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Abstract — This paper presents a packet interleaving 
scheme (PIS) for increasing packet reliability under burst 
errors in wireless sensor networks (WSN). The proposed 
PIS, using Reed-Solomon (RS) codes, classifies data into 
two types: high-reliability-required (HRR) data and 
non-HRR data. An HRR packet is encoded with a short RS 
symbol, while a non-HRR packet with a long RS symbol. 
When an HRR and a non-HRR packet arrive at a sensor, 
they are interleaved on a symbol by symbol basis. Thus, the 
effect of burst errors (BE) is dispersed and consequently 
the uncorrectable HRR packets can be reduced. For the 
purpose of evaluation, two models, the uniform bit-error 
model (UBEM) and the on-off bit-error model (OBEM), 
are built to analyze the packet uncorrectable probability. 
In the evaluation, we first change the lengths of BE, then 
we vary the shift positions in a BE period, and finally we 
increase the number of correctable symbols to observe the 
superiority of the proposed PIS in reducing packet 
uncorrectable probability. 

Keywords: WSN, RS Code, burst errors, interleaving, packet 
uncorrectable probability 

I. INTRODUCTION 
Along with the increasing requirements for quality of 

living and home security, sensors have been widely 
deployed inside or outside a building to collect 
environmental information, such as temperature, 
humidity, image, motion picture, etc. To effectively 
deliver the collected data back to a control center for 
further analysis, a wireless sensor network (WSN) [1-3] 
is usually built. However, packet transmission over a 
WSN may encounter intermittent errors due to weak 
signals or interferences. The erroneous packets, if 
comprising of text or numbers, such as temperature or 
humidity, would require packet re-transmission, which 
increases network load. Thus, the motivation of this paper 
is to increase transmission reliability over a WSN, which 
has recently attracted many researchers’ attention. 

Basically, previous researches on transmission 
reliability over a WSN can be divided into two major 
categories: reliable routing and information coding. In the 
first category, to increase the transmission reliability after 
data are collected by a sensor node, relay nodes (RNs) are 
employed. For examples, H. Chebbo, et al. [4] modified 
IEEE 802.15.4 MAC frames. The authors added one bit 
in the frame control field, with which whether it is 
necessary to build a tree by RNs or just build a simple 
star, can be determined. Moreover, R. Sampangi, et al. [5] 
utilized RNs to divide sensors into several cluster 
networks. Since the distance from a sensor to its cluster 
head is reduced, the quality of data transmission is greatly 

improved. To protect the routing path, S. Kim, et al. [6] 
utilized both coding and retransmission schemes once the 
established path fails. However, in these schemes, it is 
inevitable that end-to-end packet delay will increase 
accordingly due to multiple-hop forwarding.  

Thus, in the second category, instead of developing 
reliable routing, the authors switch their interests to 
information coding. For examples, E. Byrne, et al. [7] 
designed a coding scheme which can increase the 
probability of successful decoding based on graph theory. 
Y. Hamada, et al. [8] proposed a scheme to reduce packet 
error rate by using Luby Transform (LT) codes [9]. Their 
proposed scheme has achieved small complexity of O(n); 
yet too many packets require retransmission when bit 
error rate is high. Thus, K. Ishibashi, et al. [10] proposed 
an embedded forward error control (FEC) technique 
which utilizes RS (Reed Solomon) code to reduce packet 
error rate. Similarly, M. Busse, et al. [11] can recover lost 
chunks by using Fountain code and Raptor code. To 
increase data reliability and processing speed, K. Yu, et al. 
[12] designed a new FEC which protects header and 
payload, respectively. Similarly, M. Srouji, et al. [13] 
proposed a reliable data transfer scheme which can adjust 
the lengths of redundancy code based on the successful 
receiving rate at the downstream node. 

Unlike the previous research work, in this paper we 
propose a packet interleaving scheme (PIS) to reduce the 
impact of burst errors (BE) on high-reliability-required 
(HRR) data in WSNs. Although Reed-Solomon (RS) 
codes may correct bit errors under certain constraints, it 
may not be economically worthy in dealing with burst 
errors when the number of consecutive bit errors exceeds 
a threshold. Hence, to increase packet correctable 
probability in a WSN, the proposed PIS first classifies the 
collected data into two different types: HRR data and 
non-HRR data. An HRR packet is encoded with a short 
RS symbol, while a non-HRR packet with a long RS 
symbol. When an HRR and a non-HRR packet arrive at a 
sensor, they are interleaved on a symbol-by-symbol basis. 
The noticeable benefit from the packet interleaving is that 
the burst errors are dispersed and the uncorrectable 
probability of HRR packets is significantly reduced. 

The remainder of this paper is organized as follows. 
In Section 2, the proposed PIS and its operations are 
described. In Section 3, an analytical model is built using 
two bit-error models, the uniform bit-error model (UBEM) 
and the on-off bit-error model (OBEM). In Section 4, 
numerical results are presented and discussed. Finally, 
conclusions are drawn in Section 5. 
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II. PACKET INTERLEAVING SCHEME 

A. WSN with Multi-hop Tree Structure 
In a wireless sensor network (WSN), a coordinator is 

the sink which gathers all the data collected from other 
distant sensor nodes. To facilitate data gathering from all 
the sensor nodes, it is very constructive that the 
coordinator and the sensor nodes will collaborate to build 
a multi-hop tree structure (MTS), as shown in Figure 1. 
In an MTS-based WSN, data collected by a sensor node 
will be forwarded hop-by-hop to the coordinator. Thus, 
by fully utilizing a branch node of the MTS, in this paper, 
we propose a packet interleaving scheme (PIS) based on 
RS codes to reduce the impact of burst errors on packet 
uncorrectable probability. 

     :Coordinator
     :Sensor

 
Figure 1.  WSN with multi-hop tree structure 

B. Packet Interleaving 
In the proposed PIS, packets collected by a sensor 

node are classified into two different types: 
high-reliability required (HRR) packet and non-HRR 
packet. An HRR packet is defined as a packet which 
requires for retransmission, if uncorrectable burst errors 
exist. Payload in an HRR packet consists of numerical 
data, such as temperature, moisture, luminance, etc. This 
type of packet has relatively shorter data length (usually, 
a couple of bytes) and each uncorrectable HRR packet 
requires for retransmission. Hence, it is better to employ a 
shorter-length symbol (in this paper, we use m = 4) to 
encode an HRR packet with shorter data length. On the 
other hand, payload in a non-HRR packet consists of 
non-numerical data, such as video, audio, etc. This type 
of packet has relatively longer data length (usually, in the 
order of kilo bytes) and each uncorrectable non-HRR 
packet may not require retransmission. Thus, it is better 
to employ longer-length symbol (we use m = 8) to encode 
a non-HRR packet with longer data length. 
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Figure 2.  An HRR encoded with m = 4 

As it is illustrated in Figure 2, an HRR packet is 
encoded with a shorter-length RS symbol (i.e., m = 4). 
First, an M-byte MAC-layer header and payload is 

converted to MM 2
4

)8(
=

× symbols on the basis of 4 bits 

per symbol. Thus, we have the length of a codeword is n, 
where 1514212 =−=−= mn , the number of symbols 
for user data in a codeword is k, where 

ttnk ×−=×−= 2152 , and the number of symbols for 

redundancy code in a codeword is t×2 . Let 



=

k
MN 2 , 

which denotes the number of codeword required for 
encoding the M-byte packet (header plus payload). The 
total redundancy code (or FCS) is therefore equal to 

tN ×× 2  symbols, or )8( 42 ××=××× tNtN  bits. 
Similarly, as it is illustrated in Figure 3, a non-HRR 

packet is encoded with a longer-length symbol (m = 8). 
An M-byte MAC-layer header and payload is converted 

to MM
=

×
8

)8( symbols on the basis of 8 bits per symbol. 

A code-word length, 25518212 =−=−= mn  bytes, is 
much greater than the maximum length of a packet (127 
bytes in WSN). Thus, a code-word is sufficiently enough 
to encode a MAC-layer packet. Thus, the length of 
redundancy code (or FCS) is equal to t×2  bytes. 
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Figure 3.  A non-HRR encoded with m = 8 

When both an HRR and a non-HRR packet are 
received by a branch node in a tree-structured WSN, 
these two packets are interleaved on a symbol-by-symbol 
basis, as shown in Figure 4. The interleaved packet is 
then forwarded to an upper stream node, which performs 
decoding and correction process. However, as shown in 
Figure 5, an interleaved packet may not be correctable, if 
it encounters burst errors where the number of total errors 
is greater than t. In the proposed PIS, by separating the 
interleaved single packet back to their original two 
packets, each individual packet may become correctable. 
This is because the number of errors in each separated 
packet is highly possible to be smaller than t. 
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Figure 4.  Packet interleaving on a symbol-by-symbol basis 

47Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)



 

m=4   

m=8  

 
         ...  

Separate to 

        ...  

        ... 

 

 
 

 
 

4 bits

4 bits 4 bits 4 bits 4 bits

Interleaved 
packet

Burst 
errors

Burst 
errors

8 bits

8 bits 8 bits 8 bits 8 bits

Burst 
errors

4 bits 8 bits

 
Figure 5.  Burst errors dispersed on two symbols 

III. ANALYTICAL MODEL 
Two analytical models are built for comprehensive 

numerical simulations. The first one is referred to as 
uniform bit error model (UBEM), while the second one is 
referred to as on-off bit error model (OBEM). The first 
model assumes the errors occur evenly on the coded 
packets, while the second model assumes the errors may 
occur continuously in a burst length. 

A. UBEM 
Let beUBP _ and seUBP _ denote the probability of bit 

errors and the probability of symbol errors, respectively. 
Since any bit errors occur in a symbol may result in a 
symbol error and each symbol has m bits, we can 
derive seUBP _ directly from beUBP _ , as shown in Eq. (1). 

m
beUBseUB PP )1(1 __ −−=             (1) 

Next, let us define two more parameters, SN and CN . 
The first parameter denotes the number of symbols in a 
codeword and the second parameter denotes the number 
of codeword in a packet. Hence, the uncorrectable 
probability of a codeword ( cucUBP _ ), can be derived as 
shown in Eq. (2). 

 ( ) ( )∑ =
−











−××








−= t

i
iN

seUB
i

seUB
s

cucUB
SPP

i
N

P 0 ___ 1  1  (2) 

In Eq. (2), we know in a codeword if the number of 
symbol errors is smaller than t, then the codeword is 
correctable. Thus, the uncorrectable probability of a 
codeword can be summed up from ti   to0= , since there 

are 







i

Ns  different types of errors. Next, let us 

define pucUBP _ as the packet uncorrectable probability. 
Since there are CN  codeword in a packet, we can 
derive pucUBP _  as shown in Eq. (3). 

( ) CN
cucUBpucUB PP __ 1 1 −−=                             (3) 

B. OBEM 
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Figure 6.  On-off bit error model 

The on-off bit error model (OBEM) is illustrated in 
Figure 6. All the parameters used in the analysis are 
defined in Table I. A burst error (BE) period is defined as 
two consecutive bit error intervals where high bit errors 
appear first and then followed by low bit errors. Notice 
that 0θ  is defined as the length of right-shift position for 
an initial BE period; 00 =θ  implies that no gap exists 
between the beginning of an interleaved packet and the 
beginning of the first BE period.  

TABLE I.  PARAMETERS USED IN OBEM 
1m  Number of bits in a symbol of HRR packet 

2m  Number of bits in a symbol of non-HRR packet 
β  Packet interleaved length in bits ( 21 mm + ) 
on Length of high bit errors (in bits) 
σ  Error probability of high bit errors 
off Length of low bit errors (in bits) 
ρ  Error probability of low bit errors 
ω  Burst length (on + off ) (in bits) 

0θ  Length of initial right-shift position (in bits) 

First, we define seOBP _  as the symbol-error 
probability in OBEM. An interleaved packet (IP) and a 
burst error (BE) may have different lengths; here we 
assume the former has a length of β bits ( 21 mm +=β ) 
and the later has a length ofω bits ( offon +=ω ). Since 
every symbol in an IP may encounter different positions 
of bit errors, we have to analyze the bit error positions of 
a symbol before we can compute the symbol-error 
probability. To compute the error probability of the thα  
symbol, we define (i) sm1  = the distance between the 
first bit of 1m  and the first bit of an IP, and (ii) em1  = 
the distance between the last bit of 1m  and the first bit 
of an IP. Similarly, we define sm2  and em2  for 2m . 
Thus, sm1 , em1 , sm2 , and em2  can be computed as 
shown in Eq. (4), (5), (6), and (7), respectively. 

 βα ×=sm1               (4) 

 111 −+×= mm e βα                             (5) 

 12 mm s +×= βα                             (6) 

 ( ) 112 −×+= βαem                             (7) 

For simplicity, the four parameters, sm1 , em1 , sm2 , 
and em2  are generalized to ijm , where 2 ,1=i  and 
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esj  ,= . Let θ  denote the length of right-shift position 
between an IP and a BE at the thα symbol. Let 

ijmΩ denote the length of right-shift position for sm1 , 

em1 , sm2 , and em2  at the thα symbol. Thus, we can 
compute θ  and 

ijmΩ as shown in Eq. (8) and (9), 
respectively. 

 ωω
ω

θθ     
0 modlengthheaderlengthheader

















−×



+=  (8) 

 θω
ω

+×









−







 +
=Ω 1

1ij
m

m
ij

       (9) 

After we found the right-shift position between an IP 
and a BE, we can categorize the symbol errors into four 
cases. Case 1 shows whether or not a symbol may occupy 
one BE or two BE periods, their start bit and stop bit of a 
symbol all appear at the high-bit-error interval. Case 2 
shows only the start bit of a symbol appears at the 
high-bit-error interval. Case 3 shows whether or not a 
symbol may occupy one BE or two BE periods, neither 
the start bit nor the stop bit appear at the high-bit-error 
interval. Finally, Case 4 shows only the stop bit of a 
symbol appears at the high-bit-error interval. Actually, 
the four different cases of symbol errors can be 
constrained by eight inequalities with four parameters, 

ijm , 
ijmΩ , on, and ω , as shown in Table II.  

TABLE II.  FOUR CASES OF SYMBOL ERRORS 

Case Conditions 

1 
onm

onm

ieie

isis

miem

mism

+Ω<≤Ω

+Ω<≤Ω   and  
 

2 
ω+Ω<≤+Ω

+Ω<≤Ω

ieie

isis

miem

mism

mon

onm

   

 and  
 

3 
ω

ω

+Ω<≤+Ω

+Ω<≤+Ω

ieie

isis

miem

mism

mon

mon

  

  and    
 

4 
onm

mon

ieie

isis

miem

mism

+Ω<≤Ω

+Ω<≤+Ω   and    ω
 

 
Once we identify the four cases of symbol errors, we 

can compute the symbol-error probability. Since one 
codeword consists of sN  symbols, we define 

1 ,...,1 0, ),(_ −= sseOB NP αα , as the symbol-error 

probability of the thα  symbol. Let σ  denote the error 
probability of high bit errors and ρ  denote the error 
probability of low bit errors. Let σN  represent the 
number of bits with errors in a symbol and ρN  
represent the number of bits without errors in a symbol. 

)(_ αseOBP is computed as shown in Eq. (10).  

 ( ) ( ) ρσ ρσα NN
σeOBP −×−−= 111)(_      (10) 

Now, we can compute σN  and ρN  for case 1 as 
shown in Eq. (11) and (12), case 2 as shown in Eq. (13) 
and (14), case 3 as shown in Eq. (15) and (16), and case 4 
as shown in Eq. (17) and (18), respectively. 
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By substituting σN  and ρN  back to Eq. (10), we 
can derive )(_ αseOBP  for the four different cases of 
symbol errors. After we compute the symbol-error 
probability for the four different cases, our next step is to 
derive the uncorrectable probability of a codeword and 
the uncorrectable probability of a packet. We know there 
are CN  codeword in a packet and the uncorrectable 
probabilities of the CN  codeword are all different. Let 

1,...,1 ,0 ),(_ −= ccucOB NllP , denote the uncorrectable 

probability of the thl  codeword and let pucOBP _  
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denote the uncorrectable probability of a packet. By using 
the combination theory of probabilities, we can derive 

)(_ lP cucOB  and pucOBP _  as shown in Eq. (19) and (20). 
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IV. NUMERICAL RESULTS 
To study the influences of the four parameters, (i) the 

length of high bit errors (the on period), (ii) the length of 
low bit errors (the off period), (iii) the right-shift position 
(θ ), and (iv) the number of correctable symbols (t), we 
perform numerical simulations. Table III shows the 
parameters and their setting used in the simulation. 

TABLE III.  PARAMETER SETTINGS 

Parameter Setting 

1m  4 bits 

2m  8 bits 
on 4/6/8 bits 
off 8/6/4 bits 
σ  0.1 
ρ  0.0001 

A. Impact of Correctable Symbols 
First, we are interested in studying the impact of 

increasing the number of correctable symbols when the 
length of high bit errors is shorter than the length of low 
bit errors; i.e., on = 4 bits and off = 8 bits. From Figure 7, 
we can observe that both the packet uncorrectable 
probabilities of HRR and non-HRR curves drop off very 
quickly, when the number of correctable symbols (t) is 
increased from 1 to 3. Additionally, we can observe that 
the curves of pucOBP _ with PIS (the two dashed lines) are 

much lower than the curves of pucOBP _  without using 

PIS (the two solid lines). The improvement of pucOBP _  
by using PIS is more significant when t is small, which is 
quite beneficial for reducing packet overhead, since the 
number of redundancy bits in RS codes can be shorter. 
Another noticeable phenomenon is that although when 
θ  is smaller than 7, HRR with PIS are completely 
inverted to non-HRR with PIS, the curves of HRR with 
PIS do drop to zero when θ  is larger than 7.  

(a)   (on, off, t) = (4, 8, 1)
 

(b)   (on, off, t) = (4, 8, 2)  

(c)   (on, off, t) = (4, 8, 3)  
Figure 7.  Packet uncorrectable probability (on is smaller than off) 

From Figures 8(a) to 8(c), we show the packet 
uncorrectable probabilities when the on period (8 bits) is 
longer than the off period (4 bits). It is interesting to 
notice that when t is larger than 3 and θ  is smaller than 
6, the packet uncorrectable probabilities of HRR with PIS 
are higher than those curves without PIS. Of course, 
when t is smaller than 3 and θ  is larger than 6, the 
situations are completely inverted. Hence, from Figure 11, 
we have discovered that when the period of high bit 
errors exceeds the length of an HRR symbol (m = 4) and 
approaches to a non-HRR symbol (m = 8), it is better to 
encode packets with a small value of t; otherwise, there is 
no advantage achieved by using the proposed PIS. 

(a)   (on, off, t) = (8, 4, 1)  

(b)   (on, off, t) = (8, 4, 2)  

50Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)



(c)   (on, off, t) = (8, 4, 3)  
Figure 8.  Packet uncorrectable probability (on is larger than off) 

Figures 9 shows the comparisons in packet 
uncorrectable probabilities between UBEM and OBEM. 
Notice that the curves of UBEM and the curves of 
OBEM vary along with the following two parameters: (i) 
when the number of correctable symbols increases from 1 
to 5, the curves of UBEM dissever very quickly from 
those of OBEM; and (ii) when the right-shift position 
increases from zero to 8 bits, the gap between these two 
models becomes smaller. Since OBEM is more reactive 
to a real word than UBEM, it is rewarding to know that 
the proposed PIS can reduce packet uncorrectable 
probability in OBEM more significantly than that in 
UBEM. Another noticeable result is that no matter how 
we increase the period of high bit errors (the on period 
from 4 bits in 9(a) to 8 bits in 9(b)), HRR with PIS in 
OBEM always exhibits the lowest packet uncorrectable 
probability (near zero, in some cases). The relatively 
lower packet uncorrectable probability for HRR packets 
has demonstrated that the proposed PIS can successfully 
protect HRR packets from burst errors, while at the same 
time it does not sacrifice non-HRR packets from large 
uncorrectable bit errors.  

(a)   (on, off, θ) = (4, 8, 0)  

(b)   (on, off, θ) = (8, 4, 8)  
Figure 9.  Packet uncorrectable probability in UBEM vs in OBEM 

V. CONCLUSIONS 
In this paper, we have presented a packet interleaving 

scheme to reduce packet uncorrectable probability under 
burst errors in WSN. From the simulations, we have 
demonstrated that, no matter how we adjust the period of 
high bit errors, the proposed PIS behaves more resilient 
to burst errors in OBEM than in UBEM. Finally, by 
carefully adjusting the period of high bit errors and the 
right-shift positions, the PIS can reduce the uncorrectable 
probability of HRR packets to near zero. 
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