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Abstract—Data Centre Design is a complex task due to the wide
range of technological options and building blocks available.
Deriving the data centre system architecture is done based on
a couple of uncertain assumptions rather than known facts. The
future workload of users or, more precisely, of their applications
can only be predicted. Furthermore, the benchmarking and de-
sign process is typically driven by hardware features and options.
In this paper, we argue that an important aspect to be considered
in the design process is not only the network capabilities and
topology but also the intended virtual switch solutions and their
performance potentially jeopardising the overall system quality.
The paper contains preliminary work based on a new network-
aware algorithm for virtual machine placement in a virtualised
cloud environment. Our initial evaluations help to create a fast
and effective decision-making model for such an algorithm.

Keywords–Data Centre Design; Virtual Switch; Software De-
fined Networking Performance.

I. INTRODUCTION

The design of a data centre is inherently complex and
covers a wide range of technical disciplines. The task starts
with considerations on the server capabilities, their specific
configurations in terms of Central Processing Unit (CPU)
types, frequency, number of cores, as well as all the other
hardware components such as main memory, I/O system,
network connectivity and network topology. At the end of
the process, the facility infrastructure planning covers power
supply and distribution, cooling approaches and optimisation,
as well as specific floor plans describing the layout of the
racks in rows within the computing room, and preparing the
set-up and operation of the system. The latter part has gained
particular attention in the last years as values for achieving
power efficiency e.g., expressed with values, such as the Power
Use Efficiency (PUE), have become an essential part of the
design process.

Some data centre systems are designed for highly resource
demanding applications such as for technical simulations or
big data analytics. Before a procurement or buying decision
for those data centres is done, it is common to realise a tailored
data centre design. This design aims to deliver a system with
a balanced server architecture by avoiding a system where
one or a combination of several components limits the overall
system performance. For example, as discussed in [1], this
process requires an in-depth analysis of collected usage and
performance data of a previous or similar systems, and varies
significantly for different user groups and disciplines, even

within a single application domain. Therefore, it is common
to have no homogeneous system architecture, but a combined
and jointly operated system with several segments that might
differ significantly in their server architecture [2].

Many Cloud computing data centres are designed to cover
a wide range of applications. They are optimised for low
costs that can be best achieved with a system architecture
that is based on simple components and is as homogeneous
as possible. In this paper though, we focus on heterogeneous
Cloud data centres that have optimised servers for hosting
different types of Virtual Machines (VMs), and perform an
active management not only for the initial placement of VMs
but also for their migration to different servers based on
observed performance, as proposed in [3]. This is particu-
larly true if the targeted applications are resource demanding,
such as High Performance Computing (HPC) simulations or
High Performance Data Analytics (HPDA) [4] workloads. In
traditional HPC data centres, the analysis and system design
can be focused on the application workload and the operating
system [5]. For a Cloud environment, the overhead of the
hypervisors and, as we argue here, the network infrastructure
play a key role and must be considered jointly with the hard-
ware options. In other words, selecting the hardware system
independently from the targeted virtualisation infrastructure
can lead to severe bottlenecks and underutilisation.

We claim that, due to the currently observed performance
characteristics of virtual switches, which are included in cloud
environments such as OpenStack, have a severe impact on the
overall data centre design. In particular, for Cloud data centres
with demanding applications, the analysis of limiting capabil-
ities of the underlying physical infrastructure is a common
approach for selecting the most appropriate hardware for a
given set of applications. This is commonly done by defining
a set of benchmark applications that represents a typical
workload in all of its aspects, from CPU load, over memory
and external storage access patterns down to its communication
behaviour. In general, these application-driven benchmarks are
complemented by synthetic benchmarks. In order to provide a
method to deliver comparable results across different system
configurations that are considered as technological basis for a
new data centre or, to find the most appropriate hosts within
a given data centre, these synthetic benchmarks represent iso-
lated elements with well understood and repeatable behaviour.

In a virtualised environment, in principle, the same ap-
proach can be followed with the extension that the analysis of
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the physical hardware is no longer enough, but a set of virtual
machines operating at the same time on a host in a defined
mix has to be considered. Due to well advanced capabilities
in hypervisors to virtualise CPU and memory resources, the
loss of performance compared to a non-virtualised operation
has decreased visibly with newer hardware generations, and
has provided the foundation to include highly demanding
applications within a virtualised environment.

The quality of the network connectivity plays a major role
not only for the communication with other VMs, but also
for accessing remote storage systems. Despite its key role in
delivering overall performance, quite surprisingly, the network
virtualisation is still often done with a purely software-based
approach rather than relying on hardware level features.

In this paper, we introduce an initial model on how the
performance limitations of virtual switch solutions can have
an impact on the configuration options for a Cloud system
architecture. In particular, these limitations represent a major
caveat for demanding applications, and make the adoption of
the Cloud model for such high performance applications less
attractive.

A. Problem Statement
More specifically, the questions that need to be tackled in

order to address the aforementioned issues are:

1) How could existing benchmarking and design ap-
proaches from HPC Data Centre design be extended
or re-used to determine network bottlenecks in Cloud
data centres?

2) Which methods can be used to identify performance
properties of virtual switches and derive a model to
predict the performance for different load situations?

3) How can such a model be used to validate the
suitability of potential system architectures?

B. Related work
The work done in [6] is focused on VM placement and

traffic routing in the data centre network in order to reduce the
traffic cost. One online algorithm was introduced for the dy-
namic arrival and departure of VMs. Another online algorithm
based on Markov approximation method was also presented by
the authors, which performs a tradeoff between performance
and cost. Although their work showed significant improvement
on very large and small flows of data centre network, they
have not considered the impact of the virtual switch on their
proposed algorithms. In [7] Cohen et. al. discuss options for
bandwidth-constrained VM placement optimisation problems.
The algorithm is focused on storage area networks and is
depicted from the communication between VMs and the core
of the data centre network that connects the storage devices to
the data centre network. Neither of these approaches has taken
virtual switch constraints into account.

C. Solution Approach
The assumptions made for our approach are that the data

centre considered is not a general purpose system, potentially
hosting all kinds of applications with a completely unpre-
dictable behavior, but certain knowledge is available about the
types of applications hosted and their behavior. Based on these
assumptions, application benchmarks creating a realistic and

representative load can be derived, and synthetic benchmarks
can be created by putting artificial load e.g., on the network
to perform tests in a repeatable and consistent manner across
different systems.

The remainder of this paper is structured as follows:
Section II provides a theoretical model for the VM placement
decision in a virtual switch aware Cloud data centre. Section III
discusses our work on evaluating the performance charac-
teristics of current virtual switch solutions for the network
traffic model. Section IV presents the results gathered from
these performance measurements, and interprets them. Lastly,
Section V contains the conclusions drawn from this paper and
an outlook on future work.

II. NETWORK UNAWARE VM PLACEMENT

The challenge for an initial placement of VMs can be
described as finding a distribution of k VMs (v1, v2, . . . , vk)
with a known maximum resource demand that is defined by a
metric such as number of virtual cores, memory or disk space
on a number of n servers with potentially different capabilities
and load situation S1, S2, . . . , Sn. Current models often focus
on memory and compute core demand. If shared storage is
used, no disk bottlenecks need to be considered with respect
to capacity. A simplified algorithmic view assuming core and
memory use as driving metrics is shown in the algorithm in
Figure 1.

function SIMPLECOUNT(vmList)

coresConsumed = 0
memoryConsumed = 0
vmCount = 0

5: while vmList.current()6= null do
memoryConsumed += vmList[i].memoryReq
coresConsumed += vmList[i].coreReq
if currentMemory ≤ memMax

&& currentCoresUsed ≤ coreMax then
10: vmCount +=1

vmList.next()
else

// we exceeded the available resources...
exit

15: end if
end while
return vmCount

end function
Figure 1. Simple network agnostic VM packing algorithm

This almost naive algorithm is not uncommon in current
Cloud implementations and sometimes only memory footprint
of a VM is considered [8]. While it is definitely not a very good
approximation of changing workload demands, it is commonly
used as it maps nicely on the instance types. Instance types are
the units that represent how resources within a cloud are typi-
cally offered. In addition, these metrics are well understood, as
they relate to the typical selection criteria of physical servers in
the past. Furthermore, for many applications in the data centre,
the available network capacity of several 10Gbps, 40Gbps or
even 100Gbps ports exceed the typical demand visibly. In order
to address concerns related to security and potential influence
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on performance on these shared network resources, virtual
switches have been established as a common approach to act
similarly to the hypervisor for CPU and memory resources as
gatekeeper between different VMs.

We consider in this paper, in particular resource demanding
applications in terms of communication. For example, due to
significant I/O traffic on a network provided storage device,
not only the performance of the network links but also the
performance of the Virtual Switch becomes a concern.

A. Variety of virtual switch approaches
There are several virtual switch products currently available

and they differ fundamentally in the way they are implemented.
This section aims to provide a compact overview on the
different switching approaches. In general, these switches
consist of a data plane and a control plane. The data plane
handles packet manipulation and contains the forwarding logic.
The control plane manages the rules under which the switch
operates through some sort of management protocol. In terms
of implementation, there exists a spectrum from fully software-
based switching approaches to integration of switching logic
directly into hardware components. The detailed performance
implications of these design decisions have yet to be evaluated.

Open vSwitch (OVS) [9] is an example of a purely
software-based managed virtual switch [10], [11]. It is often
used for network virtualisation in cloud environments such
as OpenStack. Open vSwitch supports a variety of network
virtualisation and management protocols. Fundamentally, the
switch consists of a kernel space data plane and user space con-
trol plane. To avoid costly context switches between the kernel
and user space components, flow caching is implemented as
part of the kernel side logic of the switch.

The Intel Data Plane Development Kit (DPDK) [12] is a
collection of user space application libraries dedicated to high-
performance packet processing [13]. It improves performance
by providing applications with multi-core enabled data plane
functionality and poll mode Network Interface Card (NIC)
drivers, which operate directly in user space. These drivers are
available for 1GbE and 10GbE interfaces. Intel DPDK vSwitch
is based on Open vSwitch, and modified to take advantage
of the functionality provided by DPDK. This increases its
packet switching performance, especially when handling large
quantities of small packages [14], [15].

Lagopus [16] is a software-based, OpenFlow 1.3 compliant
SDN switch with support for network function virtualisation
and multiple data plane implementations [17]. Communication
between the data plane and the switch agent takes place
through an event queue mechanism. There exist multiple data
plane implementations for the switch, such as raw sockets,
Intel DPDK, and bare-metal switch variants that benefit from
hardware acceleration.

In contrast to the previously mentioned products, the
Mellanox eSwitch takes advantage of switching capabilities
embedded in supported NICs [18], [19]. A user space daemon
provides access to the switch’s functionality. Moving the data
plane directly into hardware yields the potential of improved
performance compared to purely software-based solutions. In
addition, it supports single root I/O virtualisation (SR-IOV)
to multiplex multiple virtual interfaces (virtual functions) into
a single physical interface (physical function). This, in com-
bination with the embedded switching capabilities, removes

the need for software-based virtual network devices for the
connection of guest instances. This in turn leads to improved
performance, while simultaneously reducing the CPU load
of the physical host. In such a scenario, the eSwitch can
handle packet flows between the physical and virtual functions,
apply packet filtering rules (including protection against Media
Access Control (MAC) spoofing), and isolate virtual networks
using Virtual Local Area Networks (VLANs). However, in
order to use eSwitch, specialised Network Interface Cards
(NICs) are required, and the number of virtual functions
available to the host is limited by the internal architecture of
the NIC.

B. A virtual switch aware design method

As outlined in the previous section, different approaches
exist to realise virtual switches. From purely software based
over NIC aware up to NIC embedded switch solutions, one
can also expect a wide range of different performance char-
acteristics. As a result, the network demand, along with the
current common metrics, needs to be included in the decision
in order to make a suitable initial placement of VMs and
perform migration and optimisation steps during operation.

Compute and memory demand can be considered as sep-
arate due to the capabilities of the underlying hypervisor.
Although virtualisation can be achieved by using the virtual
switches, the traffic produced by the different VMs is com-
bined and is using the shared network resources per server.
As a result, a more complex model for modelling the network
demand is necessary where the overlay of the traffic from all
VMs within a server needs to be considered.

Initially, consider the following model for a VM’s network
load as shown in Equation (1). It is very simple and it assumes
that with a probability p, the VMi is sending with a fixed rate
of k kbps, and with probability 1− p, no traffic is generated.

VMi =

{
k kbps p

0 kbps 1− p
(1)

A simple traffic model can be achieved from this initial
model by using values for average bandwidth k and probability
p for active and inactive periods, as well as an average time
in state active and inactive based on traffic analysis. This
traffic model can be used in a simulation to estimate average
workload of different VMs combined at a virtual switch. It can
be further extended by defining several states with different
bandwidth demands and a matrix expressing the probabilities
to move from a state i to a state j. With this model, we have
assumed for the sake of simplicity, Markov properties that only
the previous state is relevant. Furthermore, we can now define
a matrix of probabilities Q for changing from state i to j as
shown in Equation (2).

Q =


0 q01 . . . q0(n−1

q10 0 . . . q1(n−1)

... . . .
. . .

...

q(n−1)0 . . . q(n−1)(n−2) 0

 (2)
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Together with the probability or time to stay in a state,
we have a more fine grained model for the traffic that can be
expected from a given VMi. These probabilities can be either
derived from the nature of the VM performing a white box
modelling or, by observing the properties using traffic analysis
tools and discretising the measured bandwidth to a defined
number of different states and their changed probabilities.

In order to make a prediction, if a given server using a
specific virtual switch is overloaded with a load of n VMs,
one also needs to model the capabilities of the virtual switch
as well. Again, a mix of the white box approach e.g., derive
the overhead of certain methods to realise the tunnels, and
black box modelling to determine how the outgoing bandwidth
changes based on input load, has to be used. An initial model
could be using the simple VM model with on and off states as
a prediction, for how many VMs, a virtual switch can deliver
the accumulated bandwidth as outgoing traffic. So the initial
virtual switch model would correspond to the sum depicted in
Equation (3).

BWout = min

{
n∑
1

VMi ; saturation bw

}
(3)

While this initial simple model for the switch is clearly less
complex than the ones you can find in network simulators,
it can be used to derive very quick decisions within a VM
placement algorithm. For example, we can use it to decide if
a given VM fits within a given server or, how many VMs can
be hosted by a given server architecture.

Based on this initial and simple models, it is necessary to
derive from the VMs, the probabilities for changing state and
the time how long they stay in a given state, as well as the
saturation bandwidth of the virtual switch on a given server
system.

III. REALISATION APPROACH

In this section, we have summarised our initial results,
in order to determine the limits of different virtual switch
configurations and collect initial data on the limits for given
server systems. Furthermore, we have used tools that can
collect traces from VMs on their communication behaviour
in order to develop a traffic model for them.

A. Performance overhead introduced by Open vSwitch VXLAN
encapsulation

For the purpose of measuring the performance overhead
introduced by network virtualisation, and to establish a plau-
sible baseline for the possible aggregate network throughput
of a server equipped with a software-based virtual switch,
a test setup was created where both physical non-virtualised
networks and virtualised networks using OVS managed Vir-
tual eXtensible Local Area Network (VXLAN) tunnels were
available. Both network types utilised the same underlying
networking hardware, interface configuration and software
components, aside from the addition of the tunnelling mech-
anism itself. Network performance measurements were then
conducted from inside virtual machines (instances), which
were created and managed through OpenStack [20]. The
instances were equipped with two separate tap devices, one
connected to the physical network and the other connected to

a virtualised network which was transported over the same
physical interface.

Figure 2. Simplified schematic of network components used for Open
vSwitch tunnelling in OpenStack

The OpenStack installation itself consisted of dedicated
controller VMs and several physical compute nodes, two of
which were used exclusively for the measurements. Each
host contained one measurement instance. The physical net-
working was based on Mellanox ConnectX3-Pro single-port
56GbE QSFP NICs connected to a Mellanox SX1012 12-
port 56GbE QSFP switch. The NICs were operated in 56GbE
mode with the default Maximum Transmission Unit (MTU) of
1500 bytes. Aside from the NICs and the switch, no other
physical networking device was located inside the network
path for the performance measurements. A more detailed list
of specifications for the physical and virtual resources can be
found in Appendix A.

In the OpenStack Neutron (networking service) configu-
ration with OVS, which was outlined in Figure 2, the flat
external network (solid line from the switch down to eth0)
was mapped to an OVS bridge called br-data. This bridge was
attached to the physical NIC (similar to the external bridge br-
ex for network nodes in default OpenStack installations). The
virtual tenant networks were attached to the OVS tunnelling
bridge br-tun, where packets were encapsulated using VXLAN
(dotted line) before being transported over the physical NIC.
The integration bridge br-int connected the various other
virtual network components and host-locally isolated different
networks using VLANs.

Inside the virtual machines, the network devices for the
flat external network and the VXLAN virtual private net-
work were represented as eth0 and eth1 respectively. Both
devices were configured with a MTU of 1450 bytes to avoid
fragmentation on the virtualised private network. Otherwise,
fragmentation could occur due to the introduction of additional
header bytes by the encapsulation. This MTU configuration
also kept the throughput measurements comparable between
the two interfaces. To conduct the interface benchmark, the
tool IPerf [21] v3.0.11 was used with 4 parallel TCP streams
between the client instance and the server instance. Throughput
measurements were performed for 300 seconds, to average out
slow-start effects and random spikes in the TCP connections.
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B. Performance overhead introduced by Open vSwitch VXLAN
and GRE encapsulation

The approach mentioned in this section, was to compare the
tunnelling protocols for bridging Cloud data centres which are
located at different places. A conceptual study on tunnelling
protocols was performed and from the study, it was found that
VXLAN and Generic Routing Encapsulation (GRE) are well
suited and both can be generated by using Open vSwitch.

The advantages of using VXLAN is that, it provides 16
million VXLAN ID which overcomes the ID limitation of
VLAN. By using VXLAN, we can deploy overlay networks
in the virtualised data centres with multi-tenant environment
and layer 2 network connection through multiple data centres.
The User Datagram Protocol (UDP) encapsulation inside
VXLAN allows each Local Area Network (LAN) segment to
be extended across layer 3. VXLAN is also cost-effective as
it works in virtualised network, and it saves time as we do not
need to deploy many hardware devices. However, VXLAN
does not have any control plane. So the network does the
work of the control plane such as allocating segment ID and
multicast. As VXLAN has no significant support for security,
additional measures such as adding Internet Protocol Security
(IPSec) tunnels are necessary.

While GRE tunnels are less complex to configure and are
capable of transmitting multicast traffic, the encapsulation on
top of TCP/IP come with the known issues of the limited
window size for high speed links. By using GRE tunnels,
we can easily transmit packets containing incompatible pro-
tocols over the intermediary network via encapsulation with
compatible protocols. For example, we can transfer Internet
Protocol version 4 (IPv4) packets over a network that only
allows Internet Protocol version 6 (IPv6) packets. But GRE is
even less secured than VXLAN and is more complex in the
tunnel set-up procedure.

A synthetic and a database use case were considered to
evaluate the performance of the tunnelling protocols and the
linked software components in the virtual switch testbed. The
measurements included the impact of the tunnelling protocols
on point-to-point throughput and latency. As synthetic use
cases, an IPerf tool-based evaluation and a File Transfer
Protocol (FTP)-based evaluation were performed to measure
throughput and latency. In the FTP-based evaluation, files of
different sizes were downloaded from a FTP server to a FTP
client through both tunnelling protocols and the downloaded
time was captured. In the database use case, Couchbase
database was used to measure the network load when a new
instance was added to a cluster.

The tests were performed in two different testbeds. The first
testbed included two personal computers and a switch with 1
GbE NIC. The second testbed combined two MicroServers
with 10 GbE NIC each. Figure 3 depicts the network topology
used in both testbeds. Open vSwitch was used to create the
VXLAN and GRE tunnels. In both testbeds, the network
settings were kept equal to allow comparison of the results.
In testbed 1, the MTU of the 1GbE physical NIC was set to
3000, and 9000 for the 10GbE NIC in testbed 2. The detailed
specifications for the two testbeds can be found in Appendix B.

To simulate the distance between the Cloud data centres,
network latency between the end systems was increased by
using Linux kernel mechanisms in both testbeds. An addi-

Figure 3. Simplified schematic of network components used for evaluating
VXLAN and GRE tunnels in two testbeds.

tional delay between 100ms and 20ms was introduced to the
network.

IV. RESULTS

A. Performance overhead introduced by Open vSwitch VXLAN
encapsulation

The results from the measurements using the setup detailed
in Section III-A show a significant drop in bandwidth when
OVS VXLAN encapsulation was introduced as a network
virtualisation mechanism. As seen in Figure 4, throughput
in the flat external network averaged 11.289Gbps, whereas
throughput in the VXLAN-based virtual tenant network only
averaged 1.241Gbps, roughly one-tenth of the bandwidth in
the flat network. Though not detailed in the measurements,
the limiting factor in the virtualised network appears to be
CPU-bound by the performance of the thread responsible for
the packet encapsulation.

Figure 4. IPerf throughput for VXLAN-based virtual networks and flat
physical networks using OpenStack with Neutron OVS networking.

In conclusion, the performance impact of OVS VXLAN
encapsulation creates a serious practical limitation for its
use in tenant network virtualisation with network interfaces
exceeding the 1GbE standard, both in terms of raw throughput
and CPU overhead. Therefore, it’s use needs to be considered
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carefully when instances with network intensive applications
are expected.

B. Performance overhead introduced by Open vSwitch VXLAN
and GRE encapsulation

Figure 5 represents the IPerf tool-based evaluation and
contains a comparison between the bandwidth utilisation of
VXLAN and GRE tunnel enabled network.

Figure 5. IPerf TCP bandwidth results with 1 stream while downloading a
3GB file through VXLAN and GRE tunnels in testbed 1.

One stream was generated while downloading a 3GB
file from the server using FTP. The TCP window size for
the testbed was set to the default 85.0KByte. The mea-
sured bandwidths in the VXLAN and GRE tunnel enabled
networks were 180465.00KBits/s and 221307.00KBits/s
respectively. From the figure, it is seen that the bandwidth
utilisation was decreased in both networks due to the additional
network delay. But the performance of both tunnels in the
network can be seen more clearly. The measured bandwidth
was higher in the GRE tunnel.

Figure 6. IPerf TCP bandwidth results with 1 stream while downloading a
3GB file through VXLAN and GRE tunnels in testbed 2.

Figure 6, taken from an IPerf tool-based evaluation in the
network with 10GbE NIC, represents similar comparison men-

tioned in Figure 5. The TCP window size in the testbed was
kept at the default of 24.5KByte. The bandwidth utilisation
in the VXLAN tunnel enabled network was 8516.00KBits/s,
which was less than the corresponding value in the network
with 1GbE NIC. Similar degradation in bandwidth is visible
in the GRE tunnel enabled network. The measured bandwidth
in this network was 7159.00KBits/s. Both results give clear
indication that the network with higher bandwidth was not
fully utilised by the tunnels. Also, there are larger fluctuations
in the current graph compared to the graph in Figure 5.

Figure 7. Performance comparison of VXLAN and GRE tunnels while
downloading a 10MB file using FTP.

Figures 7 and 8 represent FTP-based evaluations in testbeds
1 and 2. The graphs indicate the impact of VXLAN and GRE
tunnels on small file (10MB) and large file (5GB) downloads
in both testbeds. Each measurement was repeated 50 times to
average out random fluctuations. From the raw data of down-
load time, the bandwidth usage was calculated. The X-Axis
represents the testbeds with VXLAN and GRE tunnels. The
Y-axis represents the boxplot of the bandwidth usage. From the
bottom to the top, the boxplot shows the minimum, the first
quartile, the second quartile which is the median, the third
quartile and the maximum usage of bandwidth. In Figure 7,
we can see that the maximum and minimum bandwidth usage
for VXLAN tunnel in the 1st testbed were 19.625Mbps and
8.615Mbps. For GRE tunnel, the values were 20.178Mbps
and 8.407Mbps. For the second testbed, the highest and lowest
bandwidth usage for VXLAN tunnel were 12.558Mbps and
6.674Mpbs. The corresponding values for GRE tunnel were
11.201Mbps and 6.712Mbps. In comparison, both tunnels
showed better performance in testbed 1 than in testbed 2 with
respect to the bandwidth.

The effect of the tunnels when downloading large files
in both testbeds is depicted in Figure 8. The bandwidth
utilisation was higher in the 1GbE NIC network compared
to the network with 10GbE NIC. The maximum bandwidth
for VXLAN and GRE tunnel in testbed 1 were 36.631Mbps
and 37.387Mbps respectively, whereas for testbed 2, the
values were 22.013Mbps and 21.969Mbps. The values for
the minimum bandwidth usage followed the same pattern.

For the network with 1GbE NIC, the average performance
of the VXLAN tunnel was better than the GRE tunnel. The
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Figure 8. Performance comparison of VXLAN and GRE tunnels while
downloading a 5GB file using FTP.

reason for this is the difference in the underlying transport
protocols. While VXLAN is based on UDP, the GRE en-
capsulation operates on top of TCP. For the network with
10GbE NIC, it was detected that Open vSwitch and the weak
CPUs of the MicroServers were not compatible with high
workloads. Both tunnels delivered degraded performance when
there was huge traffic in the network. Also, a high rise in
CPU load on the physical machines and an average packet
loss of more than 14% were observed during the test in that
network. Network delay increased the drop rates and CPU
load. Preliminary results indicate that this behaviour might
be caused by a non-optimal implementation of Open vSwitch
and by the consequences of using virtualisation as it disables
hardware features such as TCP offloading. The investigation
of this behaviour is still ongoing.

C. Impact on Data Centre Design
As shown in the previous section, depending on the chosen

virtual switch solution, the number of VMs that can be placed
on a specific server is not determined by CPU cores or
memory constraints, but by the maximum throughput that can
be achieved with the virtual switch. As the switch performance
might be much less than the physical connectivity, even for less
communication intensive VMs, the virtual switch performance
is the limiting factor.

This leads to the result that, in order to avoid underutilised
memory or compute resources, the server design must consider
also the virtual switch performance. Furthermore, the chosen
approach to place VMs of a customer across the data centre
infrastructure has an impact on the performance that can be
realised. For Open vSwitch, only small servers (low memory,
low core count) with a couple of 1GbE links or, at best a single
10GbE link are cost-effective.

As outlined above, the VM placement algorithms of cur-
rent Cloud middleware solutions, such as OpenStack, do not
consider the communication behaviour of VMs or, constraints
introduced by a specific choice of a virtual switch. Therefore,
the switch characteristics must be integrated into the placement
algorithms e.g., by adding custom filters and removing servers
from the list of potential candidates. Figure 9 shows a basic

extension that demonstrates the concept of how the placement
algorithms could be amended. Still, the basic algorithms only
consider average and peak values if the bandwidth demands
can be supported by the deployed virtual switch. The next
check is validating if the maximum number of tunnels or
accumulated bandwidth has been reached.

...
while vmList.current()6= null do

// check if the bandwidth demand is supported at all
by the switch type of this server

if vmList[i].peakBW ≤ SwitchType.maxTunnel then
5: bwSum += vmList[i].averageBW;

// check if the BW still fits into max BW and max.
number of tunnels

if bwSum > SwitchType.maxPeak
‖ vmCount ≥ SwitchType.maxTunnel then

bwSum -= vmList[i].averageBW;
10: exit

end if
else

exit
end if

15: memoryConsumed += vmList[i].memoryReq;
coresConsumed += vmList[i].coreReq;
if currentMemory ≤ memMax

&& currentCoresUsed ≤ coreMax then
vmCount +=1

20: vmList.next()
else

// we exceeded the available resources...
exit

end if
25: end while

return vmCount
...

Figure 9. An initial network aware placement decision algorithm.

A more realistic model would work with a switch model
that would not only require average and maximum bandwidth
demands but would also need the probabilities for certain
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bandwidth states and would overlay them. If an additional VM
would exceed the available resources, a more realistic decision
could be taken based on this model.

The static properties used for a placement decision must
be amended with a continuous monitoring of the actual per-
formance data as the network load can be very dynamic.
This can then form the basis for a potential VM migration
decision. Within the CACTOS project [3], the monitored
performance data is fed into an analytics framework and is
used to build the basis for an optimisation framework. This
optimisation framework not only supports initial placement
decisions but also pro-active migration decisions and thus
balances between performance benefits and migration costs.
The work presented here, is an amendment to the existing
system model of CACTOS. It predicts the performance of VMs
on different types of compute hosts with a more accurate cut-
off bandwidth compared to theoretical peak bandwidth of the
installed network interface cards.

V. CONCLUSION AND OUTLOOK

In this paper, we have presented initial results to develop
a model that is able to provide decision support for VM
placement algorithms in a very short time for selecting an
appropriate server to deploy a VM. Furthermore, the models
can be used to make a buying decision for a given hardware.
In order to determine a good balance between CPU/Memory
resources and network capabilities, and to avoid imbalanced
server design for Cloud data centres with communication
intensive VMs, we can apply the communication behaviour
of the models and the virtual switch models.

Further work is needed, in particular to validate if the
modelling of VM traffic based on change state probabilities
and corresponding rates fits to common workloads. Further-
more, we need to check if the virtual switch model, focused
on the saturation bandwidth, is complex enough to properly
emulate the behaviour of the different solutions for a wide
range of hardware settings. This applies in particular for the
tests with Open vSwitch, as the lack of performance of the
CPUs in the MicroServer testbed in combination with 10GbE
NICs, had significant impact on the overall performance. Also,
we observed large variations in the performance for differ-
ent minor software revisions and kernel versions. Additional
comparisons between different virtual switch implementations
using different architectural approaches and their effects on
available host network resources, are planned for evaluation
as well.
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APPENDIX A
OPENSTACK ENVIRONMENT SPECIFICATION

OpenStack Hosts

CPU 2x Intel Xeon E5-2630 v3 @ 2.40Ghz

RAM 16x 16GB DDR4-2133 DIMM REG ECC 2R

Storage 2x SSDs in RAID-1 for OS

Storage HDD based Ceph with separate SSD cache for
VMs

OS CentOS 7 (current patch level as of the time of the
measurements)

NIC Mellanox ConnectX3-Pro 1-Port 56GbE QSFP,
MTU set to 1500

Switch Mellanox SX1012 12-port 56GbE QSFP switch

Cable Mellanox QSFP+ 1m passive copper 56GbE capa-
ble cable

Kernel 3.10.0-229.11.1.el7.x86 64

vSwitch Open vSwitch version 2.3.1

OpenStack Instances

CPU 2 vCores

RAM 4GB

Storage 10GB disk (Nova RBD backend)

OS CentOS 7 GenericCloud

NIC eth0: flat external network, MTU 1450

NIC eth1: VXLAN tenant network, MTU 1450

APPENDIX B
ENCAPSULATION ENVIRONMENT SPECIFICATION

Test Bed 1

Hardware and
software

Number Specification

Personal
computer

2 CPU Intel(R) Core(TM) i54670
CPU @ 3.40GHz, Memory
16GiB, OS Ubuntu 14.04,
Kernel version 3.14.27-031427-
generic (PC1), 3.13.0-44-generic
(PC2)

Switch with
1GbE NIC

1 NETGEAR, Series ProSafe,
Model GS108v3, Network
interface RJ-45 connector for
10BASE-T, 100BASE-T, or
1000BASE-T Ethernet interface

Ethernet
cable

1 Logilink U/UTP CAT6
24AWGX4P PATCH ISO/IEC
11801 and EN 50173 VERIFIED

Open vSwitch 1 version 2.0.2

Test Bed 2

Hardware and
software

Number Specification

MicroServer 2 CPU Intel(R) Celeron(R) CPU
G1610T @ 2.30GHz, Memory
2GiB, OS CentOS 7, Kernel ver-
sion 3.10.0-123.20.1.el7.x86 64

10GbE NIC 2 HP Ethernet 10Gb 2-port
530SFP+ Adapter, Network
Processor QLogic 57810S
chipset, Data Rate Two ports,
each at 20 Gbps full duplex;
40 Gbps aggregate full duplex
theoretical bandwidth.

10GbE cable 2 HP X242 SFP+ SFP+ 3 m Direct
Attach Cable (J9283B), Length
10 ft. (3 m)

Open vSwitch 1 version 2.3.1
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