
Comparative Analysis of the Algorithms for Pathfinding in GPS Systems

Dustin Ostrowski

Metegrity Inc.
Edmonton, Canada

e-mail: dustin.ostrowski@gmail.com

Iwona Pozniak-Koszalka, Leszek Koszalka, and
Andrzej Kasprzak

Wroclaw University of Technology
Wroclaw, Poland

e-mail: {iwona.pozniak-koszalka, leszek.koszalka,
andrzej.kasprzak}@pwr.edu.pl

Abstract—The objective of the paper was to determine
which search method is suitable for implementation in GPS
systems. The properties of pathfinding algorithms were tested
and discussed taking into account this type of systems. Six
algorithms have been evaluated, including three different
implementations of Dijkstra algorithm, Bellman-Ford
algorithm, A* star algorithm, and bidirectional Dijkstra’s
algorithm. Simulation experiments were carried out using the
real digital maps and with the designed and implemented
experimentation system. Studies were performed with respect
to various parameters. After thorough examination and
interpretation of conclusions, the algorithms which fit to GPS
systems were selected.

Keywords—GPS; search algorithms; experimentation
system; path finding

I. INTRODUCTION AND MOTIVATION

Nowadays we are living in the age where new
technologies, innovations, great inventions such as the
location with GPS have become an integral part of
everyone’s life. It is hard to imagine how the world could
function without the GPS systems. The number of the GPS
users is increasing very rapidly [1]. One of the major
advantages of the GPS over the traditional searching the
route to the target destination is the speed of action. GPS
system consists of two basic components – digital maps and
the shortest path search algorithm [2] and [3]. The ordinary
user does not even realize that algorithmics surrounds him.

There are proposed in literature many search algorithms
for solving pathfinding problem e.g., [1][3[4]. In some
works, the properties of these algorithms are evaluated [4].
In this paper, the six search algorithms implemented by the
authors aretested and evaluated. All the research was carried
out on real digital maps. Based on the implemented
experimentation system (programs in C++) and properly
designed scenarios – the authors made a comparison of the
results produced by these algorithms. The main objective of
this paper was to find an algorithm that is most suitable for
GPS systems.

The paper is organized as follows. In Section II, we
formulate the formal model of the considered problem.
Section III contains the description of the considered
pathfinding algorithms. The experimentation system is
presented in Section IV. The results of the simulation
experiments are discussed in Section V. The final remarks,

conclusion, and suggestions to further research in the area
appear in Section VI.

II. PROBLEM STATEMENT

A. Mathematical model

The shortest path problem is an issue consisting in
finding the shortest connection between vertices in the
weighted graph [2]. There is a directed graph G (V, E),
whereV denotes the set of vertices, E is the set of edges
connecting vertices.

The weighted function is assigning real-valued

weights to the edges – the weights canbe interpreted as costs
to traverse the edges. The total cost of a path

is defined by (1):

(1)

The cost of the shortest path from u tov can be expressed in
the form given by (2):

(2)

The shortest path from u tov is each path p from u to v
fulfilling the condition defined by (3):

(3)

More information about the shortest path problem is widely
available, e.g., in [3] and [4].

B. Representation of the graph in a computer system

In the considered problem, the map can be represented
as a huge graph [5].In such a model, the edges can be
represented by means of roads and the vertices can be
represented by intersections. In this work, a graph is
represented by a list of incidence L. In the n-th list are
stored incident vertices with the m-th vertex. Each element

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

of the list contains the ID of vertex, which is connected and
a weight of a proper edge. The list has only as many
elements as the number of possible connections for a given
vertex what allows saving a lot of memory resources. This is
the recommended solution for GPS system – it significantly
increases the efficiency and speed of operations.

Figure 1. Representation of incidence list L.

This type of list is presented in Figure 1, where:
n – Number of vertices in graph,
ID – Given single vertex in graph,
Adj – Adjacency vertices to a given ID,
W – Weight of given adjacency vertex.

C. The weighted functions

The most commonly used weighted functions in GPS
system correspond to the shortest route case and the fastest
route case [6].

In the shortest route case, the weighted function is
defined as the sum of the distances between successive
intersections on the route. The total cost can be described by

(1) in which , where d (u, v) is the

distance between the intersection u and v, i.e., by (4):

(4)

In the fastest route case, the weighted function is defined
as the sum of ratios of the distances between successive
intersections and speed limits on the road between
intersections. The total cost can be described by (5), where s
(u, v) describes speed limit between u and v.

(5)

Search assumption is that that we are looking for the
shortest or fastest route from the starting point (source) to
the destination point – it is only one destination point. An
additional assumption is that we are dealing with a map, so

the edges in the graph do not have negative weights.

III. ALGORITHMS

A. Dijkstra’s algorithm

Dijkstra’s algorithm is used for solving a single source
shortest path problem. It can find the path with the lowest
cost between an initial vertex and every vertex in the graph.
It can also find the shortest path from single vertex to single
destination point by stopping the algorithm when the final
shortest path was found – this way was applied in the
designed experimentation system (simulator) allowing
comparing this algorithm with the other considered
algorithms. In our case, the graph should be directed,
weighted and the edges should have non-negative weights.
The basic idea of the algorithm lies in the fact that the
information about predecessors is stored together with the
information about the shortest path to a given vertex. In our
implementation, we maintain a priority queue of vertices
that provides three operations [6]and [7]:

Step 1. Inserting new vertices to the queue.
Step 2. Removing the vertex with the smallest distance.
Step 3. Decreasing the distance value of some vertex
during relaxation.

Priority queue affects the performance of the algorithm in
very large extent. For this reason, three different ways of
implementing a queue were used what allow creating three
versions of the algorithm.These versions are:

1) Priority queue as an array.
2) Priority queue as a binary heap.
3) Priority queue in the form of the Fibonacci heap [8].

B. Bellman-Ford

The Bellman-Ford algorithm solves the shortest path
problem basing on the relaxation. The algorithm iteratively
generates a better solution from a previous one until it
reaches the best solution. It activates two loops, one running
n-1 iterations and the other going through all edges.
Bellman-Ford is slower than Dijkstra’s in most cases but it
can be more useful in some cases [3]. The details about this
algorithm can be found, e.g., in [2] and [7].

C. Bidirectional Dijkstra’s algorithm

This algorithm searches simultaneously from the source
vertex (node) onward and from the destination vertex (node)
backwards and stop when the two routes meet in the middle
[9]. Searching the shortest path can be divided into two
stages. When two paths meet at one vertex it is advisable to
check whether the current path is the shortest. The principle
consists of saving weight s of thefounded paths(in the

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

tables). If the weight is less than the sum of the values in the
tables (for both instance of the algorithm) for vertices at the
beginning of both priority queues – then the path is the
shortest. Binary heap was used in our implementation as a
priority queue. Searching from both the source and
destination in a homogenous graph can reduce the search
space to approximately half the size compared to only
searching from the source.

D. A* algorithm

A star (A*) algorithm is a heuristic algorithm [7]. The
algorithm allows findingan approximated solution - the least
cost path from the start point to the destination point. A star
uses a distance-plus-heuristic functionf(x) to determine the
order of visiting the nodes in a tree. This function can be
defined by (6):

(6)

where g(x) – is the total distance it has to be taken to get the
current position x, h'(x) – is the estimated distance from the
current position x to the destination point. Such a heuristic is
used to estimate on how far away it will take to reach the
destination.

IV. EXPERIMENTATION SYSTEM

The experimentation system was created in order to
properly investigate the properties of the pathfinding
algorithms. It contains the programmed simulator with
thesix implemented algorithms. It also ensures creation of
the experimental scenarios – maps. Twoapplications
(modules of the system) are available:
(I) Real maps module– allowing for creating a graph based
on the loaded map, what gives possibilities of using the
actual digital maps in order to reproduce the real conditions.
(II) Arbitrary maps module– allowing for generating an
arbitrary created graph - with the chosen number of vertices,
density, start point, number of iteration, etc. This part can be
used to make simulation experiments in automatic way.

The block-diagrams of the functionality of these
modules ofthe experimentation system are presented in
Figure 2 (module I) and Figure 3 (module II).

Input problem parameters of the module I are:

U1 – Starting point as the node (U) marked on the map
area.

U2 – Destination (End) point as the node (V) marked on
the map area.

U3 – List of incidence L (see an example in Figure 1).

U4 – Weighted functions(weights assigned to the
edges).

Output parameters of the moduleIare:

Q1 – Path found - denoted by - see formula

expressed by (3).

Q2 – The total cost (length/time) of the founded route.

Q3 – The average execution time of the algorithm.

In both modules, the algorithm is treated as a special input.
The experimentation system gives opportunities to use the
following six algorithms:

 A star (A*),

 Dijkstra,

 Dijkstra binary,

 Dijkstra bi-directional,

 Dijkstra Fibonacci,

 Bellman-Ford.

Figure 2. Input/output –module I - with real maps.

Input parameters of the module II are:

U1 – Starting point as the node (U) marked on the map
area.

U2 – Destination (End) point as the node (V) marked on
the map area.
U3 – Density of graph. This value expresses the amount
of edges to remove (in relation to the full graph).
U4 – Hash - the value used for the pseudorandom number
generator.
U5 – Weighted functions (weights assigned to the
edges).
U6 – List of incidence L (see an example in Figure 1).

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 3. Input/output – module II – arbitrary maps.

Output parameters of the moduleII are:

 Q1 – The total cost (length/time) of the founded
route.

 Q2 – The average execution time of the algorithm.

To investigate and compare the algorithms OsmGPS
application was used. The tool has been implemented in C#
environment. The main application window for the module I
can be seen in Figure 4.

Figure 4. Main window - real map.

The main application window for the module II is shown
in Figure 5.

Figure 5. Main window–arbitrary map.

Both modules allow searching for the shortest and
fastest routes. The experiments were made on MS Windows
8.1.

V. INVESTIGATION

A. Experiment # 1

The aim of Experiment #1 was checking the relationship
between the execution time and the number of vertices in
the graph. The locations of the starting points and
destination points were always the same. Only the area of
the map was changed(by increasing the number of vertices
and edges).The results are presented in Figure 6 and
Figure7.

Figure 6. Execution time and number of vertices – the fastest algorithms.

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 7. Execution time and number of vertices – the slowest algorithms.

As it can be seen in Figure 6, the A-star reached the
lowest execution times. Dijkstra binary priority queue and
Dijkstra bi-directional both reached a little bit worse times.
The mentioned algorithms get the best times for graphs with
high and low number of vertices. Two remaining algorithms
(Bellman-Fordand Dijkstra) achieved much worse
results.As expected, the execution timeswere raising a lot
with increasing amounts of vertices in the graph. All the
algorithms get similar execution time for graphs with less
than the number of 6528 vertices.

B. Experiment # 2

The objective of this experiment was checking the
relationship between the execution time and the path length.
In the same area (constant number of vertices and edges) was
set starting point – always the same (constant). The
destination point was systematically moved away. The
results are presented in Figure 8 and Figure9.

Figure 8. Execution time and path length – the fastest algorithms.

Figure 9.Execution time and path length – the slowest algorithms.

It can be seen in the figures that the execution time is
growing steadily with the increasing distance. The Dijkstra
based on binary queue and Dijkstrabi-directional were the
fastest. For short distances, time differenceswere
imperceptible. Only Dijkstra Fibonacci achieved worse
results at each stage of the test. A-star and Dijkstra
algorithm were apparently slower in comparison to others.

Bellman-Ford and Dijkstra again were the slowest of all.
The execution time of Bellman-Ford algorithm was almost
the same for different distances because of constant number
of checks. This is due to the fact that algorithm searches
paths to each of vertices and is not aborted before. The
execution time for Dijkstra algorithm was constantly
growing with increasing distance.

C. Experiment # 3

This experiment was a similar test to the previous
experiment. It was performed for the area of Wroclaw city
but this time the starting point and the end point were
gradually moved close towards each other. Initially starting
point was set in the southern part of the city and end point in
the northern part of the city. In the middle of the founded
route was the center of the city – a large collection of edges
and vertices. The results are presented in Figure 10
(logarithmic scale).

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 10. Relationship between execution time and distance – points are
moved close towards each other.

It can be observed in Figure 10, that the best results have
been produced by Dijkstra based on binary queue,
Dijkstrabidirectional and A* algorithm. Very good
performance of Dijkstra bidirectional should not be
surprising in this test. This is due to the principle of the
algorithm where it searches simultaneously from starting
point onward and next from destination point backwards,
and it stops when the two paths meet in the middle.
Approaching the starting point and the destination point we
facilitate the work of the algorithm. Once again the worst
algorithms were: Bellman-Ford and simple Dijkstra.

D. Experiment # 4

The objective was to verify the performance of
algorithms based on the graphs with given amounts of
vertices, destination point, starting point, the density and the
number of iterations. In this study, the attention was focused
on the density of graphs. Tests were performed for different
number of vertices but with the same conditions, e.g., for the
same graph. The results are presented in Figure 11.

Figure 11. Relationship between density of graph and execution time -
graph with 5000 vertices.

E. Experiment # 5

The aim of this experiment was toshow the relations
between execution time and the number of vertices for 100%
density.The results are presented in Figure 12.

Figure 12. Relationship between vertices and execution time – density
100%.

Figure 12 demonstrates that the Dijkstra’s binary
achieved the best results for graphs with high density.
Competitive for this algorithm were Dijkstra Fibonacci heap
and simple Dijkstra algorithm.

VI. FINAL REMARKS AND PERSPECTIVES

Based on the simulation experiments, we may say that
for GPS system the Dijkstra algorithm with priority queue
in the form of the binary heap performed as the best. This
algorithm achieved very good results almost in each

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

experiment – no matter how big the graph was. Also, easy
implementation is a big strength of this method. However,
Fibonacci heap definitely did not work well in graphs with
high density. This is due to the structure of the heap (many
nodes with pointers to the neighbors, parents, list of
children). In binary heap we have only the array of
elements. It is worth to mention that the bidirectional
Dijkstra algorithm also achieved good results in many cases,
in particular for graphs with low density. Using this
algorithm can be recommended as a good solution in GPS
systems because the maps have usually density at
approximately a few percent levels.

The authors are planning to focus on the algorithms
based partially on the evolutionary approaches, e.g.,
presented in [10] and [11]. There are also several interesting
issues that might be considered in the future work,
includingmore complex experiments with: more
exact/heuristic algorithms, larger topologies, and detailed
analysis of computational complexity of algorithms, as well
as memory usage, following the ideas of multistage
experiment design presented in [12].

ACKNOWLEDGEMENT

This work was supported by the statutory funds S40029_
K0402, Wroclaw University of Technology, Poland.

REFERENCES

[1] Royal Pingdom, “Google Maps turns 7 years old – amazing
facts and figures” [retrieved: July, 2014] at
:http://royal.pingdom.com.

[2] A. Kasprzak, Wide Area Networks, OWPW Publishing
House, Wroclaw, 2001 /in Polish/.

[3] J. Larsen and J. Clausen, “The shortest path problem”
[retrieved: February, 2015] at:
http://imada.sdu.dk/~jbj/DM85/lec6a.pdf

[4] D. Johansson, “An evaluation of shortest path algorithms on
real Metropolitan Area Network”, Linköpings Universitet,
Report: SE-581 83, Linköping, Sweden, 2008.

[5] J. Koszalew, “Data structure for graph representation:
selected algorithms,”[retrieved: July, 2014] at:
http://asdpb.republika.pl.

[6] W. Lung and D. Tseng, “Graph theory: shortest path”,
[retrieved: June, 2014] at:
http://www.cs.cornell.edu/~wdtseng/icpc/notes.pdf.

[7] T. H. Cormen, Algorithms Unlocked, MIT Press, Cambridge,
2013

[8] K. Wayne, “Fibonacci heaps” [retrieved: January, 2015] at:
http://cs.princeton.edu /~wayne/cs423/.

[9] G. Vaira and O. Kurasova, “Parallel bidirectional Dijkstra’s
shorthest path algorithm”, Frontiers in Artificial Intelligence
and Applications, vol. 224, 2011, pp. 422-435.

[10] T. Miksa, L.Koszalka, and A. Kasprzak,“Comparison of
heuristic methods applied to optimization of computer
networks”,Proc. of 11th Intern.Conf. on Networks, ICN 2012,
IARIA, pp. 34-38.

[11] D. Ohia, L. Koszalka,and A. Kasprzak, “Evolutionary
algorithm for solving congestion problem in computer
network”, LNCS, Springer, vol. 5711, 2009, pp. 112-121.

[12] A.Kakol, I.Pozniak-Koszalka, L.Koszalka, A. Kasprzak, and
K.J. Burnham, “An experimentation system for testing bee
behavior based algorithm for a transportation problem”,
LNCS, Springer, vol. 6592, 2011, pp.11-20.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

http://royal.pingdom.com/2014/12/08/google-maps-turns-7-years-old-amazing-facts-and-figures/
http://imada.sdu.dk/~jbj/DM85/lec6a.pdf
http://www.cs.cornell.edu/~wdtseng/icpc/notes.pdf
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ohia:Dawid.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kasprzak:Andrzej.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kakol:Adam.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pozniak=Koszalka:Iwona.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kasprzak:Andrzej.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Burnham:Keith_J=.html

