
Implementation and Deployment of a Server at the Edge Using OpenStack
Components

Carlo Vitucci

Technology Management
Ericsson AB

Stockholm, Sweden
e-mail: carlo.vitucci@ericsson.com

Tommaso Cucinotta, Riccardo Mancini, Luca Abeni
Real-Time System Laboratory (RETIS)

Scuola Superiore Sant’Anna
Pisa, Italy

e-mail: firstname.lastname@santannapisa.it

Abstract—As the 5th telecommunication Generation (5G)
deployments are spreading around via various mobile
operators, the capabilities behind 5G are becoming more and
more understandable. Infrastructure vendors, operators, and
end users now have a clear picture of the 5G potential and, for
that reason, the research and the development of 5G are surely
continuing. The one-to-one mapping between 5G and Software
Defined Network - Network Function Virtualization (SDN-
NFV) architecture is not in discussion, but the impact of
porting SDN-NFV into the Radio Access Network (RAN) is still
under investigation. Sometimes, the RAN requirements set
strong limitations even in the basic hardware and software
setup. For example, the most complete and very well integrated
SDN-NFV infrastructure distributions require specific
hardware capabilities in terms of available nodes, in contrast
with the RAN requirement to be economic, power consumption
limited and with limited overhead due to operating system and
middleware cost. For that reason, this study uses only a
minimal set of OpenStack components in order to evaluate
what is the minimal hardware capability needed to set up a
basic, but fully working environment for NFV, highlighting the
pros and cons of embracing a solution solely based on standard
OpenStack components.

Keywords-5G; RAN; SDN-NFV, edge computing; server at
the edge; Service deployment; OpenStack, E2E deployment.

I. INTRODUCTION

2019 is the year in which 5G started to be a practical and
viable commercial solution available to mobile operators [1].
The importance of 5G architecture is now widely understood
and shared: the new technology has the potential to drive
economic growth. Its possibilities are so broad that we
probably cannot even imagine what and how many new
services will be possible. Today, all operators see 5G as the
enabler for full connectivity between people, for the creation
of the Internet of Things (IoT) and as a startup for the so-
called Industry 4.0. However, although this is already very
stimulating and large enough to justify the investment in the
new architecture and infrastructure, 5G is beyond all of that.
Smart cities, Industrial IoT, augmented reality, autonomous
transport, digital health, are just some of the countless
commercial opportunities that could be possible when 5G
will be fully deployed. To allow such an enormous
commercial opportunity to become real, it is necessary to be
able to count on a very well-defined ecosystem, where a new

approach to the network is needed, including (RAN), to
address the wide distribution of functions, applications, and
data. The distribution of services requires an End-to-End
architecture (E2E) where, thanks to a high-level
programmability and “software-ability” of the architecture, it
will be possible to offer new advanced services to consumers
by dedicating portions of the network. In this mode, it will be
possible to guarantee precise levels of service quality and to
respond to the increasingly demanding application needs of a
wide variety of sectors (Figure 1).

SDN-NFV is the most suitable system architecture to
support the necessary 5G ecosystem [3]. To make it
successful, however, the solution must rely on an NFV
infrastructure (NFVI) optimized to support the rapid
implementation of new generation services with low latency
and a varied and distributed group of terminals and devices.
As mentioned in our previous work [4], the infrastructure
shall be designed to remove inefficiencies in the modern
cloud due to a distance between the design of high-level
cloud management/orchestration and low-level
kernel/hypervisor mechanisms. The two worlds should talk
to each other, providing richer abstractions to describe the
low-level mechanisms and to automatically map higher-level
descriptions and abstractions to configuration and
performance tuning options available within operating
systems and kernels (both host and guest), as well as
hypervisors.

Figure 1. 5G Standards and Commercialization Time Line [2]

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

The rest of this paper is organized as follows. Section II
introduces the Network Operating System definition and
explains the decision to use OpenStack components. Section
III describes the hardware environment used in the
implementation phase. Section IV addresses the software
environment setup. Section V goes into finer details for
OpenStack components selection. Section VI and Section
VII emphases the set of for network and storage respectively,
while Section VIII lines out the deployment configuration
actions needed. Eventually, Section IX shows the
deployment sequence. Section X points to the hardware
minimal capability as those used by the experiment and
Section XI discusses some conclusions.

II. NETWORK OS

The Network Operating System (NOS) is, by definition,
the horizontal server network resources controller in a
distributed system. It is responsible to provide a virtualized
(programmable) environment and the connected control part.
Describing the structure of the SDN-NFV architecture is not
one of the purposes of this paper, but related references are
easily available [5][6]. In the SDN-NFV architecture, the
NOS is spread between NFVI and Virtual Infrastructure
Manager (VIM), as graphically shown in Figure 2.

“De facto”, commercial solutions use OpenStack to
deploy virtualized environments. OpenStack is an “always
evolving” project built over several components. These can
easily be added or removed from the configuration of a
deployment, optionally plugging other open-source
components/agents, like OpenDayLight, NetConf,
OpenFlow and others [7]. For any next-generation mobile
system, a mandatory requirement is to be a fully integrated
ecosystem that, independently of specific vendors, can be
orchestrated by a (logically) centralized controller. Assuming
for the RAN the server configuration described in [3], in the
following we describe an OpenStack deployment over a few
different boards constituting a simple edge-computing test-
bed.

III. HARDWARE ENVIRONMENT SETUP

Hardware environment set up has been done considering
some main rules:

1. It shall be, as much as possible, based on
commercial hardware and have limited cost;

2. It shall consist of a basic set of hardware
components and boards;

3. It shall be suitable for housing a NOS fully
based on OpenStack components;

The first rule has been set considering the capillary,
widely distributed, explosion of computer deployment close
to the end user, into the edge of the network [8][9]:
minimizing the cost of the deployment looks like a strong
requirement for the success of the 5G implementation.

The second rule has been set to overcome the limits the
most popular OpenStack distributions have. For example,
Open Platform for NFV (OPNFV), a complete solution for
development and evolution of NFV components across
various open-source ecosystems, requires a significant
number of controller and specific hardware characteristics
for the system development board [10]. OPNFV is surely a
complete and powerful solution, but, in this work, we are
interested in understanding the bare minimum set of
hardware characteristics necessary for implementing a NOS
based on open software.

The third rule is a practical decision (software
availability) and it is not limiting the result achieved in the
lab. With the only exception of the radio interface board, for
which it is possible to use 5G-ready existing radio product
solutions, the server at the edge has been built (see Figure 3)
as one compute node (CP), one networking node (NET), one
controller node (CTRL) and an Ethernet switch (SW). The
development & deployment environment is represented by
another board, the developer node, that will act also as
containers repository site (DB).

Figure 2. Graphical location of the NOS: network resources control
and allocation location in the SDN-NFV architecture are spread

between NFVI and VIM Figure 3. Hardware Environment Set up

G
IG

AB
YT

E
 +

 C
PU

 +
 3

2G
B

RA
M

 +
 2

40
 S

SD

CTRL CP NET DB SW

G
IG

AB
YT

E
+

CP
U

+
32

G
B

RA
M

 +
 2

40
 S

SD
 +

 I7
10

G
IG

AB
YT

E
+

CP
U

+
32

G
B

RA
M

 +
 2

40
 S

SD
 +

 I7
10

G
IG

AB
YT

E
+

CP
U

+
32

G
B

RA
M

 +
 2

40
 S

SD

ET
HE

RN
ET

 S
W

IT
CH

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

TABLE I. HARDWARE COMPONENTS FOR THE NODE

Object Vendor & Type

Motherboard GIGABYTE H310M-A
CPU Intel Core i3 8100
Disk WD Green3D Nand 240 GB
RAM DDR4 Corsair Vengeance 32 GB
Eth. daughterboard Intel X710-DA2
Power SFX Power 2
Router Netgear ProFase GS108

The hardware characteristics of the nodes are
summarized in Table I.

IV. SOFTWARE ENVIRONMENT SETUP

The software environment set up has been done
considering only open-source components imposing minimal
requirements on the needed underlying hardware. The
software shall be able to run into the minimal set of boards
used for the server at the edge concept and it shall be fully
based on open-source packaging. For the servers at the edge,
we chose to use a Linux operating system, Ubuntu [11]
distribution. The Deployment Board uses a Desktop version
while the other boards use a Server distribution (see Figure
4).

The latest 18.04.2 Ubuntu Long Term Support (LTS) is
used. Kernel version is 4.15 for server and 4.18 for Desktop.
During the test phase, the node has been regularly upgraded
with the Ubuntu standard updates using the apt package
manager [12]. At the time when this paper has been written,
the latest working update was:

DB: Linux 4.18.0-24-generic #25~18.04.1-Ubuntu SMP

OTHERS: Linux 4.15.0-28-generic #64-Ubuntu SMP

V. INFRASTRUCTURE SETUP

The most complete and up-to-date among available open-
source distributions of OpenStack for the infrastructure is
probably OPNFV [13], an SDN-NFV distribution fully
integrated with the latest technologies, for example, Open
Network Automation Platform (ONAP) [14] and Open RAN
(O-RAN) [15]. However, the OPNFV hardware
requirements are not suitable for an edge-computing proof of
concept (PoC), as it requires a minimum of 2 controller
nodes, 3 compute nodes, and a minimum of 64 gigabyte

(GB) Random-Access Memory (RAM) mounted. For that
reason, the PoC building of the server at the edge has been
fully based on self-building OpenStack components and we
started from the suggested configuration for containers
handling [16].

The OpenStack components List is (Figure 5):
Basic Infrastructure components (mandatory)

 Nova, to provide compute instances;
 Glance, to provide an image service;
 Keystone, to provide Application Program

Interface (API) client authentication;
Extended Infrastructure components (mandatory)

 Neutron, to provide network connectivity;
 Swift, to provide an objects store service;
 Cinder, to provide block storage and volume

service;
Extended infrastructure components (optional)

 Kuryr, network plugin to provide
networking services to Docker containers;

Optional enhancements
 Horizon, Dashboard to provide a web-based

user interface;
 Grafana, to provide a metrics dashboard;
 Cyborg, to support possibly available

accelerations: Graphics Processing Unit
(GPU), Data Plane Development Kit
(DPDK), etc...

Consumption services
 Tacker, to provide generic VNF Manager

(VNFM) and NFV Orchestrator (NFVO);
 Kolla-Ansible, to deploy OpenStack

components in Docker containers using
Ansible;

 Zun, to provide API for launching and
managing containers;

 Magnum, to provide container orchestration
services;

 Heat, to provide template-based
orchestration.

Figure 4. Hardware Environment Set up

U
B

U
N

TU
 S

E
R

V
E

R
 1

8.
04

.2
 –

Li
nu

x
K

er
ne

l 4
.1

5.
0-

45

CTRL CP NET DB SW

U
B

U
N

TU
 S

E
R

V
E

R
 1

8.
04

.2
 –

Li
nu

x
ke

rn
el

 4
.1

5.
0-

45

U
B

U
N

TU
 S

E
R

E
V

R
 1

8.
04

.2
 –

Li
nu

x
ke

rn
el

 4
.1

5.
0-

45

U
B

U
N

T
U

 D
E

S
K

TO
P

 1
8.

04
.2

 –
Li

nu
x

K
er

ne
l 4

.1
8.

0-
15

E
TH

E
R

N
E

T
S

W
IT

C
H

Figure 5. Selected OpenStack Package

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

Kolla-Ansible [17] has been conveniently used to ease
the deployment of the various OpenStack components. It is
worth to mention here that the selected set of OpenStack
components do not constitute necessarily an optimal
selection, as an evaluation or comparison of the possible
optional components was not in the goal of the study
described in this paper.

Kolla-Ansible comes with a minimal set of software
requirements and dependencies on other software
components. The list of install dependencies is available in
[18].

During the set-up and configuration phase, various issues
have been tackled and the following workarounds applied:

- We had to use the development version of Kolla-
Ansible because the released version seemed to have issues
in the container deployment phase (specifically, raising the
MariaDB container didn’t work).

- The Internet Protocol (IP) check for services was
failing due to the lack of configured passwords. This was
fixed by adding password roles in the /etc/sudoers file.

- We needed to install docker-ce instead of docker
12.1.0*. Note that the deployment board is used as a local
Docker registry in our environment.

- Create a link -s -L to easy_install in /usr/local/bin/
because it doesn’t exist in the installed distribution. You
need to compile and install python-3.7 locally.

- During the deployment phase, Koll-Ansible uses
frequently Docker commands. This might generate
permission denied alarm. In order to remove that issue, it is
enough to add own user to the Docker group.

sudo gpasswd -a $USER docker
newgrp docker
- the local Docker registry address needed to be

added to the list of allowed insecure registries in the Docker
daemon configuration file (/etc/docker/daemon.json).

The Docker daemon uses the HTTP_PROXY,
HTTPS_PROXY and NO_PROXY environment variables.
Those variables cannot be configured using the daemon.json
file. They can be set in an http-proxy.conf file in the
/etc/system/docker.service.d directory. The definition of the
NO_PROXY allows contacting the internal Docker register
without proxying.

VI. NETWORK SETUP

Kolla-Ansible needs two IP addresses per board: the
networking setup for OpenStack is one of the most
complicated actions to do, but Kolla-Ansible as a
deployment tool is simplifying a lot. We let Kolla-Ansible
set neutron for us, with the cost of the setup of two Virtual
Local-Area Network (VLAN) per board. Note that our server
and desktop distributions are not the same. The server is
using netplan while the desktop is still counting on
ifupdown. In order to manage the network using the same
setting, ifupdown has been installed in our Ubuntu Server
nodes. Once ifupdown has been loaded, the vlan
configuration could be done by editing the
/etc/network/interface file.

auto eno1
iface eno1 inet dhcp

auto eno1.1
iface eno1.1 inet static

address 11.22.33.44/23
netmask 255.255.254.0
gateway XX.YY.ZZ.1
vlan-raw-device eno1

auto eno1.2
iface eno1.2 inet static

address 11.22.33.55/23
netmask 255.255.254.0
gateway 11.22.33.1
vlan-raw-device eno1

auto lo
iface lo inet loopback

Eventually, the vlan kernel module is installed to keep
network setting permanent:

sudo su -c 'echo "8021q" >> /etc/modules

The networking is done to have demo-networking,
internal, public networking, external and VIP networking,
neutron keepalive control, as shown in Figure 6.

VII. STORAGE SETUP

Swift requires block devices to be available for storage.
To prepare a disk for using a swift storage device, a special
partition name and filesystem label needed to be added.
Moreover, before running Swift, we had to generate rings,
which are binary compressed files that at a high level let the
various Swift services know where data is in the cluster.
Cinder also needs a dedicated Logical Volume Management
(LVM) physical volume group. Note the partition for swift
and Cinder are strongly recommended (see Figure 7).

Figure 6. Server at the edge connectivity

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

The Swift and Cinder disk partitions are required where
the system storage is hosted; as described in the
infrastructure setup, this is the development board in this
study. Note that the size of the partitions is not optimized,
and the correct size should be defined or investigated in
advance for the product deployment case. Most likely, a real
production environment needs bigger disks/partitions.

VIII. KOLLA-ANSIBLE CONFIGURATION FILES

The most attractive benefit of using the Kolla-Ansible
tool to deploy OpenStack is that it provides a very simple
procedure to identify and characterize the overall system,
both in hardware and software point of view. OpenStack
package components set, network setup, hardware inventory
and storage definitions are defined and managed using only
two files: the so-called “globals.yml” and the
“multinode.yml” configuration file. Both of them are
available as a template in the Kolla-Ansible
distribution/installation file. To match the real hardware
setup and use the selected OpenStack components, the
customization of them is straightforward: remove or add a
comment to existing lines.

“multinode.yml” is the Ansible inventory file and
configures the connection parameters for the hosts (i.e.,
IP/hostname, username, and password) and its services need
to be installed in each of them. This is done by defining
which groups each host belongs to. The most important
groups are control, network, compute, monitoring and
storage. Kolla-Ansible will take care of installing the
required services to each host depending on the groups they
belong to. In order to match the hardware setup as described
before, the multimode configuration looks like below:

 [control]
11.22.33.11 ansible_user=user_name
ansible_password=user_passwd ansible_become=true
[network]
11.22.33.22 ansible_user=user_name
ansible_password=user_passwd ansible_become=true
[compute]
11.22.33.44 ansible_user=user_name
ansible_password=user_passwd ansible_become=true
[monitoring]
#select the control
11.22.33.44
[storage]
localhost ansible_connection=local
become=true

[deployment]
localhost ansible_connection=local
become=true

The “globals.yml” configuration file is used for network
configuration, OpenStack package definition, certification,
repository, and storage assignment. According to the
software setup defined previously, for the PoC of the server
at the edge, it looks like below:

You can use this file to override _any_ variable
throughout Kolla.
Additional options can be found in the
'kolla-ansible/ansible/group_vars/all.yml' file.
Default value of all the
commented parameters are shown here, To override
the default value uncomment
the parameter and change its value.
###############
Kolla options
###############
Valid options are [COPY_ONCE, COPY_ALWAYS]
#config_strategy: "COPY_ALWAYS"
Valid options are ['centos', 'debian',
'oraclelinux', 'rhel', 'ubuntu']
kolla_base_distro: "ubuntu"
Valid options are [binary, source]
kolla_install_type: "source"
Valid option is Docker repository tag
openstack_release: "rocky"
Location of configuration overrides
#node_custom_config: "/etc/kolla/config"
This should be a VIP, an unused IP on your
network that will float between
the hosts running keepalived for high-
availability. If you want to run an
All-In-One without haproxy and keepalived, you
can set enable_haproxy to no
in "OpenStack options" section, and set this
value to the IP of your
'network_interface' as set in the Networking
section below.
kolla_internal_vip_address: "XX.YY.ZZ.VIP"

Where Kolla_internal_vip_address could be, for
example, 11.22.33.99.

################
Docker options
################
Below is an example of a private repository with
authentication. Note the
Docker registry password can also be set in the
passwords.yml file.
docker_registry: "XX.YY.ZZ.DEV:5000"
#docker_namespace: "regionone"
#docker_registry_username: "sam"
#docker_registry_password:
"correcthorsebatterystaple"

In our case, docker_registry is hosted on the development
board, for example, 11.22.33.55.

##############################
Neutron - Networking Options
##############################
This interface is what all your api services will
be bound to by default.
Additionally, all vxlan/tunnel and storage
network traffic will go over this
interface by default. This interface must contain
an IPv4 address.
It is possible for hosts to have non-matching

Figure 7. The disk partition of the development board

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

names of interfaces - these can
be set in an inventory file per host or per group
or stored separately, see
#
http://docs.ansible.com/ansible/intro_inventory.htm
l
Yet another way to workaround the naming problem
is to create a bond for the
interface on all hosts and give the bond name
here. Similar strategy can be
followed for other types of interfaces.
network_interface: "eno1.1"
These can be adjusted for even more
customization. The default is the same as
the 'network_interface'. These interfaces must
contain an IPv4 address.
#kolla_external_vip_interface: "{{
network_interface }}"
api_interface: "{{ network_interface }}"
#storage_interface: "{{ network_interface }}"
#cluster_interface: "{{ network_interface }}"
#tunnel_interface: "{{ network_interface }}"
#dns_interface: "{{ network_interface }}"
This is the raw interface given to neutron as its
external network port. Even
though an IP address can exist on this interface,
it will be unusable in most
configurations. It is recommended this interface
not be configured with any IP
addresses for that reason.
neutron_external_interface: "eno1.2"
Valid options are [openvswitch, linuxbridge,
vmware_nsxv, vmware_nsxv3, vmware_dvs, opendaylight
]
if vmware_nsxv3 is selected, enable_openvswitch
MUST be set to "no" (default is yes)
#neutron_plugin_agent: "openvswitch"
Valid options are [internal, infoblox]
#neutron_ipam_driver: "internal"
###################
OpenStack options
###################
Use these options to set the various log levels
across all OpenStack projects
Valid options are [True, False]
#openstack_logging_debug: "False"
Valid options are [none, novnc, spice, rdp]
#nova_console: "novnc"
OpenStack services can be enabled or disabled
with these options
enable_cinder: "yes"
enable_cinder_backend_lvm: "yes"
enable_collectd: "yes"
enable_gnocchi: "yes"
enable_grafana: "yes"
enable_heat: "yes"
enable_horizon: "yes"
enable_horizon_magnum: "yes"
enable_horizon_tacker: "yes"
enable_horizon_zun: "yes"
enable_influxdb: "yes"
enable_kuryr: "yes"
enable_magnum: "yes"
enable_swift: "yes"
enable_telegraf: "yes"
enable_tacker: "yes"
enable_zun: "yes"
########################
Glance - Image Options
########################
glance_backend_ceph: "no"
glance_backend_swift: "yes"
glance_enable_rolling_upgrade: "no"
################################
Cinder - Block Storage Options

################################
cinder_backup_driver: "swift"
################################
Swift - Object Storage Options
################################
swift_devices_match_mode: "strict"
swift_devices_name: "KOLLA_SWIFT_DATA"

IX. DEPLOYMENT SEQUENCE

Once the environment is ready, the deployment is
straightforward. The very first time it is suggested to use the
“pull” command before “deploy” to populate the local
registry with the needed containers. In fact, the local registry
is still empty. Pull will fail, pointing to the container still
missing. The missing container could be easily added
following the sequence:

docker pull
“this_openstack_component:rocky”
docker image tag
“this_openstack_component:rocky”
11.22.33.55:5000/this_openstack_componen
t:rocky
docker push
11.22.33.55:5000/this_openstack_componen
t

once the local repository is completed, the “pull”
command becomes optional and deploy is possible using
only three commands: bootstrap-servers, prechecks and
deploy.

sudo ./kolla-ansible -i multinode
bootstrap-servers
sudo ./kolla-ansible -i multinode
prechecks
(sudo ./kolla-ansible -i multinode pull)
sudo ./kolla-ansible -i multinode deploy

The result is shown in Figure 8.

After the deployment, a few commands are needed for
the very first set up of the manager, like the definition of
allowed volume size, basic test container image, and
environment definitions.

./kolla-ansible -i multinode post-deploy
source /etc/kolla/admin-openrc.sh
./init-runonce

At the end of the sequence, the deployment has been
done and the server is ready and can be used.

Figure 8. The Kolla-ansible deploy successfully result

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

Figure 9 shows the result of the deployment using the
OpenStack standard dashboard (Horizon).

X. RESULT

It is interesting to analyze the distribution of the
container executed by Kolla-Ansible deploy action. That
investigation is useful to understand which and how
resources are consumed by the infrastructure itself and so
how heavy could be the cost of the SDN-NFV in the radio
node. The “docker ps” is a command that could be used per
any board to collect the list of running containers (see Figure
10).

The controller is the most populated board. This is not a
problem. The experiment goal was to understand the
minimal set of hardware resources needed by the Server at
the edge of the network, but the Compute board usage is the
most critical, since the Radio Interface boards could be
connected to the node as “radio devote” compute board (as
described in [3]). For that reason, this study is not focusing
to the Controller or Network board resources usage, but to
the Compute board. Central Processor Unit (CPU), RAM
and Disk usage in compute board have been measured. The
CPU load is normally less than 1%, disk usage is around
17GB (8% of available storage) and RAM usage is about
770 megabyte (MB) of the available 32GB. A comparison
with minimal hardware requested by OPNFV is interesting:

TABLE II. COMPUTE BOARD MINIMAL HARDWARE REQUIREMENTS

Object Test Lab OPNFV

CPU socket 1 2
Disk (GB) 20 256
RAM (GB) 0,7 16

Managing and supervising containers is done using
standard OpenStack Horizon and Grafana Dashboards.

XI. CONCLUSION

Working directly with OpenStack components instead of
using an SDN-NFV package distribution, like OPNFV,
allowed us to have a better idea of the minimal hardware
resources setup at the cost of the maintenance. It is not so
simple to verify the compatibility between different
OpenStack components versions and which
patches/modifications might be needed. The availability and
correctness of Opensource documentations, in our point of
view, need to improve. Components cross-reference
dependencies, patches and exception descriptions are not
always easy to find and clear. Whenever available, most of
the documentation referred to old Linux/OpenStack releases.
It looks like different projects are moving forward totally
independently from each other, with the result that document
begins to be obsolete within 6 months and the interplay
among different components needs plenty of documentation
review and corrections. This impacted on the extended time
needed to achieve a correct set up of the software
environment in the experimental study, and that is surely not
an optimal condition. If the cost of the maintenance is so
relevant, then integrated SDN-NFV distributions have their
own meaning from a product point of view. Yet, they are too
expensive in terms of the minimal set of hardware resource
requirement. However, components like ONAP, O-RAN or
the latest delivery of Kubernetes well integrated with the
NOS have a huge value. This results probably in enough
reasons for considering SDN-NFV integrated distributions
while searching for a more product-oriented solution. The
Opensource community should try to have a minimal
distribution package for the SDN-NFV integrated
distribution, more careful to the value of the hardware
resources availability. Indeed, this will be a key factor to use
SDN-NFV very close to the End User.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report,” Jun 2019, Rev. A, available
from https://www.ericsson.com/en/mobility-report/ reports/june-
2019 [retrieved: Sep, 2019].

[2] M. Branda, “Acceleration of the 5G NR global standards gains
industry momentum,” Sep, 2016, OnQ Blog, Qualcomm, available
from https://www.qualcomm.com/news/onq/2016/09/
27/acceleration-5g-nr-global-standard-gains-industry-momentum
[retrieved: Sep, 2019].

[3] C. Vitucci and A. Larsson, “Flexible 5G Edge Server for Multi
Industry Service Network,” International Journal on Advances in
Networks and Services, Vol. 10, no. 3-4, 2017, pp. 55.65, ISSN:
1942-2644.

[4] T. Cucinotta, L. Abeni, M. Marinoni and C. Vitucci, “The importance
of being OS-aware in Performance Aspects of Cloud Computing
Research,” in Proceedings of the 8th International Conference on

Figure 9. OpenStack Horizon Dashboard

Figure 10. OpenStack Components distribution

fluentd

kolla-toolbox

cron

chrony
memcached

mariadb

rabbitmq

keystone

swift

glance

cinder

nova

heat

horizon

magnum
zun

tacker

neutron

fluentd

kolla-toolbox
cron

chrony

iscsid

kuryr

openvswitch
nova

zun

neutron

keepalived

kolla-toolbox

cron

chrony
haproxy

openvswitch

nova

neutron

CONTROLLER COMPUTE NETWORK DEVELOPMENT

tgtd

kolla-toolbox
cron

chrony
iscsid

swift

cinder
registry

fluentd

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

Cloud Computing and Services Science (CLOSER 2018), Mar, 2018,
pp. 626-633

[5] 5GPPP Architecture Working Group, “View on 5G Architecture,”
version 2.0, December 2017, available from https://5g-ppp.eu/wp-
content/uploads/2018/01/5G-PPP-5G-Architecture-White-Paper-Jan-
2018-v2.0.pdf [retrieved: Nov, 2018].

[6] ETSI paper, “Network Functions Virtualisation (NFV); Use Cases,”
ETSI GS NFV 001, v.1.1.1, 2013, available from
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/001/01.01.01_60/gs
_nfv001v010101p.pdf [retrieved: Sep, 2019]

[7] OpenStack Foundation, OpenStack Community Software Reference
Page, available from https://www.openstack.org/software/ [retrieved:
Sep, 2019]

[8] R. Vilalta, A. Mayoral, R. Casellas, R. Martínez and R. Muñoz,
“Experimental demonstration of distributed multi-tenant cloud/fog
and heterogeneous SDN/NFV orchestration for 5G services,” 2016
European Conference on Networks and Communications (EuCNC),
Athens, 2016, pp. 52-56

[9] H. M. Abdel-Atty, R. S. Alhumaima, S. M. Abuelenin and E. A.
Anowr, “Performance Analysis of Fog-Based Radio Access
Networks,” in IEEE Access, vol. 7, 2019, pp. 106195-106203.

[10] OPNFV Licensed webpage, “OPNFV Fuel Installation instruction”,
chapter 2.4 Hardware Requirements, available from https://opnfv-
fuel.readthedocs.io/en/latest/release/installation/installation.instructio
n.html [retrieved; Jan, 2020]

[11] Canonical Ltd. Ubuntu, Ubuntu reference page, available from
https://ubuntu.com/ [retrieved: Sep, 2019]

[12] Ismail Baydan, “Apt ad Apt-Get Tutorial With Examples”, Poftut
online tutorial, latest update by Nov. 2019, available from
https://www.poftut.com/apt-and-apt-get-tutorial-with-examples/
[retrieved: Jan, 2020]

[13] OPNFV Project a Series of LF Projects, OPNFV reference page,
available from https://www.opnfv.org/ [retrieved: Jan, 2020]

[14] ONAP a Series of LF Projects, ONAP reference page, available from
https://www.onap.org/ [retrieved: Jan, 2020]

[15] O-RAN Alliance e.V., “Operator Defined Next Generation RAN
Architecture and Interfaces”, 2019, available from https://www.o-
ran.org/ [retrieved: Jan, 2020]

[16] OpenStack Foundation, “Container Optimized sample configuration”,
available from https://www.openstack.org/software/sample-
configs/#container-optimized [retrieved: Jan, 2020]

[17] OpenStack Foundation, “Deploys OpenStack in Containers using
Ansible”, available from
https://www.openstack.org/software/releases/stein/components/kolla-
ansible [retrieved: Jan, 2020]

[18] OpenStack Foundation, “Quick Start how to deploy OpenStack using
Kolla and Kolla-Ansible on bare metal servers or virtual machine”,
available from https://docs.openstack.org/kolla-
ansible/ocata/user/quickstart.html [retrieved: Jan, 2020]

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

