
Resolving Bufferbloat in TCP Communication over IEEE 802.11n WLAN

by Reducing MAC Retransmission Limit at Low Data Rate

Masataka Nomoto, Celimuge Wu, Satoshi Ohzahata, and Toshihiko Kato

University of Electro-Communications

Tokyo, Japan

e-mail: noch@net.is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp, kato@is.uec.ac.jp

Abstract— IEEE 802.11n wireless local area networks

(LANs) provide the data transmission rate of hundreds of Mbps.

At the same time, they support multiple data rates and the

dynamic rate switching functionality in order to cope with

various radio conditions. However, a low data rate may cause a

long delay in transmission control protocol (TCP)

communications, which is called a bufferbloat problem. In this

paper, we infer that one possible reason for the delay is the

powerful retransmission capability supported by 802.11n, and

propose a method which weakens this capability intentionally

for TCP communications when the data rate is low. This paper

evaluates the performance of our proposal, the native 802.11n,

and CoDel, which is an active queue management approach

coping with the bufferbloat problem. It shows that CoDel and

our proposal improve the delay performance and that CoDel

sometimes reduces the throughput under a high data rate

condition.

Keywords- Wireless LAN; IEEE 802.11n; TCP; Dymamic

Rate Switching; Bufferbloat Problem; Block Acknowledgment.

I. INTRODUCTION

Recently, wireless LANs (WLANs) conforming to the
IEEE 802.11n standard [1] are being used widely. This type
of WLANs can provide a data rate of hundreds of Mbps. In
order to realize high throughput, 802.11n has added new
physical and media access control (MAC) technologies to the
conventional IEEE 802.11. They include multiple-input and
multiple-output (MIMO), the channel bonding, the frame
aggregation, and the block acknowledgment (Block ACK).

On the other hand, IEEE 802.11n supports multiple data
rates and the dynamic rate switching to use the optimal data
rate between a terminal and an access point (AP). When a
terminal is located close to an AP and the radio condition is
good, the high data rate such as 300 Mbps can be used. But,
when a terminal moves to the location far from an AP and the
receiving radio signal strength becomes weak, the data rate
gets lower, for example down to 6.5 Mbps.

In our previous paper [2], we gave a detailed analysis of
the performance of TCP communication during which a
terminal changes the distance from an AP. As a result, when
the distance between the terminal and the AP is large (e.g., 10
m), the packet losses do not increase, but the round-trip time
(RTT) increases largely, up to several seconds. This long
delay is considered as a sort of bufferbloat problem, which is
discussed widely in the networking community [3]-[5]. In
order to solve the bufferbloat problem, the active queue
management is considered to be effective and an approach
named CoDel is proposed [6]. CoDel uses a packet-sojourn

time in a queue as a control parameter, and drops a packet in
the situation when packets stay too long in the queue.

Our previous paper [2] suggested a different approach
from the active queue management. We inferred that one of
the reasons for the large queuing delay is the powerful data
retransmission function in 802.11n MAC level, which uses the
frame aggregation and the Block ACK. So, we proposed that
it would be possible to resolve the bufferbloat problem by
intentionally weakening the capability of retransmission
realized by Block Ack frames, only when the data rate is low
in TCP communications. Specifically, we set the
retransmission limit to 2 when the data rate is smaller than 80
Mbps, and use 10, which is the default value, when larger than
80 Mbps. Our previous paper showed that this scheme
introduces MAC level frame losses and, as a result, reduces
the RTT resulting from the shrunk congestion window size.
However, this proposal is premature because it uses only two
values for the retransmission limit. As for the performance
evaluations, our previous work is also premature because it
provides only a limited number of measurements.

In this paper, we propose a revised algorithm for reducing
the delay in TCP communication over 802.11n WLAN. It
defines intermediate values of the retransmission limit
corresponding to the data rates between low and high ones, by
use of linear interpolation in the semilog relation of data rate
and retransmission limit. This paper also presents the detailed
performance evaluation of our proposal. In the evaluation, a
terminal is located in several positions with different distances
from an AP, and the performance is measured for the proposal,
CoDel, the native 802.11n, for TCP Reno and CUBIC TCP
[7].

The rest of this paper is organized as follows. Section II
explains the problem we focused on in this paper and the
possible solutions proposed so far. Section III describes our
proposed scheme for resolving bufferbloat problem for
802.11n WLAN, and Section IV gives the performance
evaluation. In the end, Section V concludes this paper.

II. BUFFERBLOAT PROBLEM AND RELATED WORK

A. Bufferbloat problem in 802.11n WLAN

Table I gives the data rates supported by the terminal and
the AP used in the experiment. In these data rates, an 802.11n
data sender performs retransmission of corrupted frames.
During this procedure, the data sender monitors the ratio of
retransmissions and selects the lower data rate if the
retransmission ratio becomes too large.

In this paper, we focus on the bufferbloat problem in the
upload data transfer from a terminal to an AP. Consider the

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

mailto:%7d@net.is.uec.ac.jp

situation depicted in Figure 1. A terminal located far from an
AP is sending data to the ftp server. The terminal uses a low
data rate, such as 6.5 Mbps and 13.5 Mbps. Our previous
experiment gave some results that the retransmission at MAC
level works well and there are few packet losses at the TCP
and IP level [2]. Consequently, the TCP congestion window
size grows up, and the data frames corresponding to this size
are transmitted contiguously. However, the data rate is low
and therefore the data frames are stored in the queue at the
MAC level. This brings a large delay in the file transfer. If
another application such as web access and voice over IP
(VoIP) starts in this situation, the new communication also
suffers from the large delay.

B. Related work

There are several approaches which can be applied to the
problem described above.

The first one is the introduction of IEEE 802.11e [8]. It
provides the priorities in the MAC level, i.e., Voice, Video,
Best Effort, and Background, by introducing separate queues
within a node and separate flows of data frames in a WLAN.
In order to introduce separate flows, it discriminates values of
arbitration interframe space and contention window
boundaries. As for the bufferbloat problem, however, it
cannot be always applied. If the second application in Figure
1 is TCP based, such as a web access, the ftp client and the
second application are categorized in the same priority in
802.11e. So, the second application will suffer from the delay
which the ftp generates.

The second approach is the active queue management. As
described above, CoDel uses packet-sojourn time in the queue.
Specifically, when any packet stays in the queue longer than a
specific duration, called target in CoDel, during a predefined
interval, called interval in CoDel, the last packet in the queue
is dropped. As for the value of target, 5 msec is used in [6].
For the interval, 100 msec is used as the beginning of the
procedure and, if a packet is dropped, the value is decreased
in inverse proportion to the square root of the number of drops
since the dropping state was entered. Some simulation results
are shown in [6] over WiFi links whose data rate changes
among 100Mbps, 50Mbps and 1Mbps, and tell that the per-

packet queue delay in CoDel is smaller than that in random
early discard (RED) [9] and Tail Drop.

The third approach is the adoption of TCP based on non-
loss based congestion control. As described above, the grown
congestion window size is the reason for queued data frames,
and no loss situation allows the window size to grow. So, the
introduction of non-loss based congestion control, such as
TCP Vegas [10], might be effective. With the current values
of congestion window size and RTT, TCP Vegas estimates the
buffer size in the bottleneck node. A TCP sender increases
the congestion window size when the bottleneck buffer size is
small and decreases when the buffer size is large.

In contrast with those approaches, our scheme uses the
retransmission limit adjustment. There are several studies
focusing on this topic [11]-[13]. However, all of them focus
on the relationship between the transmission delay and the
retransmission limit. On the other hand, our scheme aims at
causing a packet loss intentionally by changing the
retransmission limit.

III. PROPOSAL

The basic idea of our scheme is that a MAC data sender
tunes up the retransmission limit in response to the data rate
used for data frame transmission. The lower data rate, the
smaller retransmission limit. This adjustment is done only if
the sending data frame contains a TCP segment by checking
the protocol field in IP header. The followings give the points
of our scheme.

A. Focusing on Block Ack based retransmission

As for the reception confirmation, IEEE 802.11n adopts
an approach called High Throughput (HT)-immediate Block
Ack [1]. A sender aggregates multiple data frames into one
frame (aggregated MAC protocol data unit: A-MPDU) and
sends it out. A receiver checks the correctness of individual
received data frames, and returns a Block Ack frame. The
Block Ack frame is sent out immediately after the receiver
received the A-MPDU, and indicates individual data frames
are received successfully or not in the Block Ack Bitmap field.

If the Block Ack Bitmap field indicates loss of some data
frames, the sender side retransmits the lost frames (the Block
Ack based retransmission). On the other hand, in the case
when A-MPDU itself is corrupted or the returning Block Ack
frame is lost, the A-MPDU is retransmitted again (the timeout
based retransmission).

In general, the timeout based retransmission is controlled
by a WLAN hardware chip and the Block Ack based
retransmission is controlled by a WLAN device driver. They
are managed independently. In the case of the WLAN device
driver we use in this paper, the retransmission limit is 19 for
the timeout based, and 10 for the Block Ack based
retransmission.

Since our scheme is implemented in a WLAN device
driver, we focus on the Block Ack based retransmission. Our
scheme decreases the limit for the Block Ack based
retransmission when the data rate becomes low.

TABLE I. AVAILABLE DATA RATE IN 802.11N WLAN.

6.5 13.5 27.0 40.5 54 81

108 162 216 243 270 300

Unit: Mbps

ftp server

terminal Access
Point/HubIEEE 802.11n WLAN

Ethernet
link

ftp
client

TCP,
UDP
and
IP

802.11n
MAC

qu
eu

eWeb
access
or VoIP

low data
rate with
retrans-
mission

802.
11n
MAC G

ig
ab

it

E
th

er
ne

t

~ 10 meter

router

to the
Internet

Figure 1. Outline of bufferbloat problem in 802.11n WLAN upload traffic.

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

B. Determining retransmission limit for individual data

rate

The next point is what value is selected as the
retransmission limit for an individual data rate. As described
above, the maximum value of the Block Ack based
retransmission is 10. On the other hand, our experiment
described in [2] showed that 2 is appropriate as the
retransmission limit for the data rate 6.5 Mbps and 13.5 Mbps.
So, in this proposal, we focus on determining the in-between
retransmission limit values.

We have decided to define the Block Ack based
retransmission limit in the following way.

 For the data rate equal to and higher than 100 Mbps,
the limit is 10.

 For the data rate equal to and lower than 10 Mbps, the
limit is 2.

 As a first step, we introduce a linear relationship
between the limit and the data rate between 10 Mbps
and 100 Mbps over a semilog scale. This is depicted
as a dashed line in Figure 2.

 Based on this result, we have selected stepwise values
for the retransmission limit as shown by a solid line
in the figure.

That is, the Block Ack based retransmission limit is
10 if 𝑟𝑎𝑡𝑒 ≥ 100 Mbps,
8 if 50 Mbps ≤ 𝑟𝑎𝑡𝑒 < 100 Mbps,
5 if 25 Mbps ≤ 𝑟𝑎𝑡𝑒 < 50 Mbps, and
2 if 𝑟𝑎𝑡𝑒 < 25 Mbps.

It should be noted that this limit value selection is not based
on a specific theory. However, the results given in Section IV
show that our scheme works well using those limit values.

C. Using moving average for data rate

The last point is what data rate is to use for determining
the retransmission limit. The data rate for a specific data
frame is determined when the device driver handles the
corresponding data transfer request. The data rate will be
changed according to the physical layer status between the
terminal and AP. So, we decided to introduce the exponential
moving average with coefficient 0.25. That is, the rate
described above is calculated at each of data transfer request
by the following equation.

 𝑟𝑎𝑡𝑒 ← 0.75 × 𝑟𝑎𝑡𝑒 + 0.25 × 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒

The retransmission limit is determined using this rate and
is applied when a data frame is retransmitted according to the
Block Ack based retransmission.

IV. PERFORMANCE EVALUATION

A. Experimental settings

Figure 3 shows the network configuration of our
experiment. A terminal and an AP use 5GHz band WLAN
conforming to IEEE 802.11n. The AP and a server are
connected via Gigabit Ethernet link through a bridge. The
bridge is used to add a delay to emulate a communication via
the Internet.

The experiment is performed in a two-storied Japanese
style house built of wood. The server, the AP and the bridge
are located in the 2nd floor. The terminal is located in various
locations in the 1st and 2nd floors, and the stairs between them.
The distance between the terminal and the AP is about 1.2
meter at the nearest position and about 10 meter at the far most
position. At one position, the terminal is fixed and sends data
to the server for 60 seconds. The data communication is done
by use of iperf [14].

The specification of the terminal is given in Table II. The
AP is commercially available and its model number is WZR-
HP-AG300H manufactured by Buffalo Inc., Japan. This AP
supports multi-rate up to 300 Mbps. In the experiment, we
used all of the 12 levels of data rate given in Table I.

In the experiment, the performance of the proposed
scheme, CoDel and the native 802.11n are evaluated. The
detailed conditions of the experiment are as follows.

 The proposed scheme is implemented in the ath9k
device driver [15].

 The CoDel used is that for Linux 3.5. We ported this
version of CoDel to Linux 3.2.38. As the performance
parameters in CoDel, we used default parameters, e.g.,
5 msec as the target and 100 msec as the interval.

Figure 3. Experiment configuration.

TABLE II. SPECIFICATION OF TERMINAL.

Linux kernel 3.2.38 (self build)

Manufacturer/model Lenovo ThinkPad X61

WLAN card NEC Aterm WL300NC

WLAN device driver ath9k

Figure 2. Retramission limit adopted by our scheme.

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

 As for TCP versions, we adopted TCP Reno, as a
conventional scheme, and Cubic TCP, as the default in
Linux.

 In the experiment, two cases without and with
additional delay are evaluated. The delay is inserted
by the bridge. In the case of additional delay, 100 msec
round-trip delay (50 msec one way delay) is used. The
insertion is done using netem in Linux [16].

 During a 60 sec. TCP communication, the following
data are collected;

o packet trace at the terminal, by use of tcpdump,
o TCP connection information, such as the congestion

window size (cwnd) at the terminal, by use of
tcpprobe [17], and

o WLAN transfer information, such as data rate, from
WLAN device driver.

From these data, the average of data rate, RTT,
throughput, and cwnd for an individual TCP
communication are calculated.

 As for the parameter which characterizes the position
of the terminal, the distance between the terminal and
AP is not appropriate. The reason is that the distance
is only meaningful in our experimental environment.
On the other hand, the data rate used in one position is
rather stable. So, we use the average data rate during
a TCP communication as the parameter which
specifies the location of the terminal. The other
measured values are mapped with the average data rate.

B. Comparison among proposal, CoDel and native 802.11n

Figure 4 shows the results when Cubic TCP is used and no
additional delay is inserted at the bridge. In this figure, (a),
(b) and (c) show the average throughput, the average RTT,
and the average cwnd versus the average data rate,
respectively. An individual point in the figure shows a result
of one evaluation for one 60 sec. TCP communication. From
Figure 4 (a), it can be said that our proposal, CoDel, and the
native 802.11n give a similar TCP throughput.

But, Figure 4 (b) indicates that the average RTT of the
native 802.11n is large, about 1000 msec, when the average
data rate is lower than 30 Mbps. The average RTT of CoDel
is smaller than that of the native 802.11n for all values of the
average data rate. The average RTT for the native 802.11n
and CoDel maintains a linear relationship with the average
data rate in the log-log scale. On the other hand, our proposal
shows different features. In our proposal, the average RTT is
similar with that of the native 802.11n while the average data
rate is larger than 80 Mbps. For the average data rate smaller
than 80 Mbps, however, the average RTT of our proposal
becomes smaller than that of the native 802.11n, and even that
of CoDel.

Figure 4 (c) shows the reason of those results for RTT. In
the native 802.11n, the average cwnd is large, 700 to 900
segments, for all values of the average data rate. This large
cwnd causes the queue to build up. In the case of CoDel, the
average cwnd is small throughout all the range of the average
data rate. This is caused by dropping packets against the built
up queue. On the contrary, in our proposal, the average cwnd
is similar with that of the native 802.11n while the average

data rate is 100 Mbps or larger. When the average data rate
becomes smaller than 100 Mbps, the average cwnd also
becomes smaller, and in the range of below 40 Mbps, it is
smaller than that of CoDel. It can be said that the proposed
scheme to decrease the MAC level retransmission limit at the
low data rate works well for a TCP communication.

When TCP Reno is used, the results were similar when no
additional delay is inserted.

Figure 5 shows the results when Cubic TCP is used and
100 msec additional delay is inserted at the bridge. As for the
average RTT, the native 802.11n has a large value and the
CoDel is smaller than that of the native 802.11n, while the
average data rate is smaller than 100 Mbps. On the other hand,

(a) Average throughput versus average data rate

(b) Average RTT versus average data rate

(c) Average congestion window size versus average data rate

Figure 4. Results for Cubic TCP without any additional delay.

0

20

40

60

80

100

120

0 50 100 150 200 250

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t

(M
b

p
s)

Average Data Rate (Mbps)

native

proposal

codel

10

100

1000

10000

10 100 1000

A
ve

ra
ge

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Average Data Rate (Mbps)

native

proposal

codel

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250

A
ve

ra
ge

 C
w

n
d

(S
eg

m
en

ts
)

Average Data Rate (Mbps)

native

proposal

codel

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

our proposal has similar average RTT values with the 802.11n
while the average data rate is larger than 80 Mbps. For the
average data rate smaller than 80 Mbps, however, the average
RTT of our proposal becomes smaller than that of the native
802.11n, and even that of CoDel. This is similar with the case
of Figure 4.

Figure 5 (c) gives a different result from Figure 4 (c). The
average cwnd of CoDel in the case of additional delay is larger
than the case without additional delay. The average cwnd of
CoDel is similar with the native 802.11n and our proposal for
100 Mbps and larger average data rate. This brings the similar
TCP throughput.

Figure 6 shows the results when TCP Reno is used and
when 100 msec additional delay is inserted at the bridge.

Figure 6 (b) shows that the average RTT is similar with that
in Figure 5 (b). From Figure 6 (a), however, the average
throughput of CoDel is lower than the other schemes in the
range of the average data rate with larger than 100 Mbps.
Figure 6 (c) shows that the average cwnd of CoDel is also
smaller than those of our proposal and the native 802.11n for
the average data rate larger than 100 Mbps. This is the reason
for the low throughput. In order clarify the situation, Figure 7
shows the timeline of throughput and cwnd when the average
data rate is 216 Mbps. Figure 7 (a) shows that the throughput
of CoDel becomes low at time 15 sec. Figure 7 (b) indicates
that, at this timing, a packet loss causes slow start and, after
that, cwnd grows up only slowly. This result says that CoDel
may drop packets unnecessarily and the TCP version with the
moderate congestion increasing may suppress the throughput.

(a) Average throughput versus average data rate

(b) Average RTT versus average data rate

(c) Average congestion window size versus average data rate

Figure 5. Results for Cubic TCP with 100 msec additional delay.

0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t

(M
b

p
s)

Average Data Rate (Mbps)

native

proposal

codel

10

100

1000

10000

10 100 1000

A
ve

ra
ge

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Average Data Rate (Mbps)

native

proposal

codel

0

200

400

600

800

1000

1200

0 50 100 150 200 250

A
ve

ra
ge

 C
w

n
d

(S
eg

m
en

ts
)

Average Data Rate (Mbps)

native

proposal

codel

(a) Average throughput versus average data rate

(b) Average RTT versus average data rate

(c) Average congestion window size versus average data rate

Figure 6. Results for TCP Reno with 100 msec additional delay.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

A
ve

ra
ge

 T
h

ro
u

gh
p

u
t

(M
b

p
s)

Average Data Rate (Mbps)

native

proposal

codel

1

10

100

1000

10000

1 10 100 1000

A
ve

ra
ge

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Average Data Rate (Mbps)

native

proposal

codel

0

200

400

600

800

1000

1200

0 50 100 150 200 250

A
ve

ra
ge

 C
w

n
d

 (
Se

gm
en

ts
)

Average Data Rate (Mbps)

native

proposal

codel

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

V. CONCLUSIONS

This paper proposes a scheme for reducing the delay in
TCP communication over 802.11n WLAN. Our scheme
decreases the retransmission limit of the Block Ack based
retransmission gradually according to the data rates becoming
low. This paper also presents the detailed performance
evaluation of our proposal, CoDel using the active queue
management, and the native 802.11n with Cubic TCP and
TCP Reno. The results show that our proposal and CoDel
decrease the delay at a low data rate which the native 802.11n
suffers from. The results also show that there are some cases
where CoDel drops packets unnecessarily and the throughput
in CoDel becomes lower at a high data rate. These results
show that our proposal, which weakens the MAC level
retransmission function can solve the bufferbloat problem
specific for 802.11n WLAN.

REFERENCES

[1] IEEE Standard for Information technology,”Local and metropolitan
area networks Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 2012.

[2] M. Nomoto, T. Kato, C. Wu, and S. Ohzahata, “Resolving Bufferbloat
Problem in 802.11n WLAN by Weakening MAC Loss Recovery for
TCP Stream,” Proc.12th IASTED PDCN, pp. 293-300, Feb. 2014.

[3] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, Virtualization, vol. 9, no.11, pp. 1-15, Nov. 2011.

[4] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer
Communication Review, vol.43, no.1, pp. 31-37, Jan. 2013.

[5] A. Showail, K., Jamshaid, and B. Shihada, “An Empirical Evaluation
of Bufferbloat in IEEE 802.11n Wireless Networks,” Proc. IEEE
WCNC ’14, pp. 3088-3093, Apr. 2014.

[6] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
Networks, vol.10, no.5, pp. 1-15, May 2012.

[7] I. Rhee and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” SIGOPS Operating Systems Review, vol.42, no. 5, pp. 64-74,
July 2008.

[8] IEEE Standard for Information technology, “Local and metropolitan
area networks--Specific requirements--Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications -
Amendment 8: Medium Access Control (MAC) Quality of Service
Enhancements,” 2005.

[9] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Trans. On Networking, vol.1,
no.4, pp. 397-413, Aug. 1993.

[10] L. Brakmo and L. Perterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun.,
vol. 13, no. 8, pp. 1465-1480, Oct. 1995.

[11] J. Bai, E. P. Eyisi, Y. Xue, and X. D. Koutsoukos, “Dynamic Tuning
Retransmission Limit of IEEE 802.11 MAC Protocol for Networked
Control Systems,” Proc. 2010 IEEE/ACM Int. Conf. on Green
Computing and Comunications, pp. 666-672, Dec. 2010.

[12] W. Wen and D. Liu, “An adaptive retry scheme for delay-constrained
service transmission in 802.11n system,” Proc. IEEE ICCP 2011, pp.
97-101, Oct. 2011.

[13] M. Kim and C. Choi, “Joint Rate and Fragment Size Adaptation in
IEEE 802.11n Wireless LANs,” Proc. 2011 IEEE CCNC, pp. 942-947,
Jan. 2011.

[14] iperf, https://github.com/esnet/iperf, [retrieved: Nov. 2016].

[15] ath9k Linux Wireless, http://wireless.kernel.org/en/
users/Drivers/ath9k, [retrieved: Nov. 2016].

[16] S. Hemminger, “Network Emulation with NetEm,” Proc. 6th
Australia’s National Linux Conference (LCA2005), pp. 1-9, Apr. 2005.

[17] Linux foundation: tcpprobe, http://www.linuxfoundation.org/
collaborate/workgroups/networking/tcpprobe, [retrieved: Nov. 2016].

(a) Throughput versus time

(b) Congestion window size versus time

Figure 7. Results for individual TCP Reno communications

with 216 Mbps data rate (100 msec additional delay).

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)

