Copyright (c) IARIA, 2016.

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

Implementation of Virtualization in Software Defined Networking (SDN) for Data
Center Networks

Nader F. Mir, Jayashree N. Kotte, and Gokul A. Pokuri

nader.mir@sjsu.edu
Department of Electrical Engineering
San Jose State University
San Jose, CA, 95195

Abstract—Software Defined Networking (SDN) is an emerging
technology in IT industry. There is enormous pressure on
network operators to change the conventional network
architecture to accommodate the rising need for innovative
services and fluctuating demands. The reasons behind the
network architecture evolution are heavy traffic, scalability and
enormous bandwidth shortage. With the implementation of SDN
in a Data Center Network (DCN), providing centralized control
can eliminate major issues of routing. In this paper, we develop a
user application to scale the DCNs and analyze SDN’s
performance. We consider networks connecting 8 hosts to 512
hosts and measure performance metrics in terms of latency,
packet drop rate and bandwidth. The tools being used are
Mininet, vSwitch, OpenFlow controller and VMware
workstation. Python language is used to bind the tools together.
Customized topologies are created and implemented using
OpenFlow controller to determine SDN's efficiency.

Keywords-SDN; software defined networking; virtualization;
data centers.

[. INTRODUCTION

During early 2004, networks had distributed
configurations. After 2004, the centralization of network
control came into existence with the emergence of Border
Gateway Protocol (BGP) that run on Routing Control
Platforms (RCP). RCP was generalized for decision planes,
which was responsible for computing routes. Also, RCP was
generalized for data plane that forwards packets [1]. In 2008,
OpenFlow was presented, whose fundamental roots came
from RCP. The idea behind OpenFlow was the decoupling of
the control and data planes.

Virtualization in networks was another effective trend that
allows network administrators to run applications on fewer
physical servers [2][3]. No business can afford application
downtime and virtualization provided a way to decrease
application downtime. High availability and fault tolerance are
built right into the platform. Virtualization provides bigger
savings by letting a network administrator run many apps on
fewer servers at the industry's lowest net virtualization cost.

In general, any routing device contains two planes of
operations: control plane and data plane. The task of the data
plane is to forward packets to destinations. Routers determine
the path for routing packets based on their respective routing
tables. The control plane computes these routing tables. The
ideas of network virtualization and decoupling data and

ISBN: 978-1-61208-450-3

control planes resulted in the Sofiware Defined Networking
(SDN).

SDN enables application of virtualization principles on
network infrastructure by abstracting network resources,
pooling and automating them to outshine the limitations of the
network architectures [4]. SDN changes the device-level
configuration by centralizing the control plane [5][6].

In SDN, the control lies in the centralized controller,
which runs on top of the data plane. This controller provides a
complete picture of the network and is responsible for
controlling all the routers in the network. This feature of the
SDN controller gives network operators network-wide control.
The separated control plane offers faster innovation as the
orchestration of the network constituents is done on an open
interface.

OpenFlow is an open interface standard that enables
network operators to control the chips placed in a switch using
software. This paved the way for better innovation and easier
migration of resources with ambiguous demands from
enterprises. OpenFlow brought the open vSwitch into
existence [6]. Open vSwitch became the root of system
architecture decoupling. It also enabled protocols under the
experimenting state to co-exist with the legacy protocols in the
network.

To implement SDN in any organization, the working
protocol is typically OpenFlow. Communication between the
centralized controller and switches is facilitated by the
OpenFlow protocol [7][8]. The OpenFlow is a set of
commands that the SDN controllers use to pass on the routing
decisions to vSwitches for routing table updating.

A data center is either a physical or virtual storehouse of
data. Its functions include collection, storage, management
and propagation of data. A data center contains all the logs of
the company varying in the level of significance. Data centers
are also very similar to an operations center focused on
networks. They hold many automated computers that monitor
the Web activity, server access and performance of the
networks.

The rest of this paper presents the components of the
simulation implementation including the Mininet setup and
the simulation architecture. The paper then proceeds with the
implementation details, followed by some results of the
simulation, including several charts presenting network
latency and packet drops.

124

Copyright (c) IARIA, 2016.

1I. COMPONENTS OF IMPLEMENTATION
A. SDN Implementation

The infrastructure of the implementation for this article is
made up of decoupled control and data planes, as mentioned
earlier. The control plane is typically a software program.
These software programs are usually written in high-level
languages such as Python and C. The data plane is
programmable hardware, which differs from traditional
networks in which the data plane is not programmable.

The routing path computations made by SDN controller
affect the routing table in a vSwitch. The computing decisions
are propagated to the vSwitches using a set of control
commands. Openflow is the set of control commands that are
made use of by both data and control planes for
communication.

The control planes consist of logic that controls the packet
forwarding behavior of the routers and switches. It also
contains configuration procedure for middle boxes, such as
firewalls, and load balancers.

The data plane is responsible for forwarding packets in
the network, so it contains routing tables and hardware
pertaining to the network. To summarize the functionality of
SDN, it is safe to say that computing the shortest paths are
functions of the control plane and data plane functions handle
packets and routing them from input port to output port. The
separation of control and data planes facilitates the evolution
of software and hardware independently. Also, it enables the
controller to be programmed by high-level programs. This
kind of control enforcement makes it easy to debug the
network.

B. DCN Implementation

Any data center typically harbors numerous hosts. Data
center networks are broadly classified into three types:

. Server-routed networking
il. Switch-routed networking
ii. Server-Routed Networking

A DCN, such as a server-routed networking DCN, is
typically a three-tier topology. The first layer is usually an
access layer that connects the server racks called top-of-rack
(TOR) switches, as shown in Fig. 1. The next layer of devices
consists of aggregate switches that connect the access layer
and a core layer. Switching in a DCN basically involves
routing a packet from a source host to a destination server. In
reality, the structure of DCN has the core layer switches
connected to the TOR switches, which is in turn connected a
server rack. Packets within the DCN network find paths
traversing through TOR and core switches but packets
originating from outside the DCN are routed to the destination
only if core switches provide access. Such packets from
outside then find their destination server by traversing the
TOR switches and server racks. The core layer switches in a
data center network enforce network security and load
balancing.

ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

To the Rest of the
Internet

S —.
Routers

Load
Balancer

1 Tier of

Layer 3 Switches Core Switches

0to kTiers of

Layer 2 or3 Switches: Aggregate Switches

Top-of-Rack (ToR) Switches
(Edge Switches)

1 Tier of
Layer 2 Switches:

SEEEFEEEY

Server Racks
(Blades of Hosty

Figure 1. Data Center Architecture

C. Virtualization

Virtualization provides a layer on hardware that can be
used to install an instance of an operating system. Normally, a
hypervisor is installed on the hardware to carry out the
functionality of virtualization. Hypervisors are classified into
two types. The Type-1 hypervisor is installed directly on the
hardware and the instances of different operating systems are
installed on it. With the use of management software, it can
move the instances of operating systems between physical
servers based on the needs. A Type-2 hypervisor is also called
hosted hypervisor. Hosted hypervisors are installed on the
operating system.

D. MININET

Mininet [8] is a virtual network emulation software that is
used to introduce or launch a network consisting of switches,
hosts and a SDN controller. Mininet uses OpenFlow switches
and routers. An example of Mininet topology used in data
centers is the tree architecture, as shown in Figure 2. Network
packets are routed through the SDN controller, and an action
is taken for that particular packet. There is an extra latency on
the first packet because of the communication of the
controller. After the first ICMP request and reply, the flows
are cached by the switch for a limited time. The following
Mininet command creates a network with four hosts (servers)
and three switches in a Tree topology: Ssudo mn --
topo=tree,2,2. We use this topology to simulate a data center
network.

Figure 2. Tree topology, as a simple data center network

125

Copyright (c) IARIA, 2016.

E. POX Controller

POX [9] is a strictly reactive cross platform controller
built on Python platform with fairly simple source code. The
actual modelling of POX is to dynamically respond to links
and switches as their status changes to make sure those
connections are always maintained. The event handler handles
the status change events. It is very useful for research and
experimentation. There are numerous ways to run POX and it
has many components. POX controller is bundled along with
Mininet.

F. OVS Switch

Open vSwitch is a virtual switch, which is used to connect
hosts, in this case Virtual machines. It supports many
traditional switch features like VLAN tagging, 8012.1q
trunking, Spanning tree protocol, port mirroring, monitoring,
tunneling (GRE, IPSec) and QoS control. Open vSwitch
works in two types of modes.

1. Normal mode

2. Flow mode.

In normal mode, the switch acts like a traditional switch
i.e., it acquires information about the network and computes
the path. It learns the path by source MAC address and at the
beginning it broadcasts and multicasts traffic until it learns all
the paths. In flow mode the SDN controller configures the
paths.

There are two criteria called match and action. If the
condition matches the specification the respective action is
executed. The match field can be layer 2, layer 3 or layer 4,
therefore it can match the IP addresses, MAC addresses and
transport protocols for the match condition. Open vSwitch
follows a top to bottom matching approach.

Once the matching is done, the corresponding action is
executed. Every flow has a specific priority assigned to it.
Packet priorities are checked at the firewall level, if rejected
by the switch they are rerouted to the SDN controller, which
decides the entry of the packet into the network.

G. Integration of SDN in DCN

The main problem in managing a data center is supplying
and migration of resources/services in response to the traffic
load. SDN solves this issue by logically controlling the routing
tables in the switches. If two VM’s are communicating with
each other, then the switches are aware of the routing paths to
each of the VMs correctly. Apart from this, migration of VM
becomes easy as the SDN controller regularly updates the
routing table in a switch making use of a centralized database.
Integration of SDN with DCN creates improved load
balancing of traffic in a DCN, improving bandwidth
utilization, and scaling the network with changing demands
and applications. In this paper, we aim to address the
scalability issue and show the efficiency of SDN in reducing
the bandwidth utilization thereby improving the load

ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

balancing of traffic in a DCN. Careful study of performance
parameters such as bandwidth, packet drop rate, latency
performance statistics in terms of graphical representation
were done.

Figure 3 shows the operation of software defined
networking technology in DCN with separated control and
data planes. The control plane contains the SDN controller,
which is responsible for smooth flow of operations in the
network. The data plane, on the other hand, merely acts as a
packet forwarding backplane, which is composed of network
components such as open vSwitches. Communication between
the data plane and control plane takes place through the
OpenFlow protocol [7]. OpenFlow protocol communicates all
the routing decisions and routing table entries for routing
packets to open vSwitches from SDN controller.

Datapath ——-
Control path -------

. Client

! ,.-'Q UEL
ﬂ‘SDN Controller
EASP Controller

A Data
Center
(DC) and
DCN

l

Storage System

Server Racks

Figure 3. SDN in DCN
H. NFV

Network Function Virtualization (NFV) [4] has emerged
as a result of exceeding demand of scaling of applications and
services. NFV makes use of SDN to provide services in a wide
spread environment.

Previously, network designers encountered a problem of
last hop determination for L2 when a packet arrived. This
problem was dealt with by creating the vSwitch. vSwitches
addressed the problem by creating L2 VLANs. At later
stages, with the increase of virtual machines, the need for L3-7
services between VMs arose. This issue gave birth to a horde
of virtual versions of hardware products like vRouter,
vFirewall, vNIC and virtual load balancers [4], which helped
in controlling and managing the traffic in the network. Since a
large number of virtual devices were being used, the need for
automation/orchestration environment emerged. Due to
fluctuating demands, the focus shifted to open environments
for orchestration. All this complexity in management needed

126

Copyright (c) IARIA, 2016.

a simplification. This was brought forth by SDN controllers
such as OpenDaylight [4], which were used to simplify
management of the network. To resolve the issue of scaling
the server based networking across a range of servers,
Network Function Virtualization was proposed.

The vendors have been demanding the service providers
to change the architecture as they faced issues of the service
being too slow, expensive and not being able to bring up new
services. Vendors demanded very flexible software, which
could be attained with NFV aided by SDN.

1L IMPLEMENTATION

VMware workstation, such as VMware Fusion or
Virtualbox, was installed. Then Mininet, which is a network
emulator, was installed and run on the VMware fusion. A
complex virtual DCN was programmed using Python scripts
in Mininet. A complex tree topology of server-routed
networking scheme was used in this paper. Tests were
performed on the DCN that allowed us to find the differences
of traditional/conventional routing and routing using SDN.

Utilizing Mininet and its Python API, an application
script called Tree 1024.py was created to test the scalability
of Tree 1024.py. This user application was created to reach
the aim of this paper i.e., model how SDN scales in terms of
latency and bandwidth as the numbers of hosts on the network
increase.

Utilizing the Python API provided by Mininet makes it
possible to automate the capturing of the various
measurements required to reach the goals described in this
paper.

Command: Function Run_mininet runs the following
functions in loop for each n number of hosts (i.e., 8, 16, 32,
64, 128, 256, 512) Contains the following Mininet API
function calls, TreeNet(depth=i, fanout=2,
switch=OVSKernelSwitch),

Command: Treenet(depth, fanout, switch) indicates the
number of levels in the network and fan-out indicates the
number of leaves per switch in the network.

Eg Treenet(depth = 2, fanout=3,
switch=OVSKernelSwitch) would create a network that would
look like:

c
s

S s s

hhh hhh hhh

There are two types of switches that are used in Mininet:
1) UserSwitch — this virtual switch is created and used from
user space and has no connection to the kernel; and
2) OVSwitchKernel — based on Open vSwitch but running in
the Linux kernel. It handles traffic between different virtual
machines on the same physical device and network, which the
device is connected to.

The main program used in this paper is Tree 1024.py.
This program was aimed at comparing the efficiency of SDN

ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

with increasing number of hosts. In other words, we addressed
the scalability of a SDN run data center network and analyzed
it through important performance metrics.

Command: Network.iperf(fmt="g’)
To calculate the bandwidth between hosts, the network iperf
command is utilized. This command returns the bandwidth
between two hosts as a list. Here, iperf is run between the first
host and the last host (e.g. in a network with 64 hosts iperf is
run between hostl and host64). Using the argument fmt="g’
the results are returned in Gbps (Giga bits per second).
Internally the command run as:
Local_host$iperf —p 5001 —t 5 —f g —c dest_host_ip
The iperf is run against the dest host ip from the local host
machine.
In the above command
-p 5001: indicates the port on which the iperf command is
supposed to run.
-t 5: Indicates that iperf has to run for 5 seconds
-f g Indicates that the bandwidth values should be returned
in Gbps.
-c dest_host_ip: Indicates the destination IP address the iperf
should run against.

Proc_ping

The result of the network.pingAllFull() is a Python list of
lists. For each ping command run, the following list is created.
pingresultslist = [Node, dest, [sent, rec, rttmin, rttavg, rttmax,
rttstd]]

Node — the IP address of the host sending the ping command.
Dest - IP address of the destination of the ping command.
Sent - Number of ICMP ping packets sent.

Rec - Number of ICMP ping packets received.

rttmin — minimum round trip time of all pings for that
instance of ping command.

rttavg - Average round trip time of all pings for that instance
of ping command.

rttmax — maximum round trip time of all pings for that
instance of ping command.

rttstd - standard deviation of all pings for that instance of
ping command.

These values are saved in variables and ping result values are
stored in a csv file.

Proc_iperf

The result of network.iperf() is a list containing two values of
the bandwidth for each path (Local host to remote host and
vice versa).The values are cleaned (removes the Gbps in each
result), averaged and stored in a variable. The values are
stored in a csv file at the end.

Once the run mininet command is run, the mini plot
function is run to create plots for the Bandwidth and Latency
for the different numbers of hosts tested (8, 16, 32, 64, 128,
256, 512). All the rttavg values for each ‘n’ number of hosts
are averaged and saved in a variable. Matplotlib that is python
plotting library is used to plot the values.

The above program runs a loop to generate tree
architectures by varying the depth. Depending on the depth

127

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

value given, it will generate tree architecture of 16, 32, 64,
256, 512 and 1024 hosts. The program also generates
authentic graphs in Mininet by comparing the latency and
bandwidth with the number of hosts. These graphs show the
performance of SDN with increasing number of hosts.

Iv. RESULTS AND OBSERVATIONS

The performance metrics that we have generated in
Mininet using the automated Python script are latency and
bandwidth. The values of latency and bandwidth for hosts
starting from 8, 16, 32, 64, 128, 256 and 512 have been
calibrated and plotted.

Fig. 4 shows bandwidth utilization in a network with
SDN control when the number of hosts increases. Fig. 5
shows the latency in the same network.

In Fig. 6, the comparison of dropped packets in different
network sizes using OVS and POX controller is illustrated.
With the increase in network size, the number of packets
dropped increases exponentially. For the networks that are
created, ping time varies with respect to the controllers.

Figure 5. Latency v number of hosts

Figure 6. Percentage of packet drop vs hosts

Figure 4. Bandwidth v number of hosts

Fig. 7 shows a comparison of ping time between H1 and
H2 for different networks using OVS and POX controller

Figure 7. Ping time v/s hosts

Fig. 8 shows a comparison of ping time between a first
host and a last host for different networks using OVS and
POX controller. The ping results are examined between the
first host and the second host of the network. With respect to
POX controller design, the effectiveness to connect the source
and destination host decreases.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3 128

Copyright (c) IARIA, 2016.

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

The screenshots shown in Fig. 9 and 10 give the
estimation of the ping time analysis between hosts. The first
ping time takes more time as the route computation takes
place whereas the remaining pings are faster as the routes have
already been computed and cached.

Figure 8. Ping time v/s hosts

Figure 9. Screenshots for ping time analysis

Figure 10. Screenshots for ping time analysis

ISBN: 978-1-61208-450-3

V. CONCLUSION

We have implemented SDN in a data center network
making use of virtualization principles. We have looked at
how the network scales from 8 hosts to 512 hosts in terms of
latency, packet drop rate and bandwidth. From the results, it
can be safely concluded that, as the number of hosts increases,
the bandwidth available decreases, and the latency between
the host and packet drop rate increases accordingly. These
results are in accordance with expected results at the
beginning of the paper and show the efficiency of SDN over
traditional network infrastructure.

VL REFERENCES

[1] Udacity.com, 'Computer Networking Basics Training Course
Online', 2015. [Online]. Available:
https://www.udacity.com/course/computer-networking--ud436.
[Accessed: 10- May- 2015].

[2] Vmware.com, 'Virtualization Basics, What is Virtualization:
VMware | United States’, 2015. [Online]. Available:
http://www.vmware.com/virtualization/virtualization-
basics/what-is-virtualization. [Accessed: 10- May- 2015].

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker and J. Turner, 'OpenFLow:
Enabling Innovation in Campus Networks', 2015.

[4] N. Mir, Computer and communication networks, 2nd ed. Upper
Saddle River, NJ: Pearson Hall, 2015.

[5] T. Nadeau and K. Gray, SDN. Sebastopol, CA: O'Reilly Media,
2013.

[6] Sdnhub.org, 'OpenFlow version 1.3 tutorial | SDN Hub', 2015.
[Online]. Available: http://sdnhub.org/tutorials/openflow-1-3/.
[Accessed: 10- May- 2015].

[7] V. Tiwari, 'SDN and OpenFlow for Beginners', 2013.

[8] Minimiet, http://mininet.org. [Accessed: 10- May- 2015].

[9] POX Controller,

https://openflow.stanford.edu/display/ONL/POX
[Accessed: 10- May- 2015].

129

