
Network Function Virtualization Experiments using SONATA Framework

Andra Țapu, Cosmin Conțu, Eugen Borcoci
University POLITEHNICA of Bucharest – UPB

Bucharest, Romania
Emails: andratapu@elcom.pub.ro, cosmin.contu@elcom.pub.ro, eugen.borcoci@elcom.pub.ro

Abstract — Network Function Virtualization (NFV)

represents a novel and strong technology to support the
development of flexible and customizable virtual networks in
multi-tenant and multi-domain environment. Open issues still
exist for architectural, interoperability, design and also related
to implementation and experimental aspects. This paper
presents two experiments in which a virtual firewall and a
graph of virtual routers have been integrated in two different
topologies and have been tested using SONATA framework.

Keywords — Network Function Virtualization; Software
Defined Networking; Cloud computing; SONATA; Containernet;
Docker.

I. INTRODUCTION

Network Functions Virtualization (NFV) is an emerging
powerful concept, as well as a technology. It aims to solve
some of the current telecommunication world limitations,
problems and challenges, like large number of proprietary
hardware appliances dedicated to specific services, lack of
flexibility and dynamicity, low interoperability, high capital
and operational expenditures: capital expenditure (CAPEX),
operational expenditure (OPEX), energy consumption and
installation space issues [1][2]. NFV decouples the
hardware appliances from the network functions that are
running over them, by using generic hardware (servers,
storage and switches) and running the network functions
over virtual machines installed on this generic equipment.

Based on virtualization, NFV allows faster development
and deployment (compared to traditional approach) of
services composed of network functions that can be
implemented in virtualized way. Different virtualized
network functions can be deployed or moved using the same
infrastructure, created, modified and deleted without
needing to physically visit a site to change the hardware
supporting those network functions.

The CAPEX and OPEX can be reduced, due to software
development (taking advantage of the growing IT industry).
Energy consumption reduction is also possible, if a clever
power management and migration plan for the virtual
machines (VM) is designed.

Software Defined Networking (SDN) [3] is a
complementary technology to NFV. The main concept of
separating the control plane from the data plane creates high
flexibility, programmability and network technology
abstraction. This approach offers powerful capabilities for
the management and control functions. While independent
of each other, SDN and NFV can cooperate in order to
construct powerful and flexible systems in cloud computing
and networking areas.

According to ETSI [4][5], the NFV architecture is
divided into four main functional blocks: Network Function
Virtualization Infrastructure (NFVI) which contains the
physical resources and their abstraction (virtual resources
constructed by a virtualization layer); Virtual Network
Functions (VNF) which defines different functions that can
be composed in services; Management and Orchestration
(MANO) which provides the orchestration and the lifecycle
management of the network functions and infrastructure;
Operations and Business Support Systems (OSS/BSS).

Numerous studies, realizations, projects, proofs of
concepts, demos are currently developed in NFV, SDN
areas [6][7]. There are still open issues which exist for such
technologies and these are related to architectural aspects, to
use cases, service creation and composition, manageability,
virtualization methods, performance obtained in dynamic
and mobile environment, scalability, implementation aspects
and selection of the software technologies applicable, multi-
domain features, security.

In terms of Development and Operations (DevOps), [8]
several problems are recognized to exist, like: SDN/NFV
infrastructures are not yet stable; Virtual Network Functions
(VNFs) are not sufficiently interoperable with orchestrators;
multi-vendor environments are not certified; the number of
services for which the SDN/NFV framework brings very
strong benefits in marketplaces is not yet so large;
SDN/NFV combination is difficult and does not offer easy
E2E multi-site support; frequently, there is a need for some
additional development; key features like network slicing
are not yet completely clarified; auto VNF scalability, SP
recursiveness, VNF intelligent placements, security, etc., are
other open research issues.

Therefore more extensive experiments with SDN/NFV
frameworks are necessary to further clarify different
development aspects.

 The EU H2020 project Service Programming and
Orchestration for Virtualized Software Networks
(SONATA) [9] is a relevant example and offers a
framework allowing DevOps oriented to SDN/NFV area.

The main purpose of this paper is to develop
experiments based on SONATA framework in order to
understand the capabilities of the framework, to test its
scalability for using it to develop and test some custom
VNFs.

The paper is organized as follows. Section II is an
overview of related work. Section III shortly presents the
architecture of SONATA framework. Section IV contains
the results of the experiments done with SONATA

64Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

framework and all the steps taken. Section V presents
conclusions and future work.

II. RELATED WORK

This section shortly presents a selective view on some
related work dedicated to service development and
orchestration in virtualized networks and its relation to
SONATA architecture, when applicable. It is split in brief
overview firstly on EU-funded collaborative projects,
opensource solutions and commercial solution provided.

UNIFY [10] (EU-funded Collaborative Projects)
architecture is similar to those of ETSI-MANO and Open
Networking Foundation (ONF)-SDN. Its objective is to
reduce operational costs by removing the need for costly
onsite hardware upgrades, taking advantage of SDN and
NFV. Across the infrastructure one can develop networking,
storage and computing components, through a service
abstraction model. The UNIFY global orchestrator consists
of algorithms used for optimization of elementary service
components across the infrastructure. The project exposes
the fact that all the resource orchestration related
functionalities existing in a distributed way in the MANO
SONATA framework, can be logically centralized, when
there is an abstraction combination of compute, network and
storage resources.

Even if the main idea of a recursive service platform is
specific both for UNIFY and SONATA, the implementation
is different. First, the recursiveness in UNIFY is obtained as
a repeatable orchestration layer for each infrastructure
design, while within SONATA is implemented as a repeated
deployment of a complete SONATA platform. Another
difference is related to the service specific functionality: in
UNIFY it is added by developer inside a Control Network
Function (NF), as a dedicated part of the Service Graph,
running in the infrastructure; in SONATA the service
functionality is obtained using plugins in the service
platform which means that it is mandatory not to be on the
same infrastructure where the Virtual Network Function
(VNF) is running.

OpenStack [11] is an open source project, mainly
written in Python, that provides an Infrastructure as-a-
Service solution through a variety of loosely coupled
services. Each service offers an API that facilitates the
integration. Due to its variety of components, the current
version of the OpenStack not only provides a pure Virtual
Infrastructure Manager (VIM) implementation, but spans
various parts of the ETSI-NFV architecture. OpenStack is
made up of many different moving parts. Because of its
open nature, additional components can be joined to
OpenStack in order to meet specific needs. OpenStack
Keystone [12], for instance, offers authentication and
authorization not only to the VIM part, but it can be
integrated to other services as well. OpenStack Ceilometer
[13] provides a pluggable monitoring infrastructure that
consolidates various monitoring information from various
sources and makes the available to OpenStack users and
other services. OpenStack Tacker [14] aims at the
management and orchestration functionality described by
ETSI-NFV.

The overall architecture relies on message buses to
interconnect the various OpenStack components. To this
end, OpenStack uses the Advanced Message Queuing
Protocol (AMQP) [15] as messaging technology and an
AMQP broker, namely either RabbitMQ [16] or Qpid [17],
sits between any two components and allows them to
communicate in a loosely coupled fashion. More precisely,
OpenStack components use Remote Procedure Calls
(RPCs) to communicate to one another. The OpenStack
architecture has been proven to be scalable and flexible.
Therefore, it could act as a blueprint for the SONATA
architecture.

From SONATA’s perspective, OpenStack is used as
being supportive and complementary. For the SONATA
developers there is the need to have access to a running
OpenStack installation to use the capabilities of a VIM for
running services from the Service Platform.

Another option for service developers when it comes to
SONATA is the SONATA’s emulation platform to locally
prototype and test complete network service chains in
realistic end-to-end scenarios. The emulator of SONATA
supports OpenStack-like API endpoints to allow carrier-
grade MANO stacks (SONATA, Open Source MANO) to
control the emulated VIMs.

To raise their NFV holding, commercial vendors have
started to market solutions for the orchestration layer. Even
if they created their own NFV context, the first generation
of NFV Orchestrator (NFVO) is based off ETSI MANO
specifications. But there are also several orchestration
solutions developed by established network vendors to
further expand a larger NFV ecosystem [18].

From SONATA’s perspective, the NFV orchestration
concept meets the commercial solutions from the following
points: to the complete VNF and network service lifecycles,
including onboarding, test and validation, scaling, assurance
and maintenance. Vendor marketing material and white
papers present their upcoming products as holistic solutions
for both service and network orchestration, compatible with
current ETSI MANO specifications.

These orchestration solutions are commonly part of a
fully integrated NFV management platform, including
NFVO, VNFM, NFVI and extended services such as
enhanced monitoring and analytics. For example, IBM’s
SmartCloud Orchestrator can be integrated with its
counterpart solutions, SmartCloud Monitoring and IBM
Netcool Network Management System, providing an end-to-
end offering.

III. SONATA FRAMEWORK

In order to make this paper self-contained, this section
very shortly presents the SONATA framework architecture
[19] along with its objectives, use cases and features.

SONATA main goal is to develop a NFV framework
that provides to third party developers a programming
model, a suite of tool for virtualized services integrated with
an orchestration system. SONATA allows to achieve a
reduced time-to-market of networked services, to optimize
and reduce the costs of network services (NS) deployment.

65Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 1. SONATA Framework [19].

The general architecture of SONATA framework, as it
can be seen in Figure 1, contains the following components:
Software Development Kit (SDK), the Service Platform
(SP) and different catalogues in which one can find different
system artefacts.

The SDK helps the third-party developers to create
complex services composed of multiple VNFs, with a set of
software tools and also supports service providers to deploy
and manage their created NSs on multiple SONATA SPs.

The Service Platform (SP) is responsible for
management and control of network functions and services.
It is a modular and customizable environment in which the
platform operators can create specific platforms appropriate
for their business model, by replacing components of
MANO plugins. This environment is also flexible from
service developers’ perspective which can customize their
own services through Function Specific Managers
(FSMs)/Service specific managers (SSMs). Service platform
is a component where the users are created and authorized,
NS and function descriptors are validated and stored.

The Catalogues consist of network function and services
information like code, executables, configuration data and
other requirements. These catalogues are divided into
private, service platform and public catalogues.

SONATA runs directly on the top of an infrastructure
which may belong to the service platform operator or to a
third-party operator. To assure the communication between
SP and infrastructure, the Virtual Infrastructure Managers
(VIMs) are used (example: OpenStack) whose role is to
abstract the infrastructure resources.

IV. EXPERIMENTS WITH SONATA

This section presents NFV experiments whose purpose is
to test the functionality of different VNFs in various
topologies using SONATA framework.

These topologies are represented as custom emulated
networks which use Docker [20] containers as compute
instances to run VNFs. Moreover, these experiments are
developed around SONATA framework and using some
specific tools as:

a) Virtual Machine (VM) : the experiments are running
on a VM of 80GB storage on a 64 -bit Ubuntu distribution
ready to use which has been downloaded from SONATA
repository [18]

b) Containernet [21]: it is a ramification of Mininet
network emulator which allows to create network topologies
using Docker containers.

c) Opensource utilities: to create and test the VNFs
needed in the proposed topologies, the following collection
of utilities has been used: “iptables”[22], “iproute”, “bridge-
utils”, “traceroute”, “inetutils-ping”.

d) SONATA emulator (son-emu): this is a part of
SONATA SDK and it is based on MeDICINE emulation
platform. MeDICINE is intented for service developers who
can create network service chains and then test them in
realistic emulated environments.

A. Virtual Firewall Experiment

a) Main objectives: create a virtual firewall which has
the purpose to block the traffic between two hosts.

b) Topology: the topology explained in Figure 2
contains data centers (DC) in terms of point of presence
(PoP) which can be defined as specific emulated hardware
by installing docker images which contain the VNFs. In this
experiment three DCs have been used as following:

 Two hosts (dc1 and dc2)

 Firewall (dc3)

66Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 2. vFw Experiment Topology

The subnet 10.0.0.0/8 has been used together with the
“bridge-utils” utility on dc3 to make the communication
between dc1 and dc2 possible. Utility “iptables” has been
used to create the “DROP” rule for the traffic which is
forwarded by dc3.

c) Tests and results: first step was to deploy the
topology and then instantiate and start the VNFs on each
DC as can be seen in Figure 3:

Figure 3. vFw Experiment compute list

Further, the “DROP” rule has been added for vnf3 and
the connectivity between the two hosts (vnf1 with 10.0.0.7
on interface vnf1-eth0 and vnf2 with 10.0.0.5 on interface
eth2) has been tested.

If the “DROP” rule is removed, it can be seen in Figure
4 that the two hosts can communicate with each other:

Figure 4. vFw Experiment ping without “DROP” rule

When “DROP” rule is added then the whole traffic
between the 2 hosts does not exist anymore. This rule is
exposed in Figure 5:

Figure 5. vFw Experiment ping with “DROP” rule

B. Virtual Routers Graph Experiment

a) Main objectives: create a small network of virtual
routers which will forward traffic through a network graph
between three hosts from three different subnets.

b) Topology (Figure 6): it consists of six DCs using
two different docker images, one for the virtual routers and
another for virtual hosts.

 Three hosts (dc1, dc2 and dc3)

 Three routers (dc4, dc5 and dc6)

Figure 6. vRouters Graph Experiment Topology

Routing tables (containing static routes) have been made
for the entire topology using “iproute” utility. The hosts are
assigned within the subnets 11.0.0.0/8, 12.0.0.0/8,
13.0.0.0/8 and the subnets between routers are 10.0.0.0/8
(dc4-dc5), 20.0.0.0/8 (dc5-dc6) and 30.0.0.0/8 (dc4-dc6).

c) Tests and results: after deploying the topology, the
VNFs were instantiated and started on each DC and the
links between them were also added as ilustrated in Figure
7:

Figure 7. vRouters Graph Experiment compute list

Another way to visualize, as in Figure 8, and monitor the
state of the topology and output of son-emu-cli is through
web-based emulator dashboard:

67Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 8. vRouter Graph Experiment emulator dashboard (partial view)

For dc4 vRouter there are two routes with different
generic metrics: the route via interface vnf4-eth5 has metric
20 and via vnf4-eth6 has metric 10. (same settings were
made respectively on dc6 since static routing is in place). A
shortest path route selection is supposed.

To verify the functionality of the experiment, a
traceroute between dc1 and dc2 hosts has been made and it
can be seen in Figure 9 that the traffic has been forwarded
through the route with the lowest metric (10):

Figure 9. vRouters Graph Experiment traceroute metric 10

If the interface vnf6-eth4 is down and the link between
dc4 and dc6 is stopped, it can be observed in Figure 10 that
traffic will be forwarded through the route with metric 20
(the only one now remained) when a traceroute between dc1
and dc2 is made again:

Figure 10. vRouters Graph Experiment traceroute metric 20

Although the above experiments are rather simple, they
illustrate a complete successful sequence of steps to define,
instantiate and then run VNF-based topologies on the
complex SONATA framework. Modification of the
operational parameters are also demonstrated.

V. CONCLUSIONS AND FUTURE WORK

This paper presented two NFV experiments using
SONATA SDK framework in which it was tested the
functionality of two VNFs: a virtual firewall which blocks
and filters the traffic between two endpoints and a graph of
virtual routers configured to be able to route traffic
according to metrics in a static routing configuration.

For the development of these experiments, SONATA
architecture has been chosen for multiple reasons:
complexity framework, appropriate platform to develop
VNFs and to test, explore and emulate virtual networks and
topologies.

Beyond the results of these two experiments presented in
section IV, there can be proved also the fact that SONATA
can:

- offer an open source simulation environment which
can be transformed as well into a production environment
for the developers who have the need of it

- be a flexible and dynamic test platform and a good
support in NFV area

- be able to reduce costs by removing the need of
dedicated hardware

As future work, several other experiments will be done
using more complex topologies for testing the scalability of
SONATA framework. Other area of experiments
development is intended to use the emulator within the
SONATA NFV eco system to create multiple chained VNFs
and descriptors grouped as “network service packages”
which will be deployed and uploaded on the SONATA NFV
platform and emulator.

Following this direction, after the completion of the
proposed future experiments and getting a deeper
knowledge of SONATA framework capabilities, the final
scope would be to develop and test new VNFs.

REFERENCES
[1] NFV White paper: “Network Functions Virtualisation, An

Introduction, Benefits, Enablers, Challenges & Call for
Action. Issue 1”. Available from:
https://portal.etsi.org/NFV/NFV_White_Paper.pdf [retrieved:
February, 2018].

[2] R. Mijumbi et al., "Network function virtualization: State-of-
the-art and research challenges", IEEE Commun. Surveys
Tuts., vol. 18, no. 1, pp. 236-262, 1st Quart. 2016.

[3] B. N. Astuto, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks”,
Communications Surveys and Tutorials, IEEE
Communications Society, (IEEE), 2014, 16 (3), pp. 1617 –
1634.

[4] NFV White paper: “Network Functions Virtualisation (NFV)
,Network Operator Perspectives on Industry Progress. Issue
1”.Available from:
https://portal.etsi.org/NFV/NFV_White_Paper2.pdf
[retrieved: February, 2018].

[5] ETSI GS NFV 002: “Network Functions Virtualisation
(NFV); Architectural Framework”. Available from:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.0
1_60/gs_NFV002v010201p.pdf [retrieved: February, 2018].

[6] S. Van Rossem et al, "Deploying elastic routing capability in
an sdn/nfv-enabled environment", 2015 IEEE Conference on

68Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Network Function Virtualization and Software Defined
Network, pp. 22-24, 2015.

[7] ETSI Plugtests Report: “1st ETSI NFV Plugtests, Madrid,
Spain, 23rd January–3rd February”. Available from:
https://portal.etsi.org/Portals/0/TBpages/CTI/Docs/1st_ETSI_
NFV_Plugtests_Report_v1.0.0.pdf [retrieved: February,
2018].

[8] J.Martrat, “SONATA approach towards DevOps in 5G
Networks”, SDN World Congress, 2017, Hague. Available
from: http://sonata-nfv.eu/content/sonata-approach-towards-
devops-5g-networks-0 [retrieved: February, 2018].

[9] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M.
Bredel, J. Lessmann, T. Soenen, W. Tavernier, S. Mendel-
Brin, and G. Xilouris, “Sonata: Service programming and
orchestration for virtualized software networks,” in 2017
IEEE International Conference on Communications
Workshops (ICC Workshops), May 2017, pp. 973–978

[10] Mario Kind et al. “Deliverable 2.2: Final Architecture”.
Available from: https://www.fp7-unify.eu/files/fp7-unify-eu-
docs/Results/Deliverables/UNIFY%20Deliverable%202.2%2
0Final%20Architecture.pdf [retrieved: February, 2018].

[11] The OpenStack Project. OpenStack: The Open Source Cloud
Operating System. Available from: http://www.openstack.org/
[retrieved: February, 2018].

[12] The OpenStack Project. Openstack keystone developer.
Available from:
http://www.openstack.org/developer/keystone [retrieved:
February, 2018].

[13] The OpenStack Project. Openstack ceilometer developer.
Available from:
http://docs.openstack.org/developer/ceilometer [retrieved:
February, 2018].

[14] The OpenStack Project. Openstack tacker: An open nfv
orchestrator on top of openstack. Available from:
https://wiki.openstack.org/wiki/Tacker [retrieved: February,
2018].

[15] OASIS. Advanced messaging queuing protocol. Available
from: https://www.amqp.org/ [retrieved: February, 2018].

[16] Pivotal Software. RabbitMq - Messaging. Available from:
https://www.rabbitmq.com [retrieved: February, 2018].

[17] Apache Software Foundation. Qpid.Available from:
https://qpid.apache.org/ [retrieved: February, 2018].

[18] Containernet and SONATA Emulator Demo. Available from:
https://github.com/sonata-nfv/son-tutorials/tree/master/upb-
containernet-emulator-summerschool-demo [retrieved:
February, 2018].

[19] SONATA. D2.2 Architecture Design.Available from:
http://sonata-nfv.eu/sites/default/files/sonata/public/content-
files/pages/SONATA_D2.2_Architecture_and_Design.pdf
[retrieved: February, 2018].

[20] Docker - Build, Ship, and Run Any App, Anywhere.
Available from: https://www.docker.com/ [retrieved:
February, 2018].

[21] Containernet. Available from: https://containernet.github.io/
[retrieved: February, 2018].

[22] The netfilter.org "iptables" project.Available from:
http://netfilter.org/projects/iptables/ [retrieved: February,
2018].

[23] M. Peuster, H. Karl, and S. v. Rossem: “MeDICINE: Rapid
Prototyping of Production-Ready Network Services in Multi-
PoP Environments”. IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN),
Palo Alto, CA, USA, pp. 148-153. doi: 10.1109/NFV-
SDN.2016.7919490. (2016)

69Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

