
On the FPGA Implementation of the VR-RLS Algorithms

Cristian Anghel, Silviu Ciochina

Telecommunications Department
University Politehnica of Bucharest

Bucharest, Romania
e-mail: {canghel, silviu}@comm.pub.ro

Abstract—This paper presents the main elements proposed for

an efficient implementation on Field Programmable Gate

Array (FPGA) of our novel Variable-Regularized Recursive

Least Squares (VR-RLS) algorithm. The followed performance

axes are the overall processing speed and the amount of used

hardware resources. We also focus on this adaptive algorithm

performance in the scenario of acoustic echo cancellation

(AEC), from the finite precision implementation degradation

point of view.

Keywords- VR-RLS; FPGA; efficient implementation;

adaptive algorithms

I. INTRODUCTION

Adaptive algorithms are very popular in many signal
processing fields. One of the most known examples is the
acoustic signal scenario, especially for the echo cancellation
purposes. There are many studies in the literature referring to
this topic. Our research team proposed in the last years
several modified versions for the classic adaptive algorithms,
pointing out the importance of variable step size (VSS)
approach for the Least Mean Squares (LMS) family [1]-[4],
respectively the variable regularized (VR) for Recursive
Least Squares (RLS) ones [5]-[7]. The proposed algorithms
were proved to be more robust from performance point of
view on echo path change, double talk situations and noisy
environments.

But, starting from these promising simulation results,
obtained manly using Matlab, a question appeared: are these
proposed algorithms stable enough when finite precision
format is used in real implementation on digital signal
processors (DSPs) or field programmable gate arrays
(FPGAs)? We tried to answer to this question analyzing from
theoretical point of view the quantization effect in [8][9].
More accurate results were presented in [10]-[13].

Starting from this previous experience, a new algorithm
called Variable-Regularized Recursive Least Squares (VR-
RLS) was proposed in [14]. The purpose of this paper is to
present the main ideas used in order to obtain an efficient
FPGA implementation of this algorithm. The efficiency is
checked on two axes, one referring to the overall clock
frequency and the other to the amount of used resources. The
implementation targets a XC5VFX70 chip from Xilinx
Virtex5 family [15] found on the evaluation board ML507
[16] from Xilinx. The synthesis results are obtained using
Xilinx XST tool from Xilinx ISE 14.7.

The rest of this paper is organized as follows. Section II
describes the equations belonging to VR-RLS algorithm.
Section III describes the main proposed solutions for the
hardware implementation. Section IV addresses the obtained
results when synthesizing the very high speed description
language (VHDL) source code. Section V highlights the
conclusions of this paper.

II. VR-RLS ALGORITHM

Out of the four possible scenarios, one of the most
common situations for an adaptive algorithm is the system
identification problem. Figure 1 depicts this configuration in
an acoustic echo canceller (AEC) context.

Considering the discrete time n, we can introduce the
desired signal as:

() () () () (),Td n n v n y n v n= + = +h x (1)

where []0 1 1
...

T

L
h h h

−
=h is the impulse response of

length L of the unknown system (that is to be identified),

and superscript T denotes transpose of a matrix (or vector).

The input vector is formed with the most recent L samples

of the zero-mean input signal x(n)

[]() () (1) ... (1) ,
T

n x n x n x n L= − − +x (2)

and v(n) is a zero-mean additive noise signal, which is
independent of x(n).

The goal for the configuration in Figure 1 is to estimate h

with the adaptive filter
0 1 1
ˆ ˆ ˆˆ () () () ... () .

T

L
n h n h n h n

−

 =

h

In order to do this, a solution would be to use the cost
function J(n) corresponding to regularized least-squares
criterion:

Figure 1. System model for acoustic echo cancellation.

ĥ(n) h

x(n)

d(n) e(n)

+ –
+

ŷ(n) y(n)

v(n)

+

far-end

near-end

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

2

2
0

ˆ ˆ() () () () ()

n

n i T

i

J n d i n i nλ δ
−

=

 = − + ∑ h x h (3)

where ()0 1λ λ< < is the exponential forgetting factor, δ is

the regularization parameter, and
2

⋅ is the
2

ℓ norm. Based

on (3) it is shown in [14] that the update of the regularized
RLS algorithm can be expressed as:

1
ˆ ˆ ˆ() (1) () () (),

L
n n n n e nδ

−

 = − + + x
h h R I x (4)

where

0

ˆ ˆ() () () (1) () ()

n

n i T T

i

n i i n n nλ λ
−

=

= = − +∑x x
R x x R x x (5)

is an estimate of the correlation matrix of ()nx ,
L
I is the

identity square matrix (of size L), and the a priori error
signal is given by:

).()1(ˆ)()(ˆ)()(nnndnyndne T
xh −−=−= (6)

Starting from this classic RLS algorithm described
above, we introduced in [14] the VR-RLS form, which

proposes a mean to find the regularization parameterδ .

If we consider the convergence of the adaptive filter (of
course, keeping in mind that a certain misalignment will
exist always), this will allow us to introduce the
approximation:

2 2

ˆ
ˆ () () and ,

y y
y n y n σ σ≈ ≈ (7)

where 2 2 ()
u

E u nσ = is the variance of u(n) (u being

replaced here by d, y, v, ŷ), with []E ⋅ denoting

mathematical expectation. With these notations, and with
the assumption that y(n) and v(n) are uncorrelated, we can
write from (1) and (7)

2 2 2

2 2 2

ˆ

,d y v

v d y

σ σ σ

σ σ σ

= +

≈ −

 (8)

For the power estimates a sliding window can be used as
recursive computational method:

{ }2 2 2ˆ ˆ ˆ ˆ() (1) (1) , ,
u u u
n n u d yσ γσ γ σ= − + − ∈ (9)

where 1 1/ (), with 1KL Kγ = − ≥ , and the initial values for

the two power estimates from (9) are initialized with 0.
From (1) we can define the Signal to Noise Ratio (SNR)

2

2
SNR ,

y

v

σ

σ

= (10)

and from (9) we can rewrite an estimate of it as:

2

2 2

ˆ

ˆ ()
ˆSNR()

ˆ ˆ() ()

y

d y

n

n

n n

σ

σ σ

=

−

 (11)

With this approach, following the demonstration from
[14], the variable regularization parameter is obtained as:

2 2

ˆ1 1 SNR()

() () ,
ˆSNR()

x x

L n

n n

n

δ σ β σ

 + +
 = = (12)

where ()nβ is the ratio from (12) and it represents the

variable normalized regularization parameter. Introducing
(12) in (4), we obtain the VR-RLS algorithm, with update:

1
ˆ ˆ ˆ() (1) () () () ().

L
n n n n n e nδ

−

 = − + + x
h h R I x (13)

III. PROPOSED ARCHITECTURE

Let’s evaluate now the algorithm described in the
previous section from implementation complexity point of
view. We consider the fractional 2’s complement format,
with variables on N bits, the bit N-1 indicating the sign. One
can observe that complex operations, such as square root,
high-order matrix inversion, fractional divider, and product
with vector, are to be executed.

A. Fractional divider

There are several classic schemes for computing the
fractional division. However, for fractional operations, it is
very important to verify that the results are still in the
accepted range of [-1, 1). This check has to be done also for
division. If the dividend is bigger than the divisor, a quotient
outside the range is obtained. For example, 0.8 divided by
0.5 equals 1.6. So we need a pre-divider module in order to
make sure that we will have always the dividend less than
the divider. If this is not the case, a certain number of shifts
to the right will be applied to the dividend, until the
condition becomes true. This number of shifts is counted
and compensated afterwards, on another part of the
algorithm. We consider a maximum possible number of
shifts lim, obtained from Matlab simulations. This approach
provides constant latency for this module.

On the other hand, if the dividend is less than the divisor,
we may perform another action to improve the precision of
the quotient. More precisely, usually we have the variables
on a larger number of bits than needed. The most relevant
example is the multiplication result: a number on Na bits
multiplied with a number on Nb bits will produce a result on
Na+Nb-1 bits. Since the multiplication appears periodically
(with each new input sample), a truncation is needed after
each such operation in order to keep the variables size
constant. And since the product of two fractional numbers
produces a result even smaller than the two operands, we
can conclude that the truncation shall be carefully applied.
In this context, considering that the dividend and the divider
are obtain from such multiplication operations (for example)

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

VARa=”00...0" & INa & ‘0’

VARb = “00...0” & Inb

LINE = “00...1”

AUX = “00...0”

1 AUX

1 LINE

1 VARa

OUT = AUX OUT = AUX + ‘1’

YES

YES

YES

NO

NO

NO

INa INb DV_IN

OUTa/b DV_OUT

CLKsys

shifts=0, k=0

sign_a=a(N-1), sign_b=b(N-1)

if k < lim then

if |a| < |b| then

if |a| < 2
-p

and |b|<2
-p

then

|a|=|a|2
p
, |b|=|b|2

p

end if

else

|a|=|a|/2, shifts = shifts + 1

end if
k=k+1

else Go to the divider

end if

Pre-divider

Divider

AUX = AUX + ‘1'

VARa = VARa -

VARb

VARa>VARb

VARa>VARb

LINE(N-1) = ‘1’

a b

INa INb shifts

INa=a

INb=b

Figure 2. Pre-divider procedure and divider block scheme.

even if the dividend is less than the divider, a truncation
applied to both of them before the division may lead to un-
accurate results. So, we will check first if not both operands
can be shifter a certain number of times to the left, and only
after we truncate and then we divide. The complete idea is
described in Figure 2, where a classic model of booth
divider is also included.

B. Square root unit

The square root appears in (12), when computing the
variable regularization parameter. In order to execute this
operation, the approximation algorithm described in Figure
3 is used.

The algorithm is based on the property of the sequence
cn = (cn–1 +a/cn–1)/2 which converges to a1/2. The simulations
show that a number Niter = 12 iterations produces a very
good approximation of the square-root function. When the
result is ready before Niter, the algorithm ends and the result
is buffered in order to produce the same processing delay.
We can efficiently use the number Niter by choosing a
proper value of the threshold 2–r (see Figure 3).

Figure 3. Square-root approximation algorithm.

C. High-order matrix inversion

The last two most complex operations are in (5),
respectively in (13).

 In order to better understand (5), we may consider the
first cases n=0, 1, 2 and 3 for a simplified scenario with L=3.

One will observe that the matrix ˆ ()n
x

R is symmetric, and

moreover always the upper-left sub-matrix (L-1)x(L-1) from

matrix ˆ (1)n −
x

R is identical with the lower-right sub-matrix

(L-1)x(L-1) from matrix ˆ ()n
x

R . In other words, it is enough

to compute only the first column of the new matrix ˆ ()n
x

R

using the first column of matrix ˆ (1)n −
x

R :

 (1) (1)ˆ ˆ() (1) () ()n n n x nλ= − +
x x

R R x (14)

and then to obtain the complete matrix ˆ ()n
x

R , as shown in

Figure 4.
The last and the most complex remaining operation is the

high-order matrix inversion. Usually, L may be equal to
1024. This means that we have to compute the inverse of a
matrix 1024 x 1024. This operation, besides the amount of
required resources for processing, is also very time
consuming. This is the reason why others alternative
solutions were studied till now. One of the most efficient
methods is the dichotomous coordinate descent (DCD)
algorithm [17][18]. Our research team also obtained very
good results in terms of FPGA implementation efficiency,
the most important ones being presented in [8] and [10]. For
this reason, we will not enter into details here about this
already exposed solution.

IV. OBTAINED RESULTS

The proposed solutions described in the previous section
fulfill both the requirements for high system clock
frequency, respectively for reduced amount of used hardware
resources. In order to show this, we propose an
implementation on XC5VFX70 chip from Virtex 5 family.
This FPGA has an architecture based on Configurable Logic
Blocks (CLBs). Each such CLB contains 2 slices, one slice
being formed of four flip-flops and four 6-inputs look-up
tables.

ˆ (1)n −
x

R ˆ ()n
x

R

λ

2 ()

(1) ()

...

(1) ()

x n

x n x n

n n L x n

−

− +

Figure 4. Matrix ˆ ()n
x

R update.

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

The proposed AEC implementation, without the DCD
part, uses 4620 flip flops (from a total of 44800), 5551 LUTs
(from a total of 44800), and 3 block RAMs. The maximum
frequency reported after placing and routing the design is
271.3 MHz. The results above were obtained when using a
16 bit representation for the AEC inputs, while all the other
variables (including the coefficients) being computed using
31 bits. These variables are used at full width in summing
units and only on the first 16 most significant bits on
multipliers and dividers. This numerical format was selected
based on the misalignment variation. The misalignment is
defined as:

()()10 22

ˆ() 20log – /m n n= h h h (15)

and we accepted a degradation of maximum 2 dB between
the 2 curves obtained in infinite precision, respectively in
finite precision formats.

V. CONCLUSIONS

We presented in this paper the most important theoretical
aspects related to VR-RLS algorithm. Starting from the
obtained equations, and considering a fractional 2’s
complement numerical format, we identified the most
complex operations. These were the divider, the square root,
the matrix update and the matrix inversion. For each of them,
an efficient solution from FPGA implementation point of
view was proposed, except the matrix inversion, for which
our research team proposed and presented previously an
architecture based on the DCD algorithm.

The elements described in this paper can represent a solid
ground for the efficient FPGA implementation of any
adaptive algorithm.

ACKNOWLEDGMENT

The work has been funded by the Internal Research
Grants Program offered by University Politehnica of
Bucharest called “Excellency Research Grants UPB-
EXCELENTA-2015”.

REFERENCES

[1] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine

projection algorithm designed for acoustic echo cancellation,” IEEE
Trans. Audio, Speech, Language Processing, vol. 16, pp. 1466-1478,
Nov. 2008.

[2] C. Paleologu, S. Ciochina, and J. Benesty, “Variable step-size NLMS
algorithm for under-modeling acoustic echo cancellation,” IEEE
Signal Processing Lett., vol. 15, pp. 5-8, 2008.

[3] S. Ciochina, C. Paleologu, and J. Benesty, “An optimized NLMS
algorithm for system identification,” Signal Processing, vol. 118, pp.
115-121, Jan. 2016.

[4] C. Paleologu, S. Ciochina, J. Benesty, and S. L. Grant, “An overview
on optimized NLMS algorithms for acoustic echo
cancellation,” EURASIP Journal Advances Signal Processing, 2015,
2015:97 (19 pages).

[5] J. Benesty, C. Paleologu, and S. Ciochina, “On regularization in
adaptive filtering,” IEEE Trans. Audio, Speech, Language
Processing, vol. 19, pp. 1734-1742, Aug. 2011.

[6] J. Benesty, C. Paleologu, and S. Ciochina, “Regularization of the RLS
algorithm,” IEICE Trans. Fundamentals, vol. E94-A, pp. 1628-1629,
Aug. 2011.

[7] C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable
forgetting factor recursive least-squares algorithm for system
identification,” IEEE Signal Processing Lett., vol. 15, pp. 597-600,
2008.

[8] C. Stanciu, C. Paleologu, J. Benesty, and S. Ciochina, “On a robust
dual-path DCD-RLS algorithm for stereophonic acoustic echo
cancellation,” Trans. Electronics and Communications, vol. 58, pp. 9-
14, Dec. 2013.

[9] C. Paleologu, S. Ciochina, and A. A. Enescu, “A family of recursive
least-squares adaptive algorithms suitable for fixed-point
implementation,” International Journal Advances in
Telecommunications, vol. 2, no. 2&3, pp. 88-97, 2009.

[10] C. Stanciu, C. Anghel, and L. Stanciu, “ Efficient FPGA
Implementation of the DCD-RLS Algorithm for Stereo Acoustic
Echo Cancellation,” 2015 International Symposium on Signals,
Circuits and Systems (ISSCS), Iasi, 2015, pp. 1-4.
doi: 10.1109/ISSCS.2015.7204008

[11] C. Stanciu, C. Anghel, C. Paleologu, J. Benesty, F. Albu, and S.
Ciochina, “FPGA implementation of an efficient proportionate affine
projection algorithm for echo cancellation,” in Proc. European Signal
Processing Conference (EUSIPCO), 2011, pp. 1284-1288, Barcelona,
Spain.

[12] C. Anghel, C. Paleologu, J. Benesty, and S. Ciochină, “FPGA
Implementation of a Variable Step-Size Affine Projection Algorithm
for Acoustic Echo Cancellation”, in Proc. European Signal
Processing Conference (EUSIPCO), 2010, pp 532-536, Aalborg,
Denmark

[13] C. Anghel, C. Paleologu, J. Benesty, and S. Ciochină, “FPGA
Implementation of an Acoustic Echo Canceller Using a VSS-NLMS
Algorithm”, in Proc. IEEE International Symposium on Signals,
Circuits and Systems (ISSCS), 2009, pp. 369-372, Iasi, Romania.

[14] C. Stanciu, C. Iliescu, C. Paleologu, J. Benesty, C. Anghel, “Robust
Variable-Regularized RLS Algorithms”, in Proc IEEE HSCMA,
March 2017, San Francisco, USA, pp. 171-175

[15] “Xilinx Virtex 5 family user guide,” www.xilinx.com, retrieved:
February, 2017

[16] “Xilinx ML507 evaluation platform user guide,” www.xilinx.com
retrieved: March, 2017

[17] J. Liu and Y. Zakharov, “Dynamically regularized RLS-DCD
algorithm and its FPGA implementation”, Asilomar Conference on
Signals, Systems and Computers, 2008, pp. 1876-1880

[18] Z. Quan, Y. Zakharov, J. Liu, “DCD-based simplified matrix
inversion for MIMO-OFDM”, IEEE International Symposium on
Circuits and Systems (ISCAS), 2011, pp. 2389-2392

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

