high-level 
cloud management/orchestration and low-level 
kernel/hypervisor mechanisms. The two worlds should talk 
to each other, providing richer abstractions to describe the 
low-level mechanisms and to automatically map higher-level 
descriptions and abstractions to configuration and 
performance tuning options available within operating 
systems and kernels (both host and guest), as well as 
hypervisors. 

Figure 1. 5G Standards and Commercialization Time Line [2]
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The rest of this paper is organized as follows. Section II 
introduces the Network Operating System definition and 
explains the decision to use OpenStack components. Section 
III describes the hardware environment used in the 
implementation phase. Section IV addresses the software 
environment setup. Section V goes into finer details for 
OpenStack components selection. Section VI and Section 
VII emphases the set of for network and storage respectively, 
while Section VIII lines out the deployment configuration 
actions needed. Eventually, Section IX shows the 
deployment sequence. Section X points to the hardware 
minimal capability as those used by the experiment and 
Section XI discusses some conclusions.  

II. NETWORK OS 

The Network Operating System (NOS) is, by definition, 
the horizontal server network resources controller in a 
distributed system. It is responsible to provide a virtualized 
(programmable) environment and the connected control part. 
Describing the structure of the SDN-NFV architecture is not 
one of the purposes of this paper, but related references are 
easily available [5][6]. In the SDN-NFV architecture, the 
NOS is spread between NFVI and Virtual Infrastructure 
Manager (VIM), as graphically shown in Figure 2. 

“De facto”, commercial solutions use OpenStack to 
deploy virtualized environments. OpenStack is an “always 
evolving” project built over several components. These can 
easily be added or removed from the configuration of a 
deployment, optionally plugging other open-source 
components/agents, like OpenDayLight, NetConf, 
OpenFlow and others [7]. For any next-generation mobile 
system, a mandatory requirement is to be a fully integrated 
ecosystem that, independently of specific vendors, can be 
orchestrated by a (logically) centralized controller. Assuming 
for the RAN the server configuration described in [3], in the 
following we describe an OpenStack deployment over a few 
different boards constituting a simple edge-computing test-
bed. 

III. HARDWARE ENVIRONMENT SETUP

Hardware environment set up has been done considering 
some main rules: 

1. It shall be, as much as possible, based on 
commercial hardware and have limited cost; 

2. It shall consist of a basic set of hardware 
components and boards; 

3. It shall be suitable for housing a NOS fully 
based on OpenStack components; 

The first rule has been set considering the capillary, 
widely distributed, explosion of computer deployment close 
to the end user, into the edge of the network [8][9]: 
minimizing the cost of the deployment looks like a strong 
requirement for the success of the 5G implementation. 

The second rule has been set to overcome the limits the 
most popular OpenStack distributions have. For example, 
Open Platform for NFV (OPNFV), a complete solution for 
development and evolution of NFV components across 
various open-source ecosystems, requires a significant 
number of controller and specific hardware characteristics 
for the system development board [10]. OPNFV is surely a 
complete and powerful solution, but, in this work, we are 
interested in understanding the bare minimum set of 
hardware characteristics necessary for implementing a NOS 
based on open software.  

The third rule is a practical decision (software 
availability) and it is not limiting the result achieved in the 
lab. With the only exception of the radio interface board, for 
which it is possible to use 5G-ready existing radio product 
solutions, the server at the edge has been built (see Figure 3) 
as one compute node (CP), one networking node (NET), one 
controller node (CTRL) and an Ethernet switch (SW). The 
development & deployment environment is represented by 
another board, the developer node, that will act also as 
containers repository site (DB). 

Figure 2. Graphical location of the NOS: network resources control 
and allocation location in the SDN-NFV architecture are spread 

between NFVI and VIM Figure 3. Hardware Environment Set up 
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TABLE I. HARDWARE COMPONENTS FOR THE NODE

Object Vendor & Type 

Motherboard GIGABYTE H310M-A 
CPU Intel Core i3 8100 
Disk WD Green3D Nand 240 GB 
RAM DDR4 Corsair Vengeance 32 GB 
Eth. daughterboard Intel X710-DA2 
Power SFX Power 2 
Router Netgear ProFase GS108 

The hardware characteristics of the nodes are 
summarized in Table I.  

IV. SOFTWARE ENVIRONMENT SETUP

The software environment set up has been done 
considering only open-source components imposing minimal 
requirements on the needed underlying hardware. The 
software shall be able to run into the minimal set of boards 
used for the server at the edge concept and it shall be fully 
based on open-source packaging. For the servers at the edge, 
we chose to use a Linux operating system, Ubuntu [11] 
distribution. The Deployment Board uses a Desktop version 
while the other boards use a Server distribution (see Figure 
4).  

The latest 18.04.2 Ubuntu Long Term Support (LTS) is 
used. Kernel version is 4.15 for server and 4.18 for Desktop. 
During the test phase, the node has been regularly upgraded 
with the Ubuntu standard updates using the apt package 
manager [12]. At the time when this paper has been written, 
the latest working update was: 

DB: Linux 4.18.0-24-generic #25~18.04.1-Ubuntu SMP 

OTHERS: Linux 4.15.0-28-generic #64-Ubuntu SMP 

V. INFRASTRUCTURE SETUP

The most complete and up-to-date among available open-
source distributions of OpenStack for the infrastructure is 
probably OPNFV [13], an SDN-NFV distribution fully 
integrated with the latest technologies, for example, Open 
Network Automation Platform (ONAP) [14] and Open RAN 
(O-RAN) [15]. However, the OPNFV hardware 
requirements are not suitable for an edge-computing proof of 
concept (PoC), as it requires a minimum of 2 controller 
nodes, 3 compute nodes, and a minimum of 64 gigabyte 

(GB) Random-Access Memory (RAM) mounted. For that 
reason, the PoC building of the server at the edge has been 
fully based on self-building OpenStack components and we 
started from the suggested configuration for containers 
handling [16]. 

The OpenStack components List is (Figure 5): 
Basic Infrastructure components (mandatory) 

 Nova, to provide compute instances; 
 Glance, to provide an image service; 
 Keystone, to provide Application Program 

Interface (API) client authentication; 
Extended Infrastructure components (mandatory) 

 Neutron, to provide network connectivity; 
 Swift, to provide an objects store service; 
 Cinder, to provide block storage and volume 

service; 
Extended infrastructure components (optional) 

 Kuryr, network plugin to provide 
networking services to Docker containers; 

Optional enhancements 
 Horizon, Dashboard to provide a web-based 

user interface; 
 Grafana, to provide a metrics dashboard; 
 Cyborg, to support possibly available 

accelerations: Graphics Processing Unit 
(GPU), Data Plane Development Kit 
(DPDK), etc... 

Consumption services 
 Tacker, to provide generic VNF Manager 

(VNFM) and NFV Orchestrator (NFVO); 
 Kolla-Ansible, to deploy OpenStack 

components in Docker containers using 
Ansible; 

 Zun, to provide API for launching and 
managing containers; 

 Magnum, to provide container orchestration 
services; 

 Heat, to provide template-based 
orchestration. 

Figure 4. Hardware Environment Set up 
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Figure 5. Selected OpenStack Package 
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Kolla-Ansible [17] has been conveniently used to ease 
the deployment of the various OpenStack components. It is 
worth to mention here that the selected set of OpenStack 
components do not constitute necessarily an optimal 
selection, as an evaluation or comparison of the possible 
optional components was not in the goal of the study 
described in this paper. 

Kolla-Ansible comes with a minimal set of software 
requirements and dependencies on other software 
components. The list of install dependencies is available in 
[18]. 

During the set-up and configuration phase, various issues 
have been tackled and the following workarounds applied: 

- We had to use the development version of Kolla-
Ansible because the released version seemed to have issues 
in the container deployment phase (specifically, raising the 
MariaDB container didn’t work). 

- The Internet Protocol (IP) check for services was 
failing due to the lack of configured passwords. This was 
fixed by adding password roles in the /etc/sudoers file.  

- We needed to install docker-ce instead of docker 
12.1.0*. Note that the deployment board is used as a local 
Docker registry in our environment. 

- Create a link -s -L to easy_install in /usr/local/bin/ 
because it doesn’t exist in the installed distribution. You 
need to compile and install python-3.7 locally. 

- During the deployment phase, Koll-Ansible uses 
frequently Docker commands. This might generate 
permission denied alarm. In order to remove that issue, it is 
enough to add own user to the Docker group. 

sudo gpasswd -a $USER docker 
newgrp docker 
- the local Docker registry address needed to be 

added to the list of allowed insecure registries in the Docker 
daemon configuration file (/etc/docker/daemon.json). 

The Docker daemon uses the HTTP_PROXY, 
HTTPS_PROXY and NO_PROXY environment variables. 
Those variables cannot be configured using the daemon.json 
file. They can be set in an http-proxy.conf file in the 
/etc/system/docker.service.d directory. The definition of the 
NO_PROXY allows contacting the internal Docker register 
without proxying.  

VI. NETWORK SETUP

Kolla-Ansible needs two IP addresses per board: the 
networking setup for OpenStack is one of the most 
complicated actions to do, but Kolla-Ansible as a 
deployment tool is simplifying a lot. We let Kolla-Ansible 
set neutron for us, with the cost of the setup of two Virtual 
Local-Area Network (VLAN) per board. Note that our server 
and desktop distributions are not the same. The server is 
using netplan while the desktop is still counting on 
ifupdown. In order to manage the network using the same 
setting, ifupdown has been installed in our Ubuntu Server 
nodes. Once ifupdown has been loaded, the vlan 
configuration could be done by editing the 
/etc/network/interface file. 

auto eno1 
iface eno1 inet dhcp 

auto eno1.1 
iface eno1.1 inet static 

address 11.22.33.44/23 
netmask 255.255.254.0 
gateway XX.YY.ZZ.1 
vlan-raw-device eno1 

auto eno1.2 
iface eno1.2 inet static 

address 11.22.33.55/23 
netmask 255.255.254.0 
gateway 11.22.33.1 
vlan-raw-device eno1 

auto lo 
iface lo inet loopback 

Eventually, the vlan kernel module is installed to keep 
network setting permanent: 

sudo su -c 'echo "8021q" >> /etc/modules 

The networking is done to have demo-networking, 
internal, public networking, external and VIP networking, 
neutron keepalive control, as shown in Figure 6.   

VII. STORAGE SETUP

Swift requires block devices to be available for storage. 
To prepare a disk for using a swift storage device, a special 
partition name and filesystem label needed to be added. 
Moreover, before running Swift, we had to generate rings, 
which are binary compressed files that at a high level let the 
various Swift services know where data is in the cluster. 
Cinder also needs a dedicated Logical Volume Management 
(LVM) physical volume group. Note the partition for swift 
and Cinder are strongly recommended (see Figure 7).  

Figure 6. Server at the edge connectivity 
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The Swift and Cinder disk partitions are required where 
the system storage is hosted; as described in the 
infrastructure setup, this is the development board in this 
study. Note that the size of the partitions is not optimized, 
and the correct size should be defined or investigated in 
advance for the product deployment case. Most likely, a real 
production environment needs bigger disks/partitions.  

VIII. KOLLA-ANSIBLE CONFIGURATION FILES

The most attractive benefit of using the Kolla-Ansible 
tool to deploy OpenStack is that it provides a very simple 
procedure to identify and characterize the overall system, 
both in hardware and software point of view. OpenStack 
package components set, network setup, hardware inventory 
and storage definitions are defined and managed using only 
two files: the so-called “globals.yml” and the 
“multinode.yml” configuration file. Both of them are 
available as a template in the Kolla-Ansible 
distribution/installation file. To match the real hardware 
setup and use the selected OpenStack components, the 
customization of them is straightforward: remove or add a 
comment to existing lines.  

“multinode.yml” is the Ansible inventory file and 
configures the connection parameters for the hosts (i.e., 
IP/hostname, username, and password) and its services need 
to be installed in each of them. This is done by defining 
which groups each host belongs to. The most important 
groups are control, network, compute, monitoring and 
storage. Kolla-Ansible will take care of installing the 
required services to each host depending on the groups they 
belong to. In order to match the hardware setup as described 
before, the multimode configuration looks like below: 

 [control] 
11.22.33.11 ansible_user=user_name 
ansible_password=user_passwd ansible_become=true 
[network] 
11.22.33.22 ansible_user=user_name 
ansible_password=user_passwd ansible_become=true 
[compute] 
11.22.33.44 ansible_user=user_name 
ansible_password=user_passwd ansible_become=true 
[monitoring] 
#select the control 
11.22.33.44 
[storage] 
localhost       ansible_connection=local 
become=true 

[deployment] 
localhost       ansible_connection=local 
become=true 

The “globals.yml” configuration file is used for network 
configuration, OpenStack package definition, certification, 
repository, and storage assignment. According to the 
software setup defined previously, for the PoC of the server 
at the edge, it looks like below: 

# You can use this file to override _any_ variable
throughout Kolla. 
# Additional options can be found in the 
# 'kolla-ansible/ansible/group_vars/all.yml' file.
Default value of all the 
# commented parameters are shown here, To override
the default value uncomment 
# the parameter and change its value. 
############### 
# Kolla options 
############### 
# Valid options are [ COPY_ONCE, COPY_ALWAYS ] 
#config_strategy: "COPY_ALWAYS" 
# Valid options are ['centos', 'debian',
'oraclelinux', 'rhel', 'ubuntu'] 
kolla_base_distro: "ubuntu" 
# Valid options are [ binary, source ] 
kolla_install_type: "source" 
# Valid option is Docker repository tag 
openstack_release: "rocky" 
# Location of configuration overrides 
#node_custom_config: "/etc/kolla/config" 
# This should be a VIP, an unused IP on your
network that will float between 
# the hosts running keepalived for high-
availability. If you want to run an 
# All-In-One without haproxy and keepalived, you
can set enable_haproxy to no 
# in "OpenStack options" section, and set this
value to the IP of your 
# 'network_interface' as set in the Networking
section below. 
kolla_internal_vip_address: "XX.YY.ZZ.VIP"

Where Kolla_internal_vip_address could be, for 
example, 11.22.33.99. 

################ 
# Docker options 
################ 
# Below is an example of a private repository with
authentication. Note the 
# Docker registry password can also be set in the
passwords.yml file. 
docker_registry: "XX.YY.ZZ.DEV:5000" 
#docker_namespace: "regionone" 
#docker_registry_username: "sam" 
#docker_registry_password:
"correcthorsebatterystaple"

In our case, docker_registry is hosted on the development 
board, for example, 11.22.33.55. 

############################## 
# Neutron - Networking Options 
############################## 
# This interface is what all your api services will
be bound to by default. 
# Additionally, all vxlan/tunnel and storage
network traffic will go over this 
# interface by default. This interface must contain
an IPv4 address. 
# It is possible for hosts to have non-matching

Figure 7. The disk partition of the development board 
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names of interfaces - these can 
# be set in an inventory file per host or per group
or stored separately, see 
#
http://docs.ansible.com/ansible/intro_inventory.htm
l 
# Yet another way to workaround the naming problem
is to create a bond for the 
# interface on all hosts and give the bond name
here. Similar strategy can be 
# followed for other types of interfaces. 
network_interface: "eno1.1" 
# These can be adjusted for even more
customization. The default is the same as 
# the 'network_interface'. These interfaces must
contain an IPv4 address. 
#kolla_external_vip_interface: "{{ 
network_interface }}" 
api_interface: "{{ network_interface }}" 
#storage_interface: "{{ network_interface }}" 
#cluster_interface: "{{ network_interface }}" 
#tunnel_interface: "{{ network_interface }}" 
#dns_interface: "{{ network_interface }}" 
# This is the raw interface given to neutron as its
external network port. Even 
# though an IP address can exist on this interface,
it will be unusable in most 
# configurations. It is recommended this interface
not be configured with any IP 
# addresses for that reason. 
neutron_external_interface: "eno1.2" 
# Valid options are [ openvswitch, linuxbridge,
vmware_nsxv, vmware_nsxv3, vmware_dvs, opendaylight
] 
# if vmware_nsxv3 is selected, enable_openvswitch
MUST be set to "no" (default is yes) 
#neutron_plugin_agent: "openvswitch" 
# Valid options are [ internal, infoblox ] 
#neutron_ipam_driver: "internal" 
################### 
# OpenStack options 
################### 
# Use these options to set the various log levels
across all OpenStack projects 
# Valid options are [ True, False ] 
#openstack_logging_debug: "False" 
# Valid options are [ none, novnc, spice, rdp ] 
#nova_console: "novnc" 
# OpenStack services can be enabled or disabled
with these options 
enable_cinder: "yes" 
enable_cinder_backend_lvm: "yes" 
enable_collectd: "yes" 
enable_gnocchi: "yes" 
enable_grafana: "yes" 
enable_heat: "yes" 
enable_horizon: "yes" 
enable_horizon_magnum: "yes" 
enable_horizon_tacker: "yes" 
enable_horizon_zun: "yes" 
enable_influxdb: "yes" 
enable_kuryr: "yes" 
enable_magnum: "yes" 
enable_swift: "yes" 
enable_telegraf: "yes" 
enable_tacker: "yes" 
enable_zun: "yes" 
######################## 
# Glance - Image Options 
######################## 
glance_backend_ceph: "no" 
glance_backend_swift: "yes" 
glance_enable_rolling_upgrade: "no" 
################################ 
# Cinder - Block Storage Options 

################################ 
cinder_backup_driver: "swift" 
################################ 
# Swift - Object Storage Options 
################################ 
swift_devices_match_mode: "strict" 
swift_devices_name: "KOLLA_SWIFT_DATA"

IX. DEPLOYMENT SEQUENCE

Once the environment is ready, the deployment is 
straightforward. The very first time it is suggested to use the 
“pull” command before “deploy” to populate the local 
registry with the needed containers. In fact, the local registry 
is still empty. Pull will fail, pointing to the container still 
missing. The missing container could be easily added 
following the sequence: 

docker pull 
“this_openstack_component:rocky” 
docker image tag 
“this_openstack_component:rocky” 
11.22.33.55:5000/this_openstack_componen
t:rocky 
docker push 
11.22.33.55:5000/this_openstack_componen
t 

once the local repository is completed, the “pull” 
command becomes optional and deploy is possible using 
only three commands: bootstrap-servers, prechecks and 
deploy. 

sudo ./kolla-ansible -i multinode 
bootstrap-servers 
sudo ./kolla-ansible -i multinode 
prechecks 
(sudo ./kolla-ansible -i multinode pull) 
sudo ./kolla-ansible -i multinode deploy 

The result is shown in Figure 8. 

After the deployment, a few commands are needed for 
the very first set up of the manager, like the definition of 
allowed volume size, basic test container image, and 
environment definitions. 

./kolla-ansible -i multinode post-deploy 
source /etc/kolla/admin-openrc.sh 
./init-runonce 

At the end of the sequence, the deployment has been 
done and the server is ready and can be used.  

Figure 8. The Kolla-ansible deploy successfully result 
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Figure 9 shows the result of the deployment using the 
OpenStack standard dashboard (Horizon). 

X. RESULT

It is interesting to analyze the distribution of the 
container executed by Kolla-Ansible deploy action. That 
investigation is useful to understand which and how 
resources are consumed by the infrastructure itself and so 
how heavy could be the cost of the SDN-NFV in the radio 
node. The “docker ps” is a command that could be used per 
any board to collect the list of running containers (see Figure 
10). 

The controller is the most populated board. This is not a 
problem. The experiment goal was to understand the 
minimal set of hardware resources needed by the Server at 
the edge of the network, but the Compute board usage is the 
most critical, since the Radio Interface boards could be 
connected to the node as “radio devote” compute board (as 
described in [3]). For that reason, this study is not focusing 
to the Controller or Network board resources usage, but to 
the Compute board. Central Processor Unit (CPU), RAM 
and Disk usage in compute board have been measured. The 
CPU load is normally less than 1%, disk usage is around 
17GB (8% of available storage) and RAM usage is about 
770 megabyte (MB) of the available 32GB. A comparison 
with minimal hardware requested by OPNFV is interesting:  

TABLE II. COMPUTE BOARD MINIMAL HARDWARE REQUIREMENTS

Object Test Lab OPNFV 

CPU socket 1 2 
Disk (GB) 20 256 
RAM (GB) 0,7 16 

Managing and supervising containers is done using 
standard OpenStack Horizon and Grafana Dashboards.  

XI. CONCLUSION

Working directly with OpenStack components instead of 
using an SDN-NFV package distribution, like OPNFV, 
allowed us to have a better idea of the minimal hardware 
resources setup at the cost of the maintenance. It is not so 
simple to verify the compatibility between different 
OpenStack components versions and which 
patches/modifications might be needed. The availability and 
correctness of Opensource documentations, in our point of 
view, need to improve. Components cross-reference 
dependencies, patches and exception descriptions are not 
always easy to find and clear. Whenever available, most of 
the documentation referred to old Linux/OpenStack releases. 
It looks like different projects are moving forward totally 
independently from each other, with the result that document 
begins to be obsolete within 6 months and the interplay 
among different components needs plenty of documentation 
review and corrections. This impacted on the extended time 
needed to achieve a correct set up of the software 
environment in the experimental study, and that is surely not 
an optimal condition. If the cost of the maintenance is so 
relevant, then integrated SDN-NFV distributions have their 
own meaning from a product point of view. Yet, they are too 
expensive in terms of the minimal set of hardware resource 
requirement. However, components like ONAP, O-RAN or 
the latest delivery of Kubernetes well integrated with the 
NOS have a huge value. This results probably in enough 
reasons for considering SDN-NFV integrated distributions 
while searching for a more product-oriented solution. The 
Opensource community should try to have a minimal 
distribution package for the SDN-NFV integrated 
distribution, more careful to the value of the hardware 
resources availability. Indeed, this will be a key factor to use 
SDN-NFV very close to the End User. 
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