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Abstract—Due to the scale and dynamism of cloud computing,
there is a need for new tools and techniques for its management.
This paper proposes an approach to model the load flow in cloud
components using double weighted Directed Acyclic Multigraphs.
Such model enables the comparison, analysis and simulation of
clouds, which assist the cloud management with the evaluation
of modifications in the cloud structure and configuration. The
existing solutions either do not have mathematical background,
which hinders the comparison and production of structural
variations in cloud models, or have the mathematical background,
but are limited to a specific area (e.g. energy-efficiency), which
does not provide support to the dynamic nature of clouds and
to the different needs of the managers. In contrast, our model
has a formal mathematical background and is generic. To this
aim, we present its formalisation and algorithms that support
the load propagation and the states of services, systems, third-
parties providers and resources, such as: computing, storage and
networking. To demonstrate the applicability of our solution, we
have implemented a software framework for modelling Infras-
tructure as a Service, and conducted numerical experiments with
hypothetical loads.

Keywords-Cloud Computing; Management; Simulation; Multi-
graph.

I. INTRODUCTION

The management of pooled resources according to high-
level policies is a central requirement of the as a service model,
as fostered by Cloud Computing (CC). Decision making in the
context of clouds, where there exist many possible configura-
tions and complex data flows, is challenging and is still an
open issue in the field. In order to use the well-established
approaches of decision theory [1] and managerial science [2]
for the CC management, it is necessary to employ formal
models to represent the managed elements and the flow of the
service loads. Furthermore, such a model is also required for
the evaluation of possible actions, and for the analysis of cloud
components and their hierarchy, which are usually carried
out by the management of a cloud operation. We highlight
this lack of formal models based on our previous efforts to
develop methods to CC autonomic management [3][4][5] and
formalisms based on Service Level Agreement (SLA) [6].

Currently, the existing solutions which provide CC models
can be classified into two main groups: general models, usually
represented by the simulators; and specific models, devised
for a particular field (e.g., energy saving). The former lack
a mathematical formalisation that enables comparisons with
variations on the modellings. The latter usually have the formal
mathematical background but, since they are specific, they do
not support reasoning on different management criteria and

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

encompass only cloud elements related to the target area.

To address this gap in the literature, we analyse the
domain elements and characteristics to propose the Cloud
Computing Load Propagation (C,LP) graph-based model, a
formal schema to express the load flow through the cloud
computing components. Considering that a load expresses the
amount of work to process services in systems or resources,
the modelling of the load flows enables cloud managers to
perform several types of analysis about the cloud structure
and behaviour. For example, it enables the comparison of
different cloud structures, the distinction of load bottlenecks,
the quantitative analysis of the load propagation and of the
effects of processing a load in a cloud. In more general
terms, such solution unifies heterogeneous abstraction levels
of managed elements into a single model and can assist the
decision-making tasks in processes, such as: load balance,
resource allocation, scale up/down and migrations. Moreover,
simulations performed using our model can be useful to predict
the consequences of managerial decisions and external events,
as well as the evolution of baseline behaviour.

More specifically, we model the basic components of
CC, the services, systems, third-party clouds that implement
services and the resources over which system are deployed:
computing, storage, networking. Our model is based on Di-
rected Acyclic Multigraphs. This formalism enables the man-
ager to access consolidated analytical mathematical tools to,
e.g., measure the components interdependencies, which is
used to improve the availability and resource allocation. In
order to demonstrate the applicability and advantages of the
C,LP model, we present a use case where our model is used
to compare and evaluate different managerial configurations
over several quantitative behaviour in load propagation and
evaluation.

This article is organised as follows. Section II discusses the
existing cloud models, the works that inspired the definition
of this model and the background information necessary for
the appreciation of this work. In Section III, we present an
overview of the model, formalise it, the propagation algorithm,
and the evaluation process. Section IV describes the implemen-
tation and the analysis performed on a use case. Finally, in
Section V, we discuss the limitations and the future directions
for the research.

II. RELATED WORKS
This section presents the related works that propose models
to describe and simulate clouds. We have analysed them from
a cloud provider management perspective, considering their
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capacity to: express general cloud models, define components
in distinct abstraction levels; compare structures; simulate be-
haviours and provide formal specifications with mathematical
background. Table I summarises this comparison.

We grouped the proposals into two classes: general and
specific. General models are usually associated with simulators
and are used to evaluate numerous criteria at the same time.
On the other hand, specific models are commonly associated
with particular criterion evaluation, such as: performance [7],
security [8][9], accounting [10][11] or energy [12].

All analysed works of the first group, i.e., CloudSim [13],
GreenCloud [14], iCanCloud [15], EMUSIM [16] and MDC-
Sim [17], are data-centre oriented, thus requiring extensions
to enable the abstraction of important cloud elements, such as
services and systems. One exception, the EMUSIM framework,
allows the modelling of applications and, from theses models,
the estimation of some performance measures but it also
depends on data-centre elements, such as: virfual machines
and physical machines. The limitation of the existing generic
solutions to deal with abstract elements and their lack of math-
ematical background hinders the comparison and production of
structural variations in cloud modellings, which, in turn, limits
their capacity to test the performance of managerial methods.

On the other hand, the solutions in the second group, i.e.,
the ones specifically devised for an area, present in-depth
analysis, based on robust formalisms, such as queue theory
[12] [7], probability [8], fuzzy uncertainty [11] and heuristics
[10]. However, these models do not fit well in integrated
management methods that intend to find optimal configurations
considering several criteria of distinct types. Moreover, specific
optimisation models usually are sensible to structural changes,
having no robustness to support the dynamic nature of the
clouds.

The comparison between the related works is presented
schematically in Table I, where: the column “Class” specifies
if a work is general or specific; “Formalism” evaluates the
mathematical background that supports the models; the column
“Components” presents the capacity of a model to express
cloud components in different abstraction levels; the ability to
compare structures is depicted in the column “Comparison”;
and, “Simulation” expresses the capacity to perform simula-
tions using the models.

Considering the gap in the existing cloud modelling tech-
niques, our proposal intents to model the load propagation
and evaluation functions over a graph to obtain expressiveness,
whilst keeping the mathematical background. We opt to model
the “load flow” because it is one of the most important
information for managerial decisions, such as: load balance,
resource allocation, scale up/down and migrations.

III. MODELLING LOAD FLOW IN CLOUDS

This section discusses the main components of cloud
structures and proposes a formal model based on a directed
acyclic multigraph, to represent the load flow in clouds.

Subsection III-A presents the structural model and its main
components. In Subsection III-B, we formally define the data
structures to represent loads, configurations, states and func-
tions. Finally, Subsection III-C discusses the computational
details of the propagation of the loads and the evaluation of
the states for each cloud component.
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TABLE I: COMPARISON BETWEEN RELATED MODELS. H
REPRESENTS A FEATURE, [J A PARTIALLY COVERED ONE AND -
WHEN THE FEATURE IS NOT SUPPORTED.

Model Class | Formali Comp ts | Comparison | Simulation
CloudSim [13] General | ] | |
GreenCloud [14] | General | | | |
iCanCloud [15] General | | | |
EMUSIM [16] General | ] | |
MDCSim [17] General - | | - | |
Chang[12] Specific | | O [ | O
Piischel [11] Specific | | O | O
Nesmachnow [10] | Specific | | Od | ] O
Silva. [8] Specific | | O O O
Vilaplana [7] Specific | | Od | ] Od
C,LP General | ] | | | ] Od

A. Modelling Clouds with C,LP

In C,LP, the structural arrangement of cloud elements is
based in a directed acyclic multigraph (DAM). The nodes of
the graph represent components of the model and can be of
four types.

o Computing, Storage and Networking resources, which are
the base of any cloud service. These components are
always leaf nodes.

e Systems, which are abstractions that orchestrate resources
that provide and implement services. They can be, e.g.,
applications and platforms. In the model, systems must be
directly linked to at least one of each type of resource:
computing, storage and networking. Nevertheless, these
resources might be replaced by other systems or third-
party services. In such cases, the relationship between
the system and the element that represents the resource
(i.e., another system or the third-party service) must be
explicitly defined using stereotypes (virtual computing,
virtual networking or virtual storage).

o Third-Party Services, which might represent: (i) resources
to system components, when the relation is explicitly
annotated with the appropriated stereotype, and (ii) entire
systems which provide services and abstract the under-
lying layers (e.g., email services). The latter models, for
example, hybrid clouds or composed services.

e Services, which are interfaces between the cloud and the
consumers. They are invoked with specification of the
consumer’s needs and, in this model, they are converted
into loads.

Directed edges in our model define to which elements
each cloud component can transmit load. Nodes have two
main processes: propagation of the load; and evaluation of
the impact of the load in the node itself. Remarkably, the
resources components do not propagate load and are the only
nodes that actually run the assigned load, while other elements
are abstract (e.g., applications, middlewares, platforms and
operations systems). Moreover, we consider in the model
also the configurations settings of nodes, which impact the
propagation and evaluation processes.

The cloud offers services and receives requests from con-
sumers. Requests are then propagated to other nodes using a
propagation function that defines to which linked node, the
division and in which form the load will be propagated. Since
loads might have different forms, we model these relations
enabling multiple edges between nodes, which simplifies the
understanding of the model. For example, a service transmits
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B. Formalisation of the Model
Formally, in C;LP model, a cloud C can be expressed as
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Figure 1: Example of the propagation of loads and the evaluation
processes using the C,LP model.

10 giga FLoating-point Operations Per Second (FLOPS) and
100 giga bytes of data to third-party service. This relation is
modelled using two edges, one for each type of load. In case
of change in the structure (e.g., a cheaper storage provider)
the model can be adjusted simply by removing the storage
edge between these nodes and adding it to this new third-party
provider.

The evaluation process measures the impact of the load
in the resources components and, consequently, on the other
nodes of the structure. This process is performed in each node
using an evaluation function, which receives three parameters:
the configuration of the node, the load defined in the incoming
edges and the evaluation of successor nodes. In the case of
resource components, the evaluation function uses only the
configuration and edge’s loads as input.

Figure 1 presents the modelling of a scenario, in which a
cloud provides two services: an email and Infrastructure-as-a-
Service (IaaS). The IaaS is provided by a third-party cloud.
The email service instead, employs a system component to
represent a software email server (in this case a Postfix). This
component uses local computing and networking and storage
from a third-party cloud. The relation (edge) between these
components is annotated accordingly.

In the proposed scenario, we exemplify the load propaga-
tion with a request from consumers to send 2 new emails using
the email service. These 2 emails are converted by the service
component into 2 loads of type “transaction” and sent for the
email server where, consequently, are converted into another
types of load and propagated to the resources linked to the
server.

The evaluation process of this scenario uses different
metrics in each node and is marked as “result:*. For example,
in the service level, the load of 2 emails was measured in terms
financial cost and energy necessary to complete the request.
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e VV is the set of nodes V = {vq,vs,...,

g, q)7 ¢7 Fa v, Fl, '}/), where:

vp} of the
multigraph, such that every item in V represents one
element of the cloud and has one respective node-weight
w,,, that usually is a vector of values;
E is the set of directed edges where E =
{e1,€e2,...,em e = (v,v'), that describes the ability of
a source node v to transmit a load to node v’, such that
each e, also has a respective edge-weight w,, ,;
Vv V. — TV is a bijective function which
maps the nodes with the respective type, where
the set TV is the set of types of nodes, such
that TV = {'computing,’storage’,'networking’,
"system!,service’,"third_party'};
g E{—>system,—>thi7’d—party} — {none,vC’omputing,
vStorage, v Networking} is a function which maps the
edges that have systems and third-party services as target
with the respective stereotype, characterising the relation
between the source element with the target;
® represents the set of propagation functions, where
{fi,f2y.-., fo} and ¢ is a bijective function
¢ : V. — & that maps each node for the respective
propagation function. Each function in the set ® is defined
as f, : N* RY — R°, where: the set N" represents
the space where the n-tuple for the configuration is
contained; the set R’ represents the space where the n-
tuple of incoming edge-weights is contained; and, R is
the space where the n-tuple of the outgoing edge-weights
is contained. To simplify the model and the algorithms,
we consider that configurations are stored in the node-
weight, such that wS°"/ represents the configuration part
of the node-weight vector.
I" is the set of sets that contains the evaluation functions
for the leaf nodes, such that there exists one function
for each distinct evaluation metric (e.g., energy use,
CO2 emission, ...). Then, I' = {I';,T5,...T}, such
that Ty = {gn+1,9n+2,---,9m}. Each set T'y is re-
lated to a leaf node v € Vj.qyp) through the bijective
function v : Vjjeas; — I'. Every gnism is stored in
a distinct position of the node-weight vector of the
respective node — representing a partial state of v —
such that the full new state can be computed through

the expression: w;, = (c1,...,¢n, gnr1(c1,- - ) Cny W),
gn+2(cl7~-~7cn7w:})7~--7gn+m(cl7-- y Cn, W )) where:
C1,...,Cy is the n-tuple with the conﬁguratlon part of

the node-weight w,; w! is the n-tuple with all incoming
edge-weights w, , of v; and w), is the new node-weight
(full state) for v. The complete evaluation procedure is
detailed in Figure 3;

T” is the set of sets that holds the evaluation functions
for non-leaf nodes. Therefore, I" = {I'|,T%,...,T}},
such that each set I {9041,9n42:---,95,} con-
tains the evaluation functions g;,,,,. Every I} is as-
sociated with a non-leaf node v through the bijective
function ~/ Vaon—teay — I”. Since the result of
each function g;,,, is stored in a distinct position
of w!, it represents a partial state of the respective
node v. A new full state of non-leaf nodes can be
computed through the expression: w] = (c1,...,¢p,

30



ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

1: procedure BREADHTFIRSTPROPAGATION(C, WYV W F)
Requires a cloud model C' = (V, E, 7V, 0, ®, ¢), the
set of node-weights WV |Vv € V A 3w, € WV and
the set of edge-weights W¥|Ve, ., € E A Jw,, €

WE,
2: queue <
3: enqueue(x)
4: repeat
5: v dequeue()
6: for each u € successorSet(v) do
7: enqueue(u)
8: end for > enqueues the sucessor of each node
o: Jo ¢( )
10: weonf <« con figurationPart(w,) > gets the
config. part of the node-weight (state).
11 w! <—(w1 0y W2y e vy Wy ) > builds the
incoming edge- welghts in a tuple w;,
12: w? < fo(we™ wl) > w? contains the result of
the propagatlon function.
13: for each w, , € w; do
14: WE « WE g Wy, > replaces the old value
of Wy 4.
15: end for> assign the values for the outgoing edges
of v.
16: until queue # @
return W

17: end procedure

Figure 2: Breadth-first algorithm used for the load propagation.

97/14-1(017 <oy Cny wzn w;v)v g;H-Q(Clv e 7Cn7w wu,,)

S Onam(Cl, - ey wh, W), )), where w) is the new
node-weight of v, c¢1,...,¢c, is the n- tuple with the
configuration part ww”f of the node-weight, w! is the
n-tuple with the incoming edge-weights e, , of v, and
w!, is a tuple which puts together all node-weights of
the successors of v (see Figure 3 for details).

Uy

The main objective of these formalisms is to specify
the data structures that support a model validation, the load
propagation, and elements evaluations. The details of each
procedure concerned with propagation and evaluations are
described in Subsection III-C.

C. Details on the Propagation and Evaluation

The load propagation consists in a top-down process that
uses the breadth-first approach. In a breadth-first algorithm, the
loads are propagated to the neighbour nodes before moving to
the next level nodes. In the specific case on C,LP the algorithm
starts from the loads on the services, corresponding to the
requests received from consumers.

The propagation process uses a queue with the service
nodes (the roots of the graph). Then, a node v is picked
from this queue and all its children are placed into the queue.
Afterwards, a function f,, = ¢(v) is executed to distribute the
load, that is, to define all edge-weights for the outgoing edges
of v. This procedure is repeated while the queue is not empty.
The well defined method is detailed in Figure 2.

When the load is propagated to resources components (leaf
nodes), they execute the load. This execution requires power
and resources and can be evaluated in several forms. For exam-
ple, energy (kw), performance, availability, accounting, secu-
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rity, CO, emissions and other cloud specific feature units. This
evaluation process takes every function ¢,4,, € 'y in order
and computes each partial states, storing them into a position of
the new node- Weight w,,. A finer description can be defined as:
wh, = (wc"” s g1 (WS jconf LWL Gnam (WS wl), such
that w!, represents the a posterzorz state for the node v, w“’"f
are the conﬁguratlons (a priori state) of v, w! are the incoming
edge-weights of v, and gy, € 7(v) are the evaluation
functions associated with the node.

The evaluations also include the non-leaf nodes since
the load also passes through them and it is useful, e.g., to
understand the load distribution and to identify bottlenecks.
In the case of non-leaf nodes, the evaluation requires also the
evaluation results of the bottom nodes. Therefore, this process
is performed from the leaves to the roots using a depth-first
approach.

Resources evaluation occurs according to several models
that convert the configuration, loads and the results of other
evaluations into node-weights.

A non-leaf node receives the tuples (config,loads,
children_states), and evaluates by the processing
of all g,,,, € 9(v) functions. A representation
of this process can be described as: w;, =
(wcanf7 gn+1(wconf wy, U) )7 e

v
/ con
v ﬂg71,+7n(w1) f wm w1L1,)
such that w/,

represents the new node-weight (a posteriori
state) for the node v, we™/ are the configuration part (a
priori state) of node- weight into v, w! represent the incoming
edge-weights of v, w!, are the computed node-weights of
the successors of v, and Gnsm € 7'(v) are the evaluation
functions associated with the node.

The complete evaluation process is detailed in Figure 3,
where a stack is used to perform a depth-first computation.
The first non-visited child of a current node is placed into the
stack and will be used as current node. When all children of a
node are evaluated, then the node is evaluated. If the node is a
leaf node the g functions are used to compute the evaluations,
otherwise, the ¢’ functions are used instead.

IV. EXPERIMENTS AND RESULTS

This section presents numerical experiments with the C,LP
model, based on a service modelling. These experiments serve
to: fest the applicability of the model; present a concrete
example of modelling; and, demonstrate the model capacity
for quantitative behaviours generation combining variations
of propagation and evaluation functions.

To perform these experiments, we have implemented a
use case using our model. This use case exemplifies the
model’s usage and serves to test its feasibility. The example of
model’s usage was made using hypothetical functions, since
its objective is to prove the generation of simulations, the
propagation and the evaluation. Nevertheless, our model can
be used for modelling real-world clouds, provided that the
propagation and evaluation functions are adjusted to the cloud
instance.

As use case, we defined a laaS service where consumers
perform five operation: deploy VM, undeploy VM, start VM,
stop VM, and execute tasks. To meet the demand for these
services, we designed a hypothetical cloud infrastructure with
which is possible to generate quantitative scenarios of propaga-
tion and evaluation — in a combinatorial fashion. Using this hy-
pothetical infrastructure, we have tested some managerial con-
figurations related to load distribution over the cloud elements,
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1: procedure DEPTHFIRSTEVALUATION(C, WV W) >
The same input described in Figure 2.

2: B+ o > initializes the set of visited nodes.
3: stack < @ > initializes the stack.
4: push(x) > starts from the hypothetical node.
5: while stack # @ do

6: v < peek() > gets a node without to remove it.
7: for each u € successorSet(v) do

8: if u ¢ 3 then

9: push(u)

10: continue while

11: end if

12: end for if the for loop ends, all successors have

been evaluated.

13: we™f < con figurationPart(w,) > gets the

config. part for v.
14: wl < (w1, wa, ...y Wey ) > builds the n-tuple
with the incomings of v.

15: if isLeaf(v) then

16: wh) — (W g (W wi),
gn-l-nL(wchonfa w;))a v.gn-‘rm € V(U)
> computes the partial states and builds
the new node-weight.

17: else

18: wy, 4 (wy,, Wy, .., wy, ) >
builds the computed node-weights for all
ul|Jey,, € E.

19: wl, (wff’"f,g_;lﬂ(wf;"”f, wh,wl, ), ...
g;H_m(ch)onf’ qu)v w;v))v Vg;L+7rL € Fyl(v) >
computes the partial states and builds the
new node-weight.

20: end if

21: WV« WV @wl, b replaces the old state of v

into the node-weights.

22: if v ¢ § then

23: B+ BUwv

24: end if > puts v in the visited set if it is not there.

25: v < pop() > gets and removes v from the stack.

26: end while

return WV
27: end procedure

Figure 3: Depth-first algorithm to evaluate in specific metrics the
impact of the load in each node.

in order to evaluate the average utility for all quantitative
scenarios. At the end, the configurations which achieve the best
average utility for all quantitative scenarios were highlighted,
depicting the ability of the model to simulate configuration
consequences for the purpose of selecting configurations.

A. Use Case Modelling

To deal with the consumers’ loads (deploy, undeploy, start,
stop and execute), the infrastructure manages: the service
interface; systems, such as load balancers, cloud managers
and cloud platforms; and resources, such as servers, storages
and physical networks. All operations invoked by consumers
represent an incoming load on the service interface, which
is propagated to resources. In the resources the loads are
evaluated to provide measures about performance, availability,
accounting, security and CO; emissions. These evaluations are
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then executed also for systems and, at the end, for the service
interfaces.

The modelling of the use case was devised considering
21 components: 1 service, 9 systems, and 11 resources. The
services represent the interface with customers. In this use
case, the systems are: a load balancer; two cloud manager
systems; and six cloud platforms. Also, between the resources
there are: 8 physical computing servers (6 work servers and 2
managerial), 2 storages (1 work storage and 1 managerial), and
1 physical network. A detailed list of components is presented
in Appendix I.

Regarding the edges and loads, each consumer’s operation
is modelled as an incoming edge in a service interface node
— with the respective loads in the edge-weights. The service
node forwards the loads for a load balancer system, where
the propagation function decides to which cloud manager the
load will be sent, whereas the manager servers, the manager
storage and the physical network receive the loads by its
operation. In the cloud mangers, the propagation function must
decide to which cloud platform the loads will be sent and, at
the same time, generate loads for the managerial resources. The
cloud platform system effectively converts its loads into simple
resource loads when uses the work server, work storage and
physical network. The complete relation of load propagation
paths is presented in Appendix I, where an element at the left
side of an arrow can propagate loads for an element at the right.
Furthermore, a graphical representation of these tables, which
depicts the graph as a whole, is also presented in Appendix I.

Besides the node and the edges, the use case model
required the definition of: e 4 types of propagation functions
— one for the service and tree for each type of system; e 6
types of leaf evaluation functions — two specific performance
evaluations, one for computing resources and another for stor-
age and networking; plus, four common evaluation functions
(availability, accounting, security and CO, emissions) for each
type of resource; e 5 types of non-leaf evaluations functions.

We have modelled the possible combinations to dis-
tribute the loads {1-deployVM, 2-undeployVM, 3-startVM, 4-
stopVM, 5-compute} as a partition set problem [18], resulting
in 52 distinct possibilities of load propagation. Also, we intro-
duced 2 possible configurations into each evaluation function
for leaf nodes. These configurations are related to the choice
of constants into the function. For example, the performance
of a computing resource depends on its capacity, that can
be: a = B50GFLOPs or b = T0GFLOPs. Considering 5
distinct evaluation functions over 11 leaf nodes, we have got
(2°) = 255 possible distinct configurations to test.

B. Evaluations

The numerical experiments were performed running the
propagation procedure, followed by the evaluation of every
simulation. For each possible propagation, we tested and
summarized the 2% configurations for evaluation functions.
Then, we analysed the average time (p, in seconds), average
availability (av, in %), average accounting (ac, in currency
units), average security (s, in % of risk of data exposition),
and average of CO, emissions (c, in grammes). Each value
was normalised according to the average for all propagations,
tested and summarised in a global utility function, described
in (1) — where the overlined variables represent the normalised
values.

Such results enable cloud managers to choose the best
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TABLE II: SUMMARY OF AVERAGE EVALUATIONS FOR EACH

CONFIGURATION.
Criteria Configuration
Code 11221 11231 11232 11212
Time 180.59976 180.5999 180.60004 180.59991
Availability 0.9979606 0.99795955 0.9979587 0.99795926
Accounting 78.69924 78.69926 78.699234 78.699265
Security 0.9979606 0.99795955 0.9979587 0.99795926
Emissions 82848.31 82848.14 82848.51 82848.74
Utility 1.0526400204 1.0526410547 1.0526477776 | 1.0526491889

scenario according to the priorities of the policy or to provide
input for the decision-making process, such as Markov Chains.

u=—(av+35— (p+ac+7)) (1)

The best four results of the fifty two numerical experi-
ments are presented in Table II in ascending order, where
the configuration that achieves the best average utility is
highlighted in bold. The code line in the table represents the
propagation configuration, whereas the other lines contain the
values obtained for each distinct evaluation type. The last
row presents the average utility defined in Equation 1. To
represent configuration we have adopted a set partition notation
to express the propagation paths, such that each position in
the code represents a type of load: 1-deploy, 2-undeploy, 3-
start, 4-stop, and 5-compute. Considering that at leaves of the
propagation graph there are 6 cloud platforms, a code 11212
indicates that the loads of type 1,2 and 4 were allocated on
cloud platform 1, whereas the loads 3 and 5 ware allocated in
the cloud platform 2.

V. CONCLUSION

Several solutions have been proposed to model clouds.
However, to the best of our knowledge, none is general and has
mathematical formalism at the same time, which are essential
characteristics for the consolidation of analytical methods.

In this study, we have presented an approach with these
characteristics to model clouds based in Directed Acyclic
Multigraph, which has the flexibility of general models and
the formalism of the specifics. Therefore, C,LP is a flexible
well-formed modelling tool to express flow of loads through
the cloud components. This model supports the specification
of elements in distinct abstraction levels, the generation of
combinatorial variations in a use case modelling and the
evaluation of the consequences of different configuration in
the load propagation.

We developed a simulation software tool for the modelling
of IaaS services and demonstrated the applicability of our
approach through a use case. In this use case, we simulated
several graph network theoretic analysis, evaluated and com-
pared different configurations and, as a result, supplied the
cloud managers with a numeric comparison of cost and benefits
of each configuration. These experiments, demonstrated that
this tools provides an essential support for the management of
cloud.
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APPENDIX I: IMPLEMENTATION DETAILS

TABLE III: THE CLOUD ELEMENTS — NODES OF THE GRAPH.

CS - computing service
LB - load balancer
CM1 - cloud manager 1
CM2 - cloud manager 2
CP11 - platform 11
CP12 - platform 12
CP13 - platform 13

CP21 - platform 21
CP22 - platform 22
CP23 - platform 23

MS1 - manager server 1
MS?2 - manager server 2
MSTO - manager storage
WSI11 - work server 11

WSI12 - work server 12
WS13 - work server 13
WS21 - work server 21
WS22 - work server 22
WS23 - work server 23
WSTO - work storage

PN - physical network

TABLE IV: THE LOAD PROPAGATION RELATIONS — EDGES OF THE GRAPH.

ENG cM13cpit CPI1 — WS11 | CP21 — PN
cs5LB cM1-2cp12 CP11—PN CP21—WSTO
LB2CMI CM125CP13 CP11—WSTO CP22—W22
LB2.cM2 CMI — PN CP12—WSI2 CP22 — PN
LB — MSI CM2 — MS2 CP12 — PN CP22 — WSTO
LB — MS2 CM2 — MSTO | CPI2 — WSTO | CP23 — W23
LB — WSTO cM2 25 cp21 | CPI3— W13 CP23 — PN
LB — PN cM2 2 P22 | CP13— PN CP23 — WSTO
CMI1 — MSI cM2 25 cP23 | CPI3 — WSTO
CM1 — MSTO | CM2 — PN CP21 — W21
Computing
Service
Load
Cloud Balancer Cloud
Manager 1 Manager 2
Manager Manager Manager
Server 1 Storage Server 2

Platform Platform Platform

s

12 163
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=3
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Storage
Work Work Work Work Work Work
Server 11 Server 12 Server 13 Server 23 Server 22 Server 21
Phisical
Network

Copyright (c) IARIA, 2016.

Figure 4: Graphical representation of structural arrangement for the modelling use case.
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TABLE V: PROPAGATION FUNCTIONS.

Types

Declarations

Definitions

service

balancer

cloud manager

cloud platform

¢S ’ ’
(wy, -+, ws) — (wy, -+, wp) .

FLB
(01,---7057/71117‘“ ,Ws) F——

(wll""7w14)

FOMn
(01/1»“,057/1017"' , Ws) F——>
(wi, ..., wig)

fCPnn

(wi, -+ ws) ——— (w], wh, wy).

wy, is the weight for = C'S).
w!, is the weight for (C'S = LB).
w!, = wp|Vw!, € fO5.

cn, € {CM1,CM2}, are the configurations which represent the targets of
each load w, |1 < n < 5.

r wy ifep, = CM1
Wn = 0 otherwise

’ _ wy  if e, = CM2
Wnts = 0 otherwise

w'1>n25, are the weights in the edges LB ENGYIN

wé>n>10, are the weights in the edges LB Syema.

w),; = 1Gflop, is the a constant computing load in LB—MS]I.

w), = 1G flop, is the a constant computing load in LB—MS2.

wiS = 50G B, is the a constant storage load in LB—MSTO.

wi, = wi + 40, is the load over LB—PN, such that w; is the VM image
size in GB, comes from deploy VM operation, and 40 is a constant value in GB
for the another operations.

¢, € {CPml,CPm2,CPma3}, are the configurations which represent
the targets of each load w, |1 < n < 5.

w! :{ :)un if ¢,, = CPml

. <
n otherwise ‘ Lsn<sb

w;+5 _ { wy  if ¢, = CPmM2

0 otherwise ‘ lsn<s

w if ¢, = CPm3
w;”rlo = { 0 " Zlherwise ' Isn<s
w}s = 1G flop, is the a constant computing load in CMn—MSn.
w), = 50G B, is the a constant storage load in CMn—MSTO.
wig = w1 + 40, is the load over CMn—PN, such that w; is the VM image
size in GB, comes from deploy VM operation, and 40 is a constant value in GB
for the another operations.

w1, - -+ ,Wws, are the main loads come from the service, associatively, wq —
deploy VM, wz — undeploy VM, w3 — start VM, w4 — stop VM, and ws —
compute tasks.

w’, wh and w} are, respectively, the edge-weight for the arcs CPnn—WSnn,
CPnn—WSTO and CPnn—PN, where:

w) = w1 — w2 + w3 — wa + ws;

wé wy — wy + 1M B;

Wy w1 +ws —wyg + 1M B.
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TABLE VI: EVALUATION FUNCTIONS FOR LEAF NODES.

Types

computing specific functions

storage and network specific functions

common functions

Functions
performance (duration): d(load) = %,
d is the total time to resolve the load.

where load is expressed in GFlop, capacity is a constant of 7T0GFLOPs and

energy increment (kWh): energyincrement(load) here is considered a linear function which returns the amount of energy
necessary to process the load above the average consumption of standby state. For computing have been considered 0.001kW
per GFLOP.

performance (duration): d(load) = %, where load is expressed in GByte, capacity is a constant of 1GBps and d is
the total time to resolve the load. For the networking resources this concept is intuitively associated with the network throughput,
however, for storage is necessary to explain that the performance refers to throughput of the data bus.

energy increment (KW): energyi;ncrement (load) for data transmission is assumed as linear, and was here considered 0.001kW
per GB transferred.

availability: av(load) = 1 — pgquit(d(load)), where psqyi¢ is the probability which a fault occurs during the load
processing. Here will be considered a linear naive probability, such that p¢q.1¢(d) = d x 0.01.

accounting: ac(load) = Priceenergy X €NETgYtotal, Where priceepergy is a constant of 0.38US$/kW
or 0.58US$/kW, depending on node configuration; and energyiotal = energyincrement (load) +
energyaverage (d(load)), such that energyaverage(d(load)) = d(load) x 0.1kW is the shared energy spent

by the cloud by time slot, and energy;ncrement(load) is the increment of energy result of resource usage.

security (risk of data exposition): s(load) = 1 — DPegposure(load), where pezposure(load) is the probability that
the load processing results in data exposure and s(load) is the trustability of the operation. The pezposure (load) is calculated
as 0.001 for each second of operation.

CO; emission: ¢ = energyiotar X 400, where energyiotq: was defined in the accounting evaluation function and
400 is a constant which represents the grammes of CO, per kW.

TABLE VII: EVALUATION FUNCTIONS FOR NON-LEAF NODES.

Types Declarations Definitions
performance maximum duration of loads sent for successor | po(wi,...,ws, w],...,w,) = maz(wi[p],...,w, [p]), where p,
nodes. represents the total time to process the incoming loads, and w!, [p] represents
the specific part of in the node-weight of n successor nodes, regards to the
duration to process the loads sent by the node v.
availability the product of the availability of successor nodes | av,(wi,...,ws,w],...,w,) = [[w/, [av], where av, represents the
according to the sent loads. total availability of a node v according its dependencies, and w;’ [av] represents
the availability part in node-weights of the successors of v, related to the loads
sent.
accounting the sum of costs relative to the sent loads for acy (Wi, ..., w5, W, ..., w,) = > w [ac], where ac, is the total cost
successor nodes. related to v and regards to the loads processed in the successors, and w’, [ac]
is the accounting part of the successors’ node-weight.
security the product of security (regards to data exposition) | s, (w1, ..., ws,w],...,w,) = [Jw! [s], where s, represents the total
of successor nodes according to the sent loads. security measure of a node v, and w; [s] represents the security measure part
in node-weights of the successors of v, related to the loads sent.
CO, emission the sum of total emissions relative to the loads Co(Wi, ... w5, WY, ., w;) = » w'n lac], where ¢, is the total CO,
sent to the successor nodes. emission associated with a node v, and w), [ac] is the node-weight part
associated with the emissions caused by the loads sent from v.
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