
A Lightweight Approach to Manifesting Responsible Partiesfor TCP Packet Loss

Guang Cheng
School of Computer Science, Southeast University, P.R.China

Key Laboratory of Computer Network &
Information Integration, Ministry of Education, P.R.China

email: gcheng@njnet.edu

Yongning Tang Tibor Gyires
School of Information Technology

Illinois State University, USA
email: ytang, tbgyires@ilstu.edu

Abstract—Troubleshooting TCP packet loss is a crucial
problem for many network applications. TCP packets could
be lost in different network segments for various reasons.
Understanding the responsible parties for TCP loss is an
important step for network operators to diagnose related
problem. However, TCP is designed for end-to-end control. It
is difficult for any third party to detect whether and where
(even coarsely) TCP packet loss has occurred. We design
TCPBisector, a lightweight efficient diagnosis tool to manifest
responsible parties for TCP packet loss.TCPBisector divides the
responsibility between “My” and “Other” parties or network s
(denoted as Netm and Neto) conceptually delimited by a
passive network measurement point (denoted as MP), and
quantifies the responsibility by using TCP packet loss ratios
on the corresponding networks. The evaluation shows that the
TCPBisector can accurately estimate TCP packet loss ratios
with estimation error rate 3.5-6.9%.

Keywords- responsibility; performance diagnosis.

I. I NTRODUCTION

TCP packets could be lost in different network segments
for various reasons, including network congestion, packet
corruption, faulty network components, and network mis-
configuration. Understanding the responsible parties for TCP
packet loss is an important step for network operators to
troubleshoot the problem. However, TCP [17] is designed
as an end-to-end control protocol. It is difficult for any
third party to detect whether and where (even coarsely) TCP
packet loss has occurred.

TCP performance monitoring and diagnosis have been
extensively studied. Several sophisticated network mon-
itoring frameworks [7][18] and intrusive active probing
techniques [1][8][9] were proposed to pinpoint the root
cause of TCP packet loss. Many previous work [2]-[6] also
focused on comprehensively understanding TCP behaviors
(e.g., including TCP window sizes, TCP retransmission
and reordering) and its correlation with the actual network
performance (e.g., network throughput and congestion).
Maintaining accurate and complete TCPflow information
is critical for this type of study, which typically requires
large memory space and high computing power. Recent
study [16] focused on providing real time TCP monitoring
and performance diagnosis based on various flow sampling
techniques, which may skip important flow information.

In this paper, we propose TCPBisector, a lightweight tool
to help network operators to answer one critical question:
“How much should I (or other parties) be responsible for
TCP packet loss?”

As shown in Figure 1, TCPBisector divides TCP packet
loss responsibility between “My” and “Other” parties or net-
works (denoted as Netm and Neto) conceptually delimited
by a passive network measurement instrument (denoted as
Measurement Point or MP), and quantifies their responsibil-
ities by using TCP packet loss ratios on “My” and “Other”
networks (denoted as LRm and LRo), respectively.

Netm Neto

MP

TCPBisector

Loss Ratio of  My  Network
(LRm)

Loss Ratio of  Other  Networks
(LRO)

FIGURE 1: TCPBisector: a tool to bisecting responsible parties for TCP
Packet Loss betweenNetm andNeto

Our work makes two contributions. Our first contribution
is TCP behavior modeling. In the paper, we show that TCP
presents different behaviors at the MP when TCP packets
are lost by different parties betweenNetm and Neto.
Accordingly, we model TCP behaviors by using several
easy-to-track network events that allow the MP to ascribe
the TCP packet loss responsibility to different parties.

Our second contribution is an efficient TCP packet loss
inference algorithm. Instead of studying the causality of TCP
packet loss, theTCPBisector only requires a small set of es-
sential TCP related events commonly observable in various
TCP packet loss scenarios. Thus, theTCPBisector can be
used effectively and efficiently to infer occurred TCP packet
loss and further identify their relative occurring locations,
without suffering from the overhead of distinguishing TCP
loss scenarios as shown in many related work [5][15][16].
Our inference algorithm presents the computation complex-
ity of O(n) and only requires a bounded memory space.

TCPBisector requires only one passive network measure-
ment instrument (i.e., MP) as shown in Figure 1. The MP
can be deployed arbitrarily on network depending on how

211Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



a responsibility scope defined under different monitoring
strategies. Essentially,Netm represents the scope of “my”
responsibility, andNeto shows the boundary of others.
Depending on the different deployment strategy, theNetm
can be an enterprise network using cloud services, or a data
center providing cloud services.

The rest of the paper is organized as the following. Sec-
tion II describes the related work, and Section III introduces
the TCP behavior modeling. Section IV presents the modu-
larizedTCPBisector as a system and discusses the algorithm
for inferringLRm andLRo. We show the validation of our
system via both emulations and experiments on a Tier-1
network in Section V. Section VI concludes our work.

II. RELATED WORK

Numerous measurement studies have investigated the
characteristics of TCP connections in the Internet, eithervia
actively measured end-to-end properties (e.g., loss, delay,
throughput) of TCP connections, or passively characterized
a connection’s aggregate properties (e.g., size, duration,
throughput). Various TCP measurement methodologies and
metrics have also been proposed [10]-[13] to monitor TCP
performance via a set of important TCP parameters (e.g.,
RTT[14]).

Among various TCP related parameters, TCP packet loss
is one of the most important metrics. Many scholars have
proposed a variety of methods for TCP packet loss ratio
estimation. Sommers et al., [1] proposed to send probe
packets by the sender, and view the number of probe packets
at the receiver that arrives to estimate end-to-end packet loss
ratio. Benko and Veres [2] proposed to use the observed
TCP sequence numbers to estimate TCP packet loss. Ohta
and Miyazaki [3] explored a passive monitoring technique
for packet loss estimation relying on hash-based packet
identification. Friedl et al. [4] comparedflows with sender
and receiver for computing the packet loss,

Jaiswal et al. [5][15] presented a passive measurement
methodology that observes the TCP packets in a TCP con-
nection and infers/tracks the time evolution of two critical
sender variables: the sender’s congestion window (cwnd)
and the connection round trip time (RTT). Allman et al.
[6] estimated the packet loss ratio by observing the sender’s
retransmit packets. Nguyen et al. [7] built a model called the
HSMM to analyze the packet loss. Zhang et al. [8] analyzed
packet loss, delay and bandwidth from the random packet of
the entrance and packet loss. STA [18] developed an efficient
packet classification techniquewhich isused to infer the loss
and reorder rates of individual TCP flows.

Recent research has studied how to diagnose TCP per-
formance issues in clouds. Ghasemi et al. [16] proposed a
heuristic inference algorithm to infer several important TCP
parameters (e.g., congestion-window size and the TCP state)
from sampled TCP related statistics (e.g., RTT).

TCPBisector proposed in this paper is to coarsely bisect
TCP packet loss responsibility between interior and exterior
networks. TCPBisector is designed based on the fact that
observable TCP behaviors could be different on different
network segments along the same end-to-end path under
the same network condition. TCPBisector aims at providing
a practical, lightweight, and real-time tool for both cloud
users and service providers understand network conditions
between Netm and Neto.

I I I . TCP BEHAVIOR MODELING

Although TCP is designed as an end-to-end control pro-
tocol, we show that the MP in the middle still can dis-
cern differences on the corresponding TCP behaviors when
packet loss occurred on the different responsibleparties (i.e.,
Netm and Neto). In the following, we will first illustrate
several representative TCP packet loss scenarios. Then we
will define two TCP behaviors distinguishable by the MP so
as to ascribe the TCP packet loss responsibility to Netm or
Neto.

A. TCP Loss Scenarios

TCP behaves differently in response to varying network
condition. More importantly, TCP presents different observ-
able behaviors at the MP when TCP packets loss occurred
in Netm or in Neto. In the following, we illustrate our
ideas via several representativeTCP packet loss scenarios as
shown in Figure2. In all thescenarios, weassumethesender
is from Netm and the receiver is located within Neto.

• ACK loss: Figure 2(a) & 2(b) show that a data packet
from the sender has successfully delivered to the receiver.
However, one acknowledgement packet (i.e., ACK14) from
the receiver was lost. In the scenario shown in Figure 2(a),
since the following ACKs (i.e., ACK14 and ACK15) ar-
rived before a retransmission timeout event triggered at the
sender, no retransmission occurred. Otherwise, the sender
retransmitted the unacknowledged packet (i.e., Seq13) as
shown in Figure 2(b). Apparently, it appeared to the MP as
if no packet loss in the first loss scenario (shown in Figure
2(a)). In this scenario, only one ACK lost in Neto before
passing the MP. However, the following ACKs successfully
arrived at the sender, which took over the responsibility of
the lost ACK. Thus, considering this scenario the same as
no TCP loss makes sense practically. In the scenario shown
in Figure 2(b), the MP could observe the occurrenceof data
retransmission.

• Single packet loss with 3-ACK: Figure 2(c) and Figure
2(d) show a type of common TCP loss scenarios, in which
one data packet (i.e., Seq13) was lost. Consequently, the
sender received three duplicate ACKs (denoted as 3-ACK).
Depending on where the data packet lost, the MP may only
observe three consecutive ACKs as shown in Figure 2(c)
if the loss occurred in Netm; or observed duplicated data

212Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 14

Measurement

Point

seq 15

ack 16

seq 16

se
q
 1
3
  
ti
m
eo
u
t

ack 15

ack 17

(a) Single packet lost w/o re-
transmission

Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 14

Measurement

Point

seq 15

ack 16

seq 13

se
q
 1
3
  
ti
m
eo
u
t

ack 15

ack 13,discard seq13

(b) Single ACK lost w/ retransmis-
sion

Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 13, discard seq14

Measurement

Point

seq 15

seq 13

seq 14
ack 14

ack 15

ack 13, discard seq15

(c) Single packet lost inNetm w/
3-ACK

Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 13, discard seq14

Measurement

Point

seq 15

seq 13

seq 14
ack 14

ack 15

ack 13, discard seq15

(d) Single packet lost inNeto w/
3-ACK

Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 13, discard seq14

Measurement

Point

seq 13

seq 14
ack 14

ack 15

(e) Single packet lost inNetm

Sender Receiver

TimeTime

lost

seq 12

seq 13

seq 14
ack 13

ack 13, discard seq14

Measurement

Point

seq 13

seq 14
ack 14

ack 15

(f) Single packet lost inNeto

Sender Receiver

TimeTime

lo
st

seq 12

seq 13
seq 14 ack 13

Measurement

Point

seq 15

seq 13
seq 14
seq 15 ack 14

ack 15
ack 16

(g) Mass packet lost inNeto

Sender Receiver

TimeTime

lo
st

seq 12

seq 13
seq 14 ack 13

Measurement

Point

seq 15

seq 13
seq 14
seq 15 ack 14

ack 15
ack 16

(h) Mass packet lost inNeto

FIGURE 2: The Illustration of Representative TCP Packet Loss Scenarios

packets in addition to three consecutive ACKs as shown in
Figure 2(d) if the loss occurred inNeto.

• Single packet loss with timeout: Figure 2(e) and Figure
2(f) show another type of common TCP loss scenarios,
in which the sender didn’t receive three duplicate ACKs.
Instead, a timeout event was triggered at the sender for
retransmission. Figure 2(e) shows the case when TCP loss
occurred inNetm, in which the MP could observe out-of-
order IPID. More specifically, the IPID in the TCP packet
with Seq13 is larger than the IPID in the TCP packet with
Seq14. Figure 2(f) shows the case when TCP loss occurred
in Neto, in which the MP could observe duplicated packets
in addition to out-of-order on IPID.

• Mass packet loss: Figure 2(h) and Figure 2(g) show the
scenarios when multiple consecutive transferred packets
were lost. If the packet loss occurred inNetm (Figure 2(h)),
the MP observed abnormal time gap between transferred
data. If the packet loss occurred inNeto (Figure 2(g)),
the MP observed duplicated data transfer in addition to
abnormal time gap between transferred data.

By no means, we try to list all possible TCP packet loss
scenarios. Instead, we would like to point out from these
illustrating examples that (1) TCP behaves differently when
TCP packet loss occurs inNetm or in Neto; and (2) such
TCP behavior differences can be characterized via a small
set of easy-to-check TCP related network events. We will
show in TABLE I that all the scenarios shown in Figure
2 can be identified in our proposed TCP Behavior Model
(TBM).

B. Characterizing TCP Behavior

We want to characterize TCP behaviors so that the MP
can effectively detect TCP packet loss and identify the

corresponding occurring locations based on the observed
TCP behaviors.

In the following, we first define several TCP related
parameters, and then use them to specify four easy-to-check
TCP events that can be used by theTCPBisector to detect
TCP packet loss and further ascribe the responsibility for
TCP packet loss toNetm or Neto.

For ith observed TCP packet (denoted aspi) at the MP,
we denote byIi andQi the corresponding IPID and TCP
sequence number, respectively. LetTi,j be the time interval
betweenpi and pj (i < j) in the same TCPflow, and let
Tfk denote the estimated sender’s retransmission timeout for
TCP flow k.

We introduce four easy-to-check TCP events as below.
Each event is denoted by a binary variable ei(i = 1, 2, 3, 4),
and we say ei is True if the associated network condition
is detected. More specifically, we have:

• e1 (timeout event): When the condition Ti,j > Tfk

(pi, pj ∈ fk) is observed, e1 = True.
• e2 (3-ACK event): When the condition Ij − Ii ≥ 3 is

observed, e2 = True.
• e3 (reordering event): When the condition Qi > Qj is

observed, e3 = True.
• e4 (retransmission event): When theconditionQi = Qj

is observed, e4 = True.

In our TCP behavior model or TBM, e1 and e2 are called
triggering events because either event indicates the occur-
renceof TCP packet loss. e3 and e4 are called distinguishing
events because e3 should be observed if the packet lost in
Netm; otherwise e4 should be observed.

Next, we are going to define two distinguishable TCP
behaviors. Each TCP behavior should be observed by the

213Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



MP to infer the associated occurring location of TCP packets
loss.

Definition 1. We defineBehavior I as the observable TCP
behavior when TCP packets are lost before the MP (i.e., in
Netm), denoted by a binary variableBI . More specifically,
BI is True when the condition(e1 ∨ e2) ∧ e3 is satisfied,
namely,BI = (e1 ∨ e2) ∧ e3.

Definition 2. We defineBehavior II as the observable TCP
behavior when TCP packets are lost after the MP (i.e., in
Neto), denoted by a binary variableBII . More specifically,
BII is True when the condition(e1 ∨ e2) ∧ e4 is satisfied,
namely,BII = (e1 ∨ e2) ∧ e4.

Following up the previously discussed TCP loss scenarios
(as shown in Figure 2), now we can characterize them using
TBM as shown in TABLE I.

TABLE I: TCP PACKET LOSS SCENARIO IN TBM

TCP packet loss scenario e1 e2 e3 e4 BI BII

Figure 2(a)
Figure 2(b)

√ √ √

Figure 2(c)
√ √ √

Figure 2(d)
√ √ √

Figure 2(e)
√ √ √

Figure 2(f)
√ √ √

Figure 2(h)
√ √ √

Figure 2(g)
√ √ √

As we discussed earlier, TCP packet loss can occur
in various scenarios. Instead of studying the causality of
TCP packet loss, we adopt into our model (i.e., TBM) the
essential common events observable in various TCP packet
loss scenarios. Thus, the TBM can be used effectively and
efficiently identify TCP packet loss, without suffering from
the overhead of distinguishing TCP loss scenarios as in
many related work. For instance, TCP load balancing, as
a misleading scenario discussed in [2], will not trigger any
events frome1 ∼ e4 in the TBM if no TCP packet loss
occurred.

IV. T HE SYSTEM

The TCPBisector consists of three modules as shown in
Figure 3: (1) data processing module (DPM), (2) inference
engine module (IEM), and (3) reporting & querying module
(RQM). The TCPBisector can be run directly on the MP
or installed on a different server. TheTCPBisector receives
from the MP all captured TCP packets, and reports aggre-
gated andflow-based TCP packet loss ratios on Netm and
Neto, respectively.

DPM collects all TCP packets passing through the MP,
and classifies them into TCP flows based on five-tuple
(i.e., source and destination IP addresses, source and des-
tination ports, protocol number). The memory location of
each recorded TCP flow is stored in a hash table for fast
retrieval. For each TCP flow, the TCPBisector only needs to
keep a fixed number (i.e., 25 as discussed later) of TCP

MP

Data Processing Module 

(DPM)

Inference Engine Module 

(IEM)

Reporting & Querying Module 

(RQM)

T
C
P
B
is
e
c
to
r

T
C
P
 flo
w
s

Network traffic

FIGURE 3: TCPBisector System

packets in order to accurately estimate TCP packet loss
ratios. The corresponding record for each TCP packet in
flow k includes its IPID, TCP sequence number, its arrival
time, and the estimated retransmission timeout per flow, the
TCP packet loss ratios (LRk

m and LRk
o). For each flow k,

the TCPBisector counts the total number of traversed TCP
packets denoted as Nk in both directions. We denote by
LN I

k and LNE
k as the total number of lost TCP packets

in Netm and Neto, respectively. Accordingly, we have
LRk

m = LNm
k /Nk and LRk

o = LNo
k/Nk. The TCPBisector

also aggregates the flow statistics to provide the aggregated
LRm and LRo for all observed active TCP flows.

IEM is essentially an event handler. If a triggering event
(e1 or e2) detected for TCP flow k, IEM verifies the
occurrenceof distinguishing events(e3 or e4) in the recorded
flow data structure in order to ascribe the packet loss to the
corresponding responsible party (i.e., Netm or Neto).

������

������

������


	�
��

���	
�

��

���

���

	��

���

���

���


��

���

���

����

� � �� �� �� ��

�
���������������� ����

����������  �����
����� !��"����

FIGURE 4: CDF of Observation Window Size and Packet Loss Estimation
Accuracy

The core function in theTCPBisector is TCP loss ratio
estimation, which requires to efficiently detect the relevant
network events based on captured TCP packets per flow.
One significant difference between theTCPBisector and
the related work [5][15][16][18] is that theTCPBisector
does not need maintain complete TCP flow information.
As shown in our empirical study, theTCPBisector only
needs to keep track of small number of TCP packets per
flow to accurately estimate TCP packet loss ratios. Such a
desirable feature in theTCPBisector results from the TCP

214Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



�

����

���

����

���

����

� � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

�
�
�

�
�
�
�
��
�
�
�
�

�

��� ���� ��

�� !"��� ���#$%!&'�" (�)

*+, -./ 0122 34 5678 *9, -./ 0122 34 567:

�

���

���

���

���

���

���

� � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

�
�
�

�
�
�
�
��
�
�
�
�

�

��� ���� ��

�� !"��� ���#$%!&'�" (�)

FIGURE 5: Comparison between InferTCP, STA and TCPBisector (a) when TCP loss inNetm, (b) when TCP loss inNeto

behavior modeled, which only relies on several easy-to-
check TCP events (i.e.,e1 ∼ e4). Such a difference makes
the TCPBisector a lightweight and efficient tool with much
lower requirement on the system’s computing power and
memory space,

Based on the network traces collected from both our
emulation and real network experiments, we empirically
study the relationship between the estimation accuracy and
the size of observation window measured by the number
of required TCP packets perflow. The statistics results are
shown in Figure 4, where the horizontal axis shows the
varying sizes of observation window per TCP flow, and the
vertical axis is the CDF of the observation window size
measured by trackable number of TCP packets for each
flow. Based on Figure 4, we can clearly see that 91.373%
of all TCP loss cases, the gap between a lost packet and
its retransmitted packet is less than or is equal to 5. We
can track almost all TCP packet loss if we record 25 TCP
packets per flow. Thus, the time complexity of the inference
engine is O(n), where n is the total number of interested
TCP flows. Since for each TCP packet, we only keep 20-
byte IP header and 20-byte TCP header, the total memory
space isbounded by thenumber of interested TCP flows. For
the purpose of cloud application monitoring, the number of
flows should be limited.

Finally, RQM updates the per-flow and aggregated statis-
tics of TCP packet loss ratios. RQM also provides query
interface such that collaborative parties can correlate their
TCPBisector reports on the commonly interested TCP flows
in order to present a finer-grained view on their network.

V. EVALUATION

We validate the TCPBisector using both emulations in a
controlled environment and experiments in a Tier-1 network.
We also compared the performance of the TCPBisector to
two related work [15][18].

A. Emulation

We validate the correctness of our methodology used in
the TCPBisector via a emulation, in which we can obtain the

TABLE I I : ACCURACY VERIFICATION VIA EMULATION

LRm LRo

Actual Estimate Error Rate Actual Estimate Error Rate
0.437% 0.437% 0 0.521% 0.576% 0.106%
0.648% 0.648% 0.000% 5.321% 5.374% 0.010%
0.450% 0.426% 0.053% 8.547% 8.599% 0.006%
0.954% 0.929% 0.026% 5.389% 5.443% 0.010%
1.064% 0.967% 0.091% 8.982% 9.109% 0.014%
3.421% 3.244% 0.052% 1.035% 1.090% 0.053%
3.069% 2.798% 0.088% 4.919% 4.920% 0.0002%
2.778% 2.425% 0.127% 9.590% 9.443% 0.015%
5.631% 5.218% 0.073% 0.817% 0.954% 0.168%
4.931% 4.336% 0.121% 8.207% 8.210% 0.003%
5.413% 4.900% 0.095% 5.307% 5.438% 0.025%
9.071% 8.311% 0.084% 4.884% 5.042% 0.032%
8.819% 8.049% 0.087% 9.249% 9.351% 0.011%

Average Error Rate 0.069% Average Error Rate 0.035%

Measurement point

21 3

eth2 eth2eth1eth1

Host A Host B

R1 R2 R3

FIGURE 6: Emulation Environment

ground truth of various TCP related parameters and packet
loss ratios on different network segments.

In our emulation as shown in Figure 6, a 5-node network
is constructed, including two end hosts connected through
three routers (i.e., R1, R2, and R3). The TCP packet loss
ratios on different router ports are controlled byNetem [19].
The error rate is calculated asErr(LRm) = |LNm

actual −
LNm

TCPBisector|/LN
m
actual andErr(LRo) = |LNo

actual −
LNm

TCPBisector|/LN
m
actual for LRm and LRo error rates,

respectively. The emulation results as in TABLE II showed
that the error on estimating Internal Loss Ratio (LRm) is
0.069, and the error on estimating External Loss Ratio (LRo)
is 0.035. The result shows that theTCPBisector achieves
high accuracy on loss ratio estimations for bothLRm and
LRo.

B. Comparison via Emulation

We compare the performance ofTCPBisector to the
two closest related work referred to asInferTCP [15] and
STA [18]. InferTCP kept track of the values of two important
variables: the senders congestion window (cwnd) and the
connection round trip time (RTT) to diagnose end-user-
perceived network performance.STA [18] developed an

215Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



efficient packet classification technique which is used to
infer the loss and reorder rates of individual TCPflows.

We adopt the same emulation environment as used in
InferTCP [15] to compare InferTCP and STA with TCP-
Bisector. We generated 25 TCP flows, and each flow has
3.600 ∼ 4, 500 packets. We control the loss ratio is be-
tween 0.5% and 10% for each TCP flow. As shown in
Figure5, TCPBisector outperformed both InferTCP [15] and
STA [18], and achieved 3 ∼ 10% lower estimation error rate
on both LRm and LRo.

C. CERNET Traces

The traces have been collected at different time from
a Tier-1 backbone network CERNET. The MP is placed
between the border router in Jiangsu CERNET and the
national backbone router. In this paper, we analyze three 5-
minute traces collected at properly selected times: 23:55:15,
12, Apr, 2014 (trace 1), 13:55:16, 20, Apr, 2014 (trace
2), 15:55:16, 21, Apr, 2014 (trace 3), representing low,
peak, average traffic periods, respectively. The traffic is also
classified into forward flows (FF ) if destined to Neto and
backward flows (BF ) if destined to Netm.

TABLE I I I : ACCURACY VERIFICATION VIA EXPERIMENTS

Metrics Trace 1 Trace 2 Trace 3
# of detectedflows 5, 504 10, 274 9, 876

FF

# of Packets 7, 872, 722 13, 441, 114 13, 437, 532
# of Bytes 4.72 GB 8.14 GB 8.11 GB

Avg Reordering Ratio 4.012% 3.498% 3.949%
Avg LRm 1.686% 1.533% 1.661%
Avg LRo 2.705% 2.443% 2.571%

BF

# of Packets 9, 650, 460 16, 584, 584 16, 578.534
# of Bytes 7.22 GB 12.79 GB 12.73 GB

Avg Reordering Ratio 1.494% 2.555% 3.117%
Avg LRm 0.836% 1.338% 2.001%
Avg LRo 1.220% 1.749% 1.981%

We use the three traces to evaluate the algorithm. The
ground truth is hard to obtain in a real network environment
with uncontrollable networks. We assume that the perfor-
mance on the same network remains relatively stable within
a short time window (i.e.,15 minutes). Accordingly, we
conducted active TCP probing within the15-minute window
after each trace passively collected. Comparing the error
between the active and passive measurements for bothLRm

and LRo as shown in TABLE III, the difference is very
similar to the results reported in our emulation (5.7% error
rate forLRm and4.1% for LRo).

VI. CONCLUSION

In this paper, we propose a lightweight passive monitor-
ing system calledTCPBisector, in which TCP packet loss
responsibility is divided between an internal and external
networks conceptually delimited by a network monitor, and
quantified usingLRm andLRo. Using our proposed TCP
behavior modeling, the inference algorithm in theTCPBi-
sector could accurately and efficiently estimate TCP packet
loss ratios with estimation error rate3.5 ∼ 6.9%, but only

presents computation complexity ofO(n) and requires a
bounded memory space.

The TCPBisector is designed as a coarse-grained TCP
performance diagnosis tool. However,TCPBisector provides
flow based TCP loss ratio estimation. If multiple collabo-
rating parties (e.g., between a cloud user and her service
provider) deploy the TCPBisector systems, combining the
TCPBisector reports from both sides on TCP packet loss in
a cloud application flows will provide finer-grained view to
narrow down the scope of the responsible party.

REFERENCES

[1] J. Sommers, P. Barford, N. Duffield, and A. Ron. “ Improving
accuracy in end-to-end packet loss measurement.” ACM
SIGCOMM 2005, pages 157-168, 2005

[2] P. Benko and A. Veres. “A Passive Method for Estimating
End-to-End TCP Packet Loss.” IEEE Globecom 2002, pages
2609-2613, 2002

[3] S. Ohta and T. Miyazaki. “Passive packet loss monitoring
that employs the hash-based identification technique.” 9th
IFIP/IEEE International symposium on Integrated Network
Management, pages 2-9, 2005

[4] A. Friedl, S. Ubik, A. Kapravelos, M. Polychronakis, and
E. P. Markatos. “Realistic Passive Packet Loss Measure-
ment for High-Speed Networks.” Computer Science, Volume
5537/2009, pages 1-7, 2009

[5] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D.Towsley.
“Measurement and classification of out-of-sequence packets in
Tier-1 IP backbone.” IEEE/ACM Transactions on networking,
Vol.15, NO.1, pages 1199-1209, Feb. 2007

[6] M. Allman, W. M.Eddy, and S. Ostermann. “Estimating Loss
Rates With TCP.” ACM Performance Evaluation Review, pages
12-24, Dec. 2003

[7] H. Nguyen, M. Roughan. “Rigorous statistical analysis of
internet loss measurements.” IEEE/ACM Transactions on
Networking, Volume 21 Issue 3, pages 734-745, June 2013

[8] D. Zhang and D. Ionescu “Online Packet Loss Measurement
and Estimation for VPN-Based Services.” IEEE Transactions
on Instrumentation and Measurement, pages 2154-2166, Aug.
2010

[9] L. Gharai, C. Perkins, and T. Lehman. “Packet reordering, high
speed networks and transport protocol performance.” Proc.
IEEE 13th Intl Conf. On Computer Comm, and Networks,
ICCCN 2004, pages 73-78, Oct. 2004

[10] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov,
and J. Perser. “Packet reordering metrics.” RFC 4737, 2006

[11] A. Jayasumana, N. Piratla, T. Banka, A. Bare, and R. Whitner.
“ Improved Packet Reordering Metrics.” RFC5236, 2008

[12] G. Almes, S. Kalidindi, and M. Zekauskas. “A One-way
Packet Loss Metric for IPPM.” RFC2680, 1999

[13] R Koodli and R Ravikanth. “One-way Loss Pattern Sample
Metrics.” RFC3357, 2002

[14] B. Veral, K. Li, and D. Lowenthal. “New Methods for Passive
Estimation of TCP Round-Trip Times.” Passive and Active
Network Measurement, pages 121-134, 2005

[15] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley
“ Inferring TCPconnection characteristics through passive mea-
surements.” In the Proceedings of Infocom, pages 1582-1592,
2004

[16] M. Ghasemi, T. Benson, and J. Rexford. “Real-time diagnosis
of TCPperformance in clouds.” In the Proceedings of CoNEXT
Student Workshop, pages 57-58, Dec. 2013

216Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



[17] Information Sciences Institute, University of Southern Cali-
fornia “Transmission Control Protocol.”RFC793, 1981

[18] E. Brosh , G. Lubetzky-sharon, and Y. Shavitt “Spatial-
temporal analysis of passive TCP measurements.”In the
Proceedings of Infocom, pages 949-959, 2005

[19] A. Jurgelionis, J. Laulajainen, M. Hirvonen, and A. I. Wang.
“An Empirical Study of NetEm Network Emulation Function-
alities.” In the 2011 Proceedings of ICCCN, pages 1-6, 2011

217Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks


