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Abstract—This paper presents the main elements proposed for 

an efficient implementation on Field Programmable Gate 

Array (FPGA) of our novel Variable-Regularized Recursive 

Least Squares (VR-RLS) algorithm. The followed performance 

axes are the overall processing speed and the amount of used 

hardware resources. We also focus on this adaptive algorithm 

performance in the scenario of acoustic echo cancellation 

(AEC), from the finite precision implementation degradation 

point of view. 
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I.  INTRODUCTION  

Adaptive algorithms are very popular in many signal 
processing fields. One of the most known examples is the 
acoustic signal scenario, especially for the echo cancellation 
purposes. There are many studies in the literature referring to 
this topic. Our research team proposed in the last years 
several modified versions for the classic adaptive algorithms, 
pointing out the importance of variable step size (VSS) 
approach for the Least Mean Squares (LMS) family [1]-[4], 
respectively the variable regularized (VR) for Recursive 
Least Squares (RLS) ones [5]-[7]. The proposed algorithms 
were proved to be more robust from performance point of 
view on echo path change, double talk situations and noisy 
environments. 

But, starting from these promising simulation results, 
obtained manly using Matlab, a question appeared: are these 
proposed algorithms stable enough when finite precision 
format is used in real implementation on digital signal 
processors (DSPs) or field programmable gate arrays 
(FPGAs)? We tried to answer to this question analyzing from 
theoretical point of view the quantization effect in [8][9]. 
More accurate results were presented in [10]-[13]. 

Starting from this previous experience, a new algorithm 
called Variable-Regularized Recursive Least Squares (VR-
RLS) was proposed in [14]. The purpose of this paper is to 
present the main ideas used in order to obtain an efficient 
FPGA implementation of this algorithm. The efficiency is 
checked on two axes, one referring to the overall clock 
frequency and the other to the amount of used resources. The 
implementation targets a XC5VFX70 chip from Xilinx 
Virtex5 family [15] found on the evaluation board ML507 
[16] from Xilinx. The synthesis results are obtained using 
Xilinx XST tool from Xilinx ISE 14.7. 

The rest of this paper is organized as follows. Section II 
describes the equations belonging to VR-RLS algorithm. 
Section III describes the main proposed solutions for the 
hardware implementation. Section IV addresses the obtained 
results when synthesizing the very high speed description 
language (VHDL) source code. Section V highlights the 
conclusions of this paper.   

II. VR-RLS ALGORITHM 

Out of the four possible scenarios, one of the most 
common situations for an adaptive algorithm is the system 
identification problem. Figure 1 depicts this configuration in 
an acoustic echo canceller (AEC) context.  

Considering the discrete time n, we can introduce the 
desired signal as: 
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=h  is the impulse response of 

length L of the unknown system (that is to be identified), 

and superscript T denotes transpose of a matrix (or vector). 

The input vector is formed with the most recent L samples 

of the zero-mean input signal x(n) 
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and v(n) is a zero-mean additive noise signal, which is 
independent of x(n). 

The goal for the configuration in Figure 1 is to estimate h 

with the adaptive filter 
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In order to do this, a solution would be to use the cost 
function J(n) corresponding to regularized least-squares 
criterion: 

 
 
 
 
 
 
 
 
 

 
Figure 1.  System model for acoustic echo cancellation. 

ĥ(n) h 

x(n) 

d(n) e(n) 

+ – 
+ 

ŷ(n) y(n) 

v(n) 

+ 

far-end 

near-end 

98Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)



2

2
0

ˆ ˆ( ) ( ) ( ) ( ) ( )

n

n i T

i

J n d i n i nλ δ
−

=

 = − + ∑ h x h              (3) 

where ( )0 1λ λ< <  is the exponential forgetting factor, δ is 

the regularization parameter, and 
2

⋅  is the 
2

ℓ norm. Based 

on (3) it is shown in [14] that the update of the regularized 
RLS algorithm can be expressed as: 
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is an estimate of the correlation matrix of ( )nx , 
L
I is the 

identity square matrix (of size L), and the a priori error 
signal is given by: 

).()1(ˆ)()(ˆ)()( nnndnyndne T
xh −−=−=       (6) 

Starting from this classic RLS algorithm described 
above, we introduced in [14] the VR-RLS form, which 

proposes a mean to find the regularization parameterδ . 

If we consider the convergence of the adaptive filter (of 
course, keeping in mind that a certain misalignment will 
exist always), this will allow us to introduce the 
approximation: 

2 2

ˆ
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y y
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where 2 2 ( )
u

E u nσ  =   is the variance of u(n) (u being 

replaced here by d, y, v, ŷ ), with [ ]E ⋅  denoting 

mathematical expectation. With these notations, and with 
the assumption that y(n) and v(n) are uncorrelated, we can 
write from (1) and (7) 
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For the power estimates a sliding window can be used as 
recursive computational method: 
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where 1 1/ ( ), with 1KL Kγ = − ≥ , and the initial values for 

the two power estimates from (9) are initialized with 0. 
From (1) we can define the Signal to Noise Ratio (SNR) 
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and from (9) we can rewrite an estimate of it as: 
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With this approach, following the demonstration from 
[14], the variable regularization parameter is obtained as: 
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where ( )nβ is the ratio from (12) and it represents the 

variable normalized regularization parameter. Introducing 
(12) in (4), we obtain the VR-RLS algorithm, with update: 

1
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III. PROPOSED ARCHITECTURE 

Let’s evaluate now the algorithm described in the 
previous section from implementation complexity point of 
view. We consider the fractional 2’s complement format, 
with variables on N bits, the bit N-1 indicating the sign. One 
can observe that complex operations, such as square root, 
high-order matrix inversion, fractional divider, and product 
with vector, are to be executed. 

A. Fractional divider 

There are several classic schemes for computing the 
fractional division. However, for fractional operations, it is 
very important to verify that the results are still in the 
accepted range of [-1, 1). This check has to be done also for 
division. If the dividend is bigger than the divisor, a quotient 
outside the range is obtained. For example, 0.8 divided by 
0.5 equals 1.6. So we need a pre-divider module in order to 
make sure that we will have always the dividend less than 
the divider. If this is not the case, a certain number of shifts 
to the right will be applied to the dividend, until the 
condition becomes true. This number of shifts is counted 
and compensated afterwards, on another part of the 
algorithm. We consider a maximum possible number of 
shifts lim, obtained from Matlab simulations. This approach 
provides constant latency for this module. 

On the other hand, if the dividend is less than the divisor, 
we may perform another action to improve the precision of 
the quotient. More precisely, usually we have the variables 
on a larger number of bits than needed. The most relevant 
example is the multiplication result: a number on Na bits 
multiplied with a number on Nb bits will produce a result on 
Na+Nb-1 bits. Since the multiplication appears periodically 
(with each new input sample), a truncation is needed after 
each such operation in order to keep the variables size 
constant. And since the product of two fractional numbers 
produces a result even smaller than the two operands, we 
can conclude that the truncation shall be carefully applied. 
In this context, considering that the dividend and the divider 
are obtain from such multiplication operations (for example) 
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Figure 2.   Pre-divider procedure and divider block scheme. 

even if the dividend is less than the divider, a truncation 
applied to both of them before the division may lead to un-
accurate results. So, we will check first if not both operands 
can be shifter a certain number of times to the left, and only 
after we truncate and then we divide. The complete idea is 
described in Figure 2, where a classic model of booth 
divider is also included. 

B. Square root unit 

The square root appears in (12), when computing the 
variable regularization parameter. In order to execute this 
operation, the approximation algorithm described in Figure 
3 is used. 

The algorithm is based on the property of the sequence 
cn = (cn–1 +a/cn–1)/2 which converges to a1/2. The simulations 
show that a number Niter = 12 iterations produces a very 
good approximation of the square-root function. When the 
result is ready before Niter, the algorithm ends and the result 
is buffered in order to produce the same processing delay. 
We can efficiently use the number Niter by choosing a 
proper value of the threshold 2–r (see Figure 3).  

 

 

Figure 3.  Square-root approximation algorithm. 

C. High-order matrix inversion 

The last two most complex operations are in (5), 
respectively in (13).  

 In order to better understand (5), we may consider the 
first cases n=0, 1, 2 and 3 for a simplified scenario with L=3. 

One will observe that the matrix ˆ ( )n
x

R is symmetric, and 

moreover always the upper-left sub-matrix (L-1)x(L-1) from 

matrix ˆ ( 1)n −
x

R is identical with the lower-right sub-matrix 

(L-1)x(L-1) from matrix ˆ ( )n
x

R . In other words, it is enough 

to compute only the first column of the new matrix ˆ ( )n
x

R  

using the first column of matrix ˆ ( 1)n −
x

R : 

     (1) (1)ˆ ˆ( ) ( 1) ( ) ( )n n n x nλ= − +
x x

R R x     (14) 

and then to obtain the complete matrix ˆ ( )n
x

R , as shown in 

Figure 4. 
The last and the most complex remaining operation is the 

high-order matrix inversion. Usually, L may be equal to 
1024. This means that we have to compute the inverse of a 
matrix 1024 x 1024. This operation, besides the amount of 
required resources for processing, is also very time 
consuming. This is the reason why others alternative 
solutions were studied till now. One of the most efficient 
methods is the dichotomous coordinate descent (DCD) 
algorithm [17][18]. Our research team also obtained very 
good results in terms of FPGA implementation efficiency, 
the most important ones being presented in [8] and [10]. For 
this reason, we will not enter into details here about this 
already exposed solution. 

IV. OBTAINED RESULTS 

The proposed solutions described in the previous section 
fulfill both the requirements for high system clock 
frequency, respectively for reduced amount of used hardware 
resources. In order to show this, we propose an 
implementation on XC5VFX70 chip from Virtex 5 family. 
This FPGA has an architecture based on Configurable Logic 
Blocks (CLBs). Each such CLB contains 2 slices, one slice 
being formed of four flip-flops and four 6-inputs look-up 
tables. 

ˆ ( 1)n −
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R ˆ ( )n
x

R

λ

2 ( )

( 1) ( )
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x n x n
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Figure 4.  Matrix ˆ ( )n
x

R update. 
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The proposed AEC implementation, without the DCD 
part, uses 4620 flip flops (from a total of 44800), 5551 LUTs 
(from a total of 44800), and 3 block RAMs. The maximum 
frequency reported after placing and routing the design is 
271.3 MHz. The results above were obtained when using a 
16 bit representation for the AEC inputs, while all the other 
variables (including the coefficients) being computed using 
31 bits. These variables are used at full width in summing 
units and only on the first 16 most significant bits on 
multipliers and dividers. This numerical format was selected 
based on the misalignment variation. The misalignment is 
defined as: 

( )( )10 22

ˆ( ) 20log – /m n n= h h h       (15) 

and we accepted a degradation of maximum 2 dB between 
the 2 curves obtained in infinite precision, respectively in 
finite precision formats. 

V. CONCLUSIONS 

We presented in this paper the most important theoretical 
aspects related to VR-RLS algorithm. Starting from the 
obtained equations, and considering a fractional 2’s 
complement numerical format, we identified the most 
complex operations. These were the divider, the square root, 
the matrix update and the matrix inversion. For each of them, 
an efficient solution from FPGA implementation point of 
view was proposed, except the matrix inversion, for which 
our research team proposed and presented previously an 
architecture based on the DCD algorithm. 

The elements described in this paper can represent a solid 
ground for the efficient FPGA implementation of any 
adaptive algorithm.  
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