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Abstract— IEEE 802.11n wireless local area networks 

(LANs) provide the data transmission rate of hundreds of Mbps.   

At the same time, they support multiple data rates and the 

dynamic rate switching functionality in order to cope with 

various radio conditions.  However, a low data rate may cause a 

long delay in transmission control protocol (TCP) 

communications, which is called a bufferbloat problem.  In this 

paper, we infer that one possible reason for the delay is the 

powerful retransmission capability supported by 802.11n, and 

propose a method which weakens this capability intentionally 

for TCP communications when the data rate is low.  This paper 

evaluates the performance of our proposal, the native 802.11n, 

and CoDel, which is an active queue management approach 

coping with the bufferbloat problem.  It shows that CoDel and 

our proposal improve the delay performance and that CoDel 

sometimes reduces the throughput under a high data rate 

condition.   

Keywords- Wireless LAN; IEEE 802.11n; TCP; Dymamic 

Rate Switching; Bufferbloat Problem; Block Acknowledgment. 

I. INTRODUCTION 

Recently, wireless LANs (WLANs) conforming to the 
IEEE 802.11n standard [1] are being used widely.  This type 
of WLANs can provide a data rate of hundreds of Mbps.   In 
order to realize high throughput, 802.11n has added new 
physical and media access control (MAC) technologies to the 
conventional IEEE 802.11.  They include multiple-input and 
multiple-output (MIMO), the channel bonding, the frame 
aggregation, and the block acknowledgment (Block ACK).   

On the other hand, IEEE 802.11n supports multiple data 
rates and the dynamic rate switching to use the optimal data 
rate between a terminal and an access point (AP).   When a 
terminal is located close to an AP and the radio condition is 
good, the high data rate such as 300 Mbps can be used.  But, 
when a terminal moves to the location far from an AP and the 
receiving radio signal strength becomes weak, the data rate 
gets lower, for example down to 6.5 Mbps.   

In our previous paper [2], we gave a detailed analysis of 
the performance of TCP communication during which a 
terminal changes the distance from an AP.  As a result, when 
the distance between the terminal and the AP is large (e.g., 10 
m), the packet losses do not increase, but the round-trip time 
(RTT) increases largely, up to several seconds.  This long 
delay is considered as a sort of bufferbloat problem, which is 
discussed widely in the networking community [3]-[5].  In 
order to solve the bufferbloat problem, the active queue 
management is considered to be effective and an approach 
named CoDel is proposed [6].  CoDel uses a packet-sojourn 

time in a queue as a control parameter, and drops a packet in 
the situation when packets stay too long in the queue. 

Our previous paper [2] suggested a different approach 
from the active queue management.  We inferred that one of 
the reasons for the large queuing delay is the powerful data 
retransmission function in 802.11n MAC level, which uses the 
frame aggregation and the Block ACK.  So, we proposed that 
it would be possible to resolve the bufferbloat problem by 
intentionally weakening the capability of retransmission 
realized by Block Ack frames, only when the data rate is low 
in TCP communications.  Specifically, we set the 
retransmission limit to 2 when the data rate is smaller than 80 
Mbps, and use 10, which is the default value, when larger than 
80 Mbps.  Our previous paper showed that this scheme 
introduces MAC level frame losses and, as a result, reduces 
the RTT resulting from the shrunk congestion window size.   
However, this proposal is premature because it uses only two 
values for the retransmission limit.  As for the performance 
evaluations, our previous work is also premature because it 
provides only a limited number of measurements.   

In this paper, we propose a revised algorithm for reducing 
the delay in TCP communication over 802.11n WLAN.  It 
defines intermediate values of the retransmission limit 
corresponding to the data rates between low and high ones, by 
use of linear interpolation in the semilog relation of data rate 
and retransmission limit.  This paper also presents the detailed 
performance evaluation of our proposal.  In the evaluation, a 
terminal is located in several positions with different distances 
from an AP, and the performance is measured for the proposal, 
CoDel, the native 802.11n, for TCP Reno and CUBIC TCP 
[7].     

The rest of this paper is organized as follows.  Section II 
explains the problem we focused on in this paper and the 
possible solutions proposed so far.  Section III describes our 
proposed scheme for resolving bufferbloat problem for 
802.11n WLAN, and Section IV gives the performance 
evaluation.  In the end, Section V concludes this paper.   

II. BUFFERBLOAT PROBLEM AND RELATED WORK 

A. Bufferbloat problem in 802.11n WLAN 

Table I gives the data rates supported by the terminal and 
the AP used in the experiment.  In these data rates, an 802.11n 
data sender performs retransmission of corrupted frames.  
During this procedure, the data sender monitors the ratio of 
retransmissions and selects the lower data rate if the 
retransmission ratio becomes too large.   

In this paper, we focus on the bufferbloat problem in the 
upload data transfer from a terminal to an AP.  Consider the 
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situation depicted in Figure 1.  A terminal located far from an 
AP is sending data to the ftp server.  The terminal uses a low 
data rate, such as 6.5 Mbps and 13.5 Mbps.  Our previous 
experiment gave some results that the retransmission at MAC 
level works well and there are few packet losses at the TCP 
and IP level [2].  Consequently, the TCP congestion window 
size grows up, and the data frames corresponding to this size 
are transmitted contiguously.  However, the data rate is low 
and therefore the data frames are stored in the queue at the 
MAC level.  This brings a large delay in the file transfer.  If 
another application such as web access and voice over IP 
(VoIP) starts in this situation, the new communication also 
suffers from the large delay.   

B. Related work 

There are several approaches which can be applied to the 
problem described above.   

The first one is the introduction of IEEE 802.11e [8].  It 
provides the priorities in the MAC level, i.e., Voice, Video, 
Best Effort, and Background, by introducing separate queues 
within a node and separate flows of data frames in a WLAN.  
In order to introduce separate flows, it discriminates values of 
arbitration interframe space and contention window 
boundaries.  As for the bufferbloat problem, however, it 
cannot be always applied.  If the second application in Figure 
1 is TCP based, such as a web access, the ftp client and the 
second application are categorized in the same priority in 
802.11e.  So, the second application will suffer from the delay 
which the ftp generates.   

The second approach is the active queue management.  As 
described above, CoDel uses packet-sojourn time in the queue.  
Specifically, when any packet stays in the queue longer than a 
specific duration, called target in CoDel, during a predefined 
interval, called interval in CoDel, the last packet in the queue 
is dropped.   As for the value of target, 5 msec is used in [6].  
For the interval, 100 msec is used as the beginning of the 
procedure and, if a packet is dropped, the value is decreased 
in inverse proportion to the square root of the number of drops 
since the dropping state was entered.   Some simulation results 
are shown in [6] over WiFi links whose data rate changes 
among 100Mbps, 50Mbps and 1Mbps, and tell that the per-

packet queue delay in CoDel is smaller than that in random 
early discard (RED) [9] and Tail Drop.   

The third approach is the adoption of TCP based on non-
loss based congestion control.  As described above, the grown 
congestion window size is the reason for queued data frames, 
and no loss situation allows the window size to grow.  So, the 
introduction of non-loss based congestion control, such as 
TCP Vegas [10], might be effective.  With the current values 
of congestion window size and RTT, TCP Vegas estimates the 
buffer size in the bottleneck node.  A TCP sender increases 
the congestion window size when the bottleneck buffer size is 
small and decreases when the buffer size is large.   

In contrast with those approaches, our scheme uses the 
retransmission limit adjustment.  There are several studies 
focusing on this topic [11]-[13].  However, all of them focus 
on the relationship between the transmission delay and the 
retransmission limit.  On the other hand, our scheme aims at 
causing a packet loss intentionally by changing the 
retransmission limit.    

III. PROPOSAL 

The basic idea of our scheme is that a MAC data sender 
tunes up the retransmission limit in response to the data rate 
used for data frame transmission.  The lower data rate, the 
smaller retransmission limit.  This adjustment is done only if 
the sending data frame contains a TCP segment by checking 
the protocol field in IP header.  The followings give the points 
of our scheme.   

A. Focusing on Block Ack based retransmission 

As for the reception confirmation, IEEE 802.11n adopts 
an approach called High Throughput (HT)-immediate Block 
Ack [1].  A sender aggregates multiple data frames into one 
frame (aggregated MAC protocol data unit: A-MPDU) and 
sends it out.  A receiver checks the correctness of individual 
received data frames, and returns a Block Ack frame.  The 
Block Ack frame is sent out immediately after the receiver 
received the A-MPDU, and indicates individual data frames 
are received successfully or not in the Block Ack Bitmap field.   

If the Block Ack Bitmap field indicates loss of some data 
frames, the sender side retransmits the lost frames (the Block 
Ack based retransmission).  On the other hand, in the case 
when A-MPDU itself is corrupted or the returning Block Ack 
frame is lost, the A-MPDU is retransmitted again (the timeout 
based retransmission).   

In general, the timeout based retransmission is controlled 
by a WLAN hardware chip and the Block Ack based 
retransmission is controlled by a WLAN device driver.  They 
are managed independently.  In the case of the WLAN device 
driver we use in this paper, the retransmission limit is 19 for 
the timeout based, and 10 for the Block Ack based 
retransmission.   

Since our scheme is implemented in a WLAN device 
driver, we focus on the Block Ack based retransmission.  Our 
scheme decreases the limit for the Block Ack based 
retransmission when the data rate becomes low.   

TABLE I.  AVAILABLE DATA RATE IN 802.11N WLAN. 

6.5 13.5 27.0 40.5 54 81 

108 162 216 243 270 300 

Unit: Mbps   
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Figure 1.  Outline of bufferbloat problem in 802.11n WLAN upload traffic. 
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B. Determining retransmission limit for individual data 

rate 

The next point is what value is selected as the 
retransmission limit for an individual data rate.  As described 
above, the maximum value of the Block Ack based 
retransmission is 10.  On the other hand, our experiment 
described in [2] showed that 2 is appropriate as the 
retransmission limit for the data rate 6.5 Mbps and 13.5 Mbps.  
So, in this proposal, we focus on determining the in-between 
retransmission limit values.   

We have decided to define the Block Ack based 
retransmission limit in the following way.  

 For the data rate equal to and higher than 100 Mbps, 
the limit is 10. 

 For the data rate equal to and lower than 10 Mbps, the 
limit is 2.   

 As a first step, we introduce a linear relationship 
between the limit and the data rate between 10 Mbps 
and 100 Mbps over a semilog scale.  This is depicted 
as a dashed line in Figure 2.   

 Based on this result, we have selected stepwise values 
for the retransmission limit as shown by a solid line 
in the figure.   

That is, the Block Ack based retransmission limit is  
10 if  𝑟𝑎𝑡𝑒 ≥ 100 Mbps,  
8 if  50 Mbps ≤ 𝑟𝑎𝑡𝑒 < 100 Mbps, 
5 if  25 Mbps ≤ 𝑟𝑎𝑡𝑒 < 50 Mbps, and 
2 if  𝑟𝑎𝑡𝑒 < 25 Mbps.   

It should be noted that this limit value selection is not based 
on a specific theory.  However, the results given in Section IV 
show that our scheme works well using those limit values.   

C. Using moving average for data rate 

The last point is what data rate is to use for determining 
the retransmission limit.  The data rate for a specific data 
frame is determined when the device driver handles the 
corresponding data transfer request.  The data rate will be 
changed according to the physical layer status between the 
terminal and AP.  So, we decided to introduce the exponential 
moving average with coefficient 0.25.  That is, the rate 
described above is calculated at each of data transfer request 
by the following equation.   

 𝑟𝑎𝑡𝑒 ← 0.75 × 𝑟𝑎𝑡𝑒 + 0.25 × 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 

The retransmission limit is determined using this rate and 
is applied when a data frame is retransmitted according to the 
Block Ack based retransmission.   

IV. PERFORMANCE EVALUATION 

A. Experimental settings 

Figure 3 shows the network configuration of our 
experiment.  A terminal and an AP use 5GHz band WLAN 
conforming to IEEE 802.11n.  The AP and a server are 
connected via Gigabit Ethernet link through a bridge.  The 
bridge is used to add a delay to emulate a communication via 
the Internet.   

The experiment is performed in a two-storied Japanese 
style house built of wood.  The server, the AP and the bridge 
are located in the 2nd floor.  The terminal is located in various 
locations in the 1st and 2nd floors, and the stairs between them.  
The distance between the terminal and the AP is about 1.2 
meter at the nearest position and about 10 meter at the far most 
position.  At one position, the terminal is fixed and sends data 
to the server for 60 seconds.  The data communication is done 
by use of iperf [14].   

The specification of the terminal is given in Table II.  The 
AP is commercially available and its model number is WZR-
HP-AG300H manufactured by Buffalo Inc., Japan.  This AP 
supports multi-rate up to 300 Mbps.  In the experiment, we 
used all of the 12 levels of data rate given in Table I.   

In the experiment, the performance of the proposed 
scheme, CoDel and the native 802.11n are evaluated.  The 
detailed conditions of the experiment are as follows.   

 The proposed scheme is implemented in the ath9k 
device driver [15].   

 The CoDel used is that for Linux 3.5.  We ported this 
version of CoDel to Linux 3.2.38.  As the performance 
parameters in CoDel, we used default parameters, e.g., 
5 msec as the target and 100 msec as the interval.   

 
Figure 3.  Experiment configuration. 

TABLE II.  SPECIFICATION OF TERMINAL. 

Linux kernel 3.2.38 (self build) 

Manufacturer/model Lenovo ThinkPad X61 

WLAN card NEC Aterm WL300NC 

WLAN device driver ath9k 

 

 
Figure 2.  Retramission limit adopted by our scheme. 
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 As for TCP versions, we adopted TCP Reno, as a 
conventional scheme, and Cubic TCP, as the default in 
Linux.   

 In the experiment, two cases without and with 
additional delay are evaluated.  The delay is inserted 
by the bridge.  In the case of additional delay, 100 msec 
round-trip delay (50 msec one way delay) is used.  The 
insertion is done using netem in Linux [16].   

 During a 60 sec. TCP communication, the following 
data are collected;   

o packet trace at the terminal, by use of tcpdump,  
o TCP connection information, such as the congestion 

window size (cwnd) at the terminal, by use of 
tcpprobe [17], and 

o WLAN transfer information, such as data rate, from 
WLAN device driver.    

From these data, the average of data rate, RTT, 
throughput, and cwnd for an individual TCP 
communication are calculated.   

 As for the parameter which characterizes the position 
of the terminal, the distance between the terminal and 
AP is not appropriate.  The reason is that the distance 
is only meaningful in our experimental environment.  
On the other hand, the data rate used in one position is 
rather stable.  So, we use the average data rate during 
a TCP communication as the parameter which 
specifies the location of the terminal.  The other 
measured values are mapped with the average data rate.   

B. Comparison among proposal, CoDel and native 802.11n 

Figure 4 shows the results when Cubic TCP is used and no 
additional delay is inserted at the bridge.  In this figure, (a), 
(b) and (c) show the average throughput, the average RTT, 
and the average cwnd versus the average data rate, 
respectively.  An individual point in the figure shows a result 
of one evaluation for one 60 sec. TCP communication.  From 
Figure 4 (a), it can be said that our proposal, CoDel, and the 
native 802.11n give a similar TCP throughput.   

But, Figure 4 (b) indicates that the average RTT of the 
native 802.11n is large, about 1000 msec, when the average 
data rate is lower than 30 Mbps.  The average RTT of CoDel 
is smaller than that of the native 802.11n for all values of the 
average data rate.  The average RTT for the native 802.11n 
and CoDel maintains a linear relationship with the average 
data rate in the log-log scale.  On the other hand, our proposal 
shows different features.  In our proposal, the average RTT is 
similar with that of the native 802.11n while the average data 
rate is larger than 80 Mbps.  For the average data rate smaller 
than 80 Mbps, however, the average RTT of our proposal 
becomes smaller than that of the native 802.11n, and even that 
of CoDel.   

Figure 4 (c) shows the reason of those results for RTT.  In 
the native 802.11n, the average cwnd is large, 700 to 900 
segments, for all values of the average data rate.  This large 
cwnd causes the queue to build up.  In the case of CoDel, the 
average cwnd is small throughout all the range of the average 
data rate.  This is caused by dropping packets against the built 
up queue.  On the contrary, in our proposal, the average cwnd 
is similar with that of the native 802.11n while the average 

data rate is 100 Mbps or larger.  When the average data rate 
becomes smaller than 100 Mbps, the average cwnd also 
becomes smaller, and in the range of below 40 Mbps, it is 
smaller than that of CoDel.  It can be said that the proposed 
scheme to decrease the MAC level retransmission limit at the 
low data rate works well for a TCP communication.   

When TCP Reno is used, the results were similar when no 
additional delay is inserted.   

Figure 5 shows the results when Cubic TCP is used and 
100 msec additional delay is inserted at the bridge.  As for the 
average RTT, the native 802.11n has a large value and the 
CoDel is smaller than that of the native 802.11n, while the 
average data rate is smaller than 100 Mbps.  On the other hand, 

 
(a) Average throughput versus average data rate 

 
(b) Average RTT versus average data rate 

 
(c) Average congestion window size versus average data rate 

Figure 4.  Results for Cubic TCP without any additional delay. 
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our proposal has similar average RTT values with the 802.11n 
while the average data rate is larger than 80 Mbps.  For the 
average data rate smaller than 80 Mbps, however, the average 
RTT of our proposal becomes smaller than that of the native 
802.11n, and even that of CoDel.  This is similar with the case 
of Figure 4.   

Figure 5 (c) gives a different result from Figure 4 (c).  The 
average cwnd of CoDel in the case of additional delay is larger 
than the case without additional delay.  The average cwnd of 
CoDel is similar with the native 802.11n and our proposal for 
100 Mbps and larger average data rate.  This brings the similar 
TCP throughput.   

Figure 6 shows the results when TCP Reno is used and 
when 100 msec additional delay is inserted at the bridge.  

Figure 6 (b) shows that the average RTT is similar with that 
in Figure 5 (b).  From Figure 6 (a), however, the average 
throughput of CoDel is lower than the other schemes in the 
range of the average data rate with larger than 100 Mbps.  
Figure 6 (c) shows that the average cwnd of CoDel is also 
smaller than those of our proposal and the native 802.11n for 
the average data rate larger than 100 Mbps.  This is the reason 
for the low throughput.  In order clarify the situation, Figure 7 
shows the timeline of throughput and cwnd when the average 
data rate is 216 Mbps.  Figure 7 (a) shows that the throughput 
of CoDel becomes low at time 15 sec.  Figure 7 (b) indicates 
that, at this timing, a packet loss causes slow start and, after 
that, cwnd grows up only slowly.  This result says that CoDel 
may drop packets unnecessarily and the TCP version with the 
moderate congestion increasing may suppress the throughput.    

 
(a) Average throughput versus average data rate 

 
(b) Average RTT versus average data rate 

 
(c) Average congestion window size versus average data rate 

Figure 5.  Results for Cubic TCP with 100 msec additional delay. 
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(a) Average throughput versus average data rate 

 
(b) Average RTT versus average data rate 

 
(c) Average congestion window size versus average data rate 

Figure 6.  Results for TCP Reno with 100 msec additional delay. 
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V. CONCLUSIONS 

This paper proposes a scheme for reducing the delay in 
TCP communication over 802.11n WLAN.  Our scheme 
decreases the retransmission limit of the Block Ack based 
retransmission gradually according to the data rates becoming 
low.  This paper also presents the detailed performance 
evaluation of our proposal, CoDel using the active queue 
management, and the native 802.11n with Cubic TCP and 
TCP Reno.  The results show that our proposal and CoDel 
decrease the delay at a low data rate which the native 802.11n 
suffers from.  The results also show that there are some cases 
where CoDel drops packets unnecessarily and the throughput 
in CoDel becomes lower at a high data rate.  These results 
show that our proposal, which weakens the MAC level 
retransmission function can solve the bufferbloat problem 
specific for 802.11n WLAN.   
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Figure 7.  Results for individual TCP Reno communications  

with 216 Mbps data rate (100 msec additional delay). 
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