
Function Oriented Network Architecture for Realization of Autonomic Networks

Gijeong Kim, Sungwon Lee*
Department of Computer Engineering

Kyung Hee University
Youngin-si, Korea

{kimgijeong, drsungwon}@khu.ac.kr

Abstract—Existing networks have focused on high data
transfer rate and reliable data delivery through lower header
processing and effective signaling. Recently, reducing
CAPEX/OPEX (Capital Expenditures/Operating
Expenditure), deploying new network services, and
orchestration and management are issues of growing
importance in the network. To solve these issues, we propose a
Function Oriented Network (FON) that can facilitate the rapid
deployment of new network functions and protocols to satisfy
the requirements that are generated continuously over time. In
this work, we introduce the FON architecture and describe the
implementation of the FON prototype. Through this
implementation, we demonstrate flexible network
programmability and support core architecture to realize
autonomic networking.

Keywords-Autonomic Networks; Bio-inspired Networking;
Network Programmability.

I. INTRODUCTION

Existing networks, such as the Internet, have focused on
high data transfer rate and reliable data delivery. To achieve
these goals, the network should perform lower header
processing and should have effectively designed signaling.
Over time, advances in hardware and transmission
technology have allowed the user to support a high quality of
data transmission.

Recently, reducing CAPEX/OPEX, deploying new
network services, and orchestration and management are
issues of growing importance in the network. In order to
solve such problems, there are typical network paradigms
such as Software Defined Networking (SDN), Network
Function Virtualization (NFV), and autonomic networking
[1][2][3].

To reduce OPEX/CAPEX and realize an autonomic
network, we designed and implemented the Function
Oriented Network (FON) that realizes a biology inspired
autonomic network and can flexibly deploy new network
services. Moreover, it enables the user and the service
provider, as well as the network operator, to control the user
plane of the network. The FON targets large scale Internet-
of-Things (IoT) and access networks.

The rest of the paper is structured as follows. In Section
II, we introduce the FON architecture and in Section III we
describe its implementation. Section IV presents the
conclusion and future work.

II. FUNCTION ORIENTED NETWORK ARCHITECTURE

In this study, we propose the FON architecture and
SmartPackets to achieve network programmability by
facilitating the rapid adoption of new network functions in
network devices by network operators, service providers, and
users.

In FON, a network node provides functions for network
services on the basis of software and functions for network
services, which are executed in terminals, where they are
specified using open functions and transferred via
SmartPackets. In addition, network services are managed by
updating, distributing and removing functions for network
services, which are executed in network devices via the
network manager. Figure 1 provides an overview of the FON
architecture and the structure of a SmartPacket. The FON
comprises the FON device, FON node, and FON manager.

A. FON Device

The FON device is a database (DB) that stores function
tables with function names and function codes, and a
function processor, which creates SmartPackets and transfers
them to a FON node, as well as receives SmartPackets from
a FON node. The function processor receives function
distribution messages from the FON manager, and stores and
updates the function table information in the FON manager,
including the message in the function table of the FON
device. The function processor can perform SmartPacket
verification using the function tables stored in the DB during
SmartPacket generation. Through this procedure, a FON
device can request and execute network functions in the
FON node.

B. FON Node

A FON node is a DB that stores function tables, which
contain executable function names, function code, and
function usage counts (statistics). A function processor
receives a SmartPacket and extracts information from the
function call field to call the function that corresponds to the
extracted function name, thereby performing the function.
The function processor extracts the function code that needs
to be executed from the DB and it performs dynamic binding
to execute dynamic binding functions. In addition, the
function processor can specify the function execution result
in the SmartPacket payload and it transfers SmartPackets to
other FON devices or FON nodes.

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

C. FON Manager

The FON manager has a DB, which contains a function
table with executable function names and function code, and
an accounting table that manages billing information
according to the function usage of the users and their
subscriber information. The FON manager also has a
management processor that extracts the function table from
the DB and transfers it to the FON device or a FON node.

The management processor adds new functions that can
be executed in a FON node to the function table of the FON
manager and it transfers the function addition message,
thereby adding the function name information and function
code information to the function table of the FON node. The
management processor transfers a function removal message
to the FON node, thereby removing a specific function name
information and function code information from the function
table stored in the FON node. The management processor
receives function usage information for each user from the
FON node and it calculates billing information based on the
function usage per user. It stores and manages this
information in the accounting table.

D. SmartPacket

As shown in Figure 1, a SmartPacket is composed of the
destination MAC header, the source MAC header, the
function invocation field, the payload, and the trailer. The
function invocation field includes the function name
information that needs to be called, along with the required
input parameters. It may contain multiple function names
and input parameters. The output parameters for the
execution results of functions that need to be called can be
inserted into the payload.

III. IMPLEMENTATION

To implement the FON architecture, we built the testbed
using a virtual environment, such as Virtual Box, and we
implemented the FON Device and the FON Node using
Linux virtual machine. The FON Manager was not
implemented as part of this work and will be implemented in
the future. The resources allocated for the virtual machine
were Xeon E5520 2.27GHz CPU, 812MB RAM, 32GB
SSD, and Gigabit Ethernet NICs. The FON Node and the
FON Device were developed using the Python 2.7.9
programming language. The SmartPacket can be involved in

many network function calls. Therefore, it is necessary to
perform encoding and decoding of variable length message.
The SmartPacket structure was implemented by using the
pickle library of Python. Basically, FON should be
implemented as an upper layer of MAC, but our prototype
was implemented using TCP/IP protocol, such as socket
programming. Ultimately, it will be implemented to L2/L3
based protocol.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we introduced the FON architecture and
described its implementation. The FON architecture can
facilitate the rapid deployment of new network functions and
protocols to satisfy requirements that are generated
continuously. In future works, we will carry out performance
evaluation and analysis through simulation and verification
experiments. These experiments will target the processing
overhead and message overhead, and will compare our
approach with similar active network architectures [4]. After
that, we will design and implement an ant-colony
optimization based autonomic network using FON.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of
MSIP/IITP, Republic of Korea. (B0101-15-1366, Development of
Core Technology for Autonomous Network Control and
Management), (B0190-15-2013, Development of Access
Technology Agnostic Next-Generation Networking Technology for
Wired-Wireless Converged Networks)

REFERENCES

[1] Naudts, Bram, et al. “Techno-economic analysis of software
defined networking as architecture for the virtualization of a
mobile network,” 2012 European Workshop on Software
Defined Networking (EWSDN), Oct. 25, 2012, pp. 67-72.

[2] Hawilo, Hassan, Abdallah Shami, Maysam Mirahmadi, and
Rasool Asal “NFV: state of the art, challenges, and
implementation in next generation mobile networks (vEPC),”
IEEE Network, volume 28, issue 6, Nov. 24, 2014, pp. 18-26.

[3] M. Behringer, B. Carpenter, et al. “A Reference Model for
Autonomic Networking,” draft-behringer-anima-reference-
model-04, IETF, Oct. 16, 2015, pp. 1-24.

[4] David L. Tennenhouse and David J. Wetherall, “Towards an
Active Network Architecture,” ACM SIGCOMM Computer
Communication Review, volume 26, issue 2, Apr., 1996, pp.
5-17.

Figure 1. Function Oriented Network Architecture and SmartPacket Structure

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

