
Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI)
Platform

Shie-Yuan Wang

Department of Computer Science
National Chiao Tung University, Taiwan
Email: shieyuan@cs.nctu.edu.tw

Wen-Jhe Chang

Department of Computer Science
National Chiao Tung University, Taiwan
Email: ethan-shy@hotmail.com

Abstract—The recent advances in portable devices and the trends
to move a user’s desktop to cloud environments have changed how
people use traditional computers today. Several companies have
developed the “Virtual Desktop Infrastructure” (VDI) technology
for this trend. By this technology, people need not use a traditional
PC with a high clock-rate CPU and a large storage device
to run heavy tasks. Instead, they can use a “thin-client” and
a network connection to run these heavy tasks on a remote
VDI server. A VDI user can perform these tasks in a virtual
desktop run by a virtual machine (VM) on the VDI server.
During operations, the screen image of the virtual desktop will
be delivered to the screen of the thin-client. The VDI technology
offers many advantages. However, it may increase the perceived
delays when a VDI user operates a virtual desktop. These delays
may be caused by bad network conditions or by overloading
conditions on the VDI server. In this paper, we developed a
VDI performance benchmarking tool and used it to measure
the perceived delays when the XenDesktop VDI platform is used
under various network conditions and overloading conditions on
the VDI server. The EstiNet network simulator and emulator
was used to create various network conditions for benchmarking
measurements.

Keywords–EstiNet; VDI; VM.

I. INTRODUCTION

Recently, the VDI technology has become more and more
popular due to the availability of high-speed network accesses
and advances in portable devices. In this architecture, users
operate their virtualized desktops on a remote VDI server
rather than operate a real desktop on their local machines.
When they operate from their local machines, all of the
programs, applications, processes, and data are run and kept on
the VDI server. In this way, a user can run the same operating
system and execute the same applications and access the same
data from any machine via a network connection. Because this
computing model has great potential to save cost and increase
data security, many companies such as Citrix [1], Microsoft
[2], Oracle [3], and VMware [4] have developed their own
VDI technologies.

VDI offers many advantages but also comes with several
challenges. Nowadays, many users still hesitate to adopt the
VDI technology. One major concern is that using VDI may
suffer a much higher delay than using a desktop computer and
it is difficult for the VDI user to find out the causes. VDI
is a client-server architecture. When VDI users operate their
virtual desktops through a network, they must compete with
other VDI users for the network bandwidth and the various
resources on the VDI server. As a result, many factors can
cause the VDI users to more easily experience long delays

when operating their remote virtual desktops. Besides, because
a virtual desktop is run by a VM on a remote VDI server, it
is more difficult for the VDI users to find out what factor is
causing the long operation delays. For example, either a high
CPU usage on the VDI server or a long round-trip network
delay between the VDI user and the VDI server can cause the
user to experience large delays. However, the VDI user does
not know which factor is causing this delay and thus does
not know whether he should contact the VDI cloud service
provider or the Internet service provider to report and complain
the bad performance problems.

In this paper, we develop a performance benchmarking tool
to measure the delay (i.e., the screen response time) of Citrix’s
XenDesktop VDI platform under five important conditions.
The first two conditions: (1) large link delay and (2) high
packet loss rate, are about the quality of the network. The
other three conditions: (3) high CPU usage, (4) insufficient
memory allocation per VM, and (5) high disk usage, are about
the VDI server resource usage conditions. According to our
measured results, each of these five factors can cause a large
delay when a VDI user performs tasks on his virtual desktop.
Our results reveal that these factors affect the delay differently.
Due to the paper length limitation, in this paper we can only
present the performance benchmarking results. In our future
paper, we will present how we use the delay features of these
factors to develop a VDI performance diagnostic tool that can
accurately tell a VDI user which factor(s) is (are) causing the
long perceived delay.

The rest of the paper is organized as follows. In Section
II, we present related work on virtual desktop infrastructure.
In Section III, we present the implementation of our perfor-
mance benchmarking tool. Experimental setups are presented
in Section IV and various experimental results are presented
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

With the advances of desktop virtualization and thin-
client devices, there have been some work on performance
evaluation of VDI. The closest work to ours is DeskBench
[5], which captures the screen and records and playbacks
keyboard and mouse events on the client side. The other close
work is VNCPlay [6], which is also based on matching screen
and recording and playback of keyboard and mouse events.
Another similar work is Slow Motion Benchmarking [7]. It
captures the network traffic exchanged between the client and
server and replays the network traffic later in slow motion. The

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 1. Interaction between the VDI client and server

authors in [8] proposed the VDBench toolkit to measure thin-
client performances under server load and network conditions.
In [9], the authors focused on benchmarking the audio trans-
mission performance when virtual desktop platform is used,
as this is the topic that a Telcom operator would concern.

In our paper, we use a similar approach to these work
to measure the screen response time. However, we use the
Citrix’s XenDesktop VDI platform as the performance study
target while most of these previous work studied the open-
source VNC protocol and Microsoft’s Remote Desktop Proto-
col (RDP). Compared with the work done in [8], the authors
in [8] used VMware ESXi 4.0 as the VDI server while we
used Citrix’s XenDesktop VDI platform as the VDI server.
XenDesktop uses a patented highly-efficient HDX technology
as the VDI protocol between its VDI client and server. Ac-
cording to our measurements and comparisons, we found that
HDX performs much better than VNC and RDP because the
perceived VDI delay when HDX is used is much less than
those when VNC and RDP are used. Beside the differences
in the tested VDI technologies, in this paper we focus on
the XenDesktop delay performances under various network
conditions and overloading conditions on the VDI server. Most
of these conditions are not studied in these previous work.

III. IMPLEMENTATION OF THE PERFORMANCE
BENCHMARKING TOOL

The screen response time of a VDI user’s action is the
time between when the user clicks the mouse or does the
keyboard input and the time when the corresponding screen
shows up completely on the VDI user’s device. The response
time measuring process is depicted in Figure 1. The horizontal
line represents the time axis. Vertical dashed lines represent
the requests sent from the client to the server. Short vertical
dotted lines represent screen updates arriving from the sever.
High vertical solid lines represent when our tool compares the
current screen image with the expected one. Assume that the
user clicks the mouse left button to execute Microsoft Word
application at time t1. Further assume that the server sends
the new screen of executing Microsoft Word to the client at t2
and our tool detects that a match occurs at t3. For this example
case, the time between when the user sends a request to the
server and the time when the corresponding screen shows up
is t3 - t1. This is the VDI delay performance measured and
reported in this paper.

Figure 2. Flow chart of measuring screen response time

The flow chart illustrating how we automatically generate
a user’s action and measure its screen response time is shown
in Figure 2.

1 First, check if there is any user’s input occurring.
2 If input occurring, our tool uses the WIN32 API to capture

and replay the user’s actions of mouse and keyboard.
3 If an action needs to synchronize with the screen (that

is, after executing the action, a new screen must show
up before the next action can be executed), our tool will
start a timer to record the response time. (Note that some
actions need not synchronize with the screen. In such a
case, the next action in the replay list can be executed
immediately without waiting for the new screen to show
up.)

4 For an action that needs screen synchronization, after the
timer is started, our tool will periodically check whether
the expected screen image has arrived from the server by
comparing the current screen image of an area with the
new screen image of the same area.

5 Detect if there is any screen match occurring.
6 If a screen match is detected, our tool will stop the timer

and record the response time of this action. Then, the tool
will execute the next action.

7 If there are no more actions to send to the server, the
tool will stop and show the response time of all executed
actions.

To make the measured response time accurate, when the
timer is turned on, the interval between two successive screen
image comparisons must be small enough. This means that
each image comparison must be finished as soon as possible.
To do so, our tool intelligently compares only the new and
old images of the area where its screen image is expected to
change without comparing the new and old screen images of
the whole screen. As an example, Figure 3(a) shows the whole

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

(a) Screen before an action is sent (b) Screen after an action is com-
pleted

Figure 3. Screen before and after a user sends a request

screen before an action is sent to the server while Figure 3(b)
shows that a window is popped up after the action is sent to the
server and completed. We see that this action only changes an
area of the screen. As a result, our tool only needs to compare
an area of the whole screen to speed up the image comparison
operation. With this improvement, our tool can finish the image
comparison in 100 microseconds. In our implementation, when
the measuring timer is turned on, our tool will perform the
image comparison every 100 microseconds.

The three types of actions that most users will issue when
performing tasks on a desktop are listed in Table I. Because
these types of actions will be executed very frequently, the VDI
delays of these actions are important performance metrics that
can be used to judge the delay quality experienced by a VDI
user.

TABLE I. TYPES OF ACTIONS ISSUED ON THE CLIENT TO THE VDI SERVER

Action Types Explanation
Opening and closing Mi-
crosoft Word

The client sends the mouse click action to the
server to open/close the Microsoft Word applica-
tion. It then measures the screen response time for
the application to completely open up/close down
its window.

Keyboard input The client sends the keyboard input action to
type some few words in Microsoft Word. It then
measures the screen response time of the words
showing up on the screen.

Compressing files The client sends the mouse click action to perform
a compress files operation. It then measures the
screen response time of the compressing applica-
tion finishing its jobs completely.

IV. EXPERIMENTAL SETUP

In this paper, we use Citrix’s XenDesktop as our VDI plat-
form and use the EstiNet network simulator and emulator [10]–
[12] to create various network conditions between the VDI
client and server. The setup of our experiments is presented
in Figure 4. The lower part of Figure 4 shows that in the real
world we use Asus RS500A-E6 for our VDI server, which is
equipped with two AMD CPUs (each with 12 cores operating
at 1.9 GHZ) and 48 Gigabyte memory. The VDI server runs
XenServer (version 5.6) to host up to 32 VMs each running
Windows 7 operating system. It also runs the XenDesktop
controller to manage these Windows 7 virtual desktops. The
VDI client runs XenDesktop receiver and our tool on a PC that
is equipped with an Intel CPU (3.4 GHZ dual core). We run
EstiNet on another computer as a network emulator between
the VDI client and server. It connects to both the VDI client
and server to intercept their exchanged packets to vary the
delay and packet loss rates experienced by these packets.

Figure 4. Experimental Environment

The upper part of Figure 4 shows how the tested network
in the real world is represented and simulated in the EstiNet
network emulator. In the simulated network, node 1 with the
IP address 1.0.1.1 represents the VDI client while node 2 with
the IP address IP 1.0.2.1 represents the VDI server. Because
the packets exchanged between node 1 and node 2 will go
through node 3, which is configured to add certain delays to
these packets or drop these packets at a certain rate, EstiNet
can easily vary the network conditions between the VDI client
and server in the real world.

V. EXPERIMENTAL RESULTS

We measure the response time of opening and closing
Microsoft Word, keyboard input, and compressing files under
different server loadings, link delays, and packet loss rates. We
vary the server’s total CPU usage by running 0-32 VMs on the
server and let each VM run a CPU-bound job, which consumes
about one CPU core. We vary the size of the memory allocated
to each VM from 4 GB down to 1 GB and execute a program
on each VM to purposely consume about 1 GB memory. Doing
so is to test how important the usable memory space is to the
VDI delay of an action. We also vary the disk usage on the
server by running 0-10 VMs on the server and let each VM
compress files to generate about 6 MB/s disk read/write load
per VM. We found that 10 VMs are enough to generate heavy
loads on the disk. In the following figures, each data point is
the average of 100 runs of the measurements of the same type
of action performed under the same settings.

Figures 5 - 7 show the response time of opening and closing
Microsoft Word under different server loading conditions. A
first finding is that the delay of the “Word Close” action is
much less than the delay of the “Word Open” action, and
its delay remains low and stable under high server loading
conditions. These results suggest that the “Word Close” action
is a light-weight operation. In contrast, from Figure 5 we see
that when more and more CPU-bound VMs are competing for
the shared CPU resource, which results in insufficient CPU
resource allocation for the VM executing the “Word Open”
action, the delay of this action goes up quickly. From Figure
6, we see that when the allocated memory to a VM is less than
1.5 GB due to the competition among more and more VMs, the

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 5. Screen response time of opening and closing Microsoft Word under different
numbers of VMs each executing CPU-bound jobs

delay of the “Word Open” action goes up very quickly. This
phenomenon is due to the “thrashing” effect of the operating
system, which refers to the situation when the hard disk space
is used as memory space due to insufficient memory space
allocated for executing an application.) From this phenomenon,
we see that the “Word Open” action not only requires much
CPU resource, it also requires much memory resource for
quick response. Figure 7 shows that even with high disk usages
(which is caused by compressing applications executing many
disk I/O operations), the delay of “Word Open” action does
not increase much. This suggests that the “Word Open” action
does not require much disk throughput resource. In summary,
our results show that the VDI delay of “Word Open” action
increases under high CPU usage or high memory usage but
remains about the same under high disk usage.

The delays of the “Word Open” action under different
link delays are shown in Figure 8. As expected, the link
delay linearly affects the delay of the action because the
VDI client must wait for the link delay to elapse before the
screen update can arrive. Figure 9 shows the delay of the
“Word Open” action under different packet loss rates. We see
that the packet loss rate increases the delay non-linearly and
when the packet loss rate exceeds 12%, the delay starts to
increase dramatically. This phenomenon can be explained by
the fact that the transport protocol used by XenDesktop’s VDI
technology is TCP and TCP throughput is very sensitive to
the packet loss rate due to its conservative congestion control
algorithm.

Figures 10 - 14 show the response time of keyboard input
under different server loading and network conditions. Figure
10 shows that the “Keyboard input” action requires some CPU
resource and its delay increases by a small amount of 30
milliseconds when more and more VMs are competing for
the shared CPU resource. Figure 11 shows that the delay
of the “Keyboard input” action remains about the same un-
der different allocated memory sizes unless the size of the
allocation drops to 1 GB, where the thrashing effect starts
to begin. Figure 12 shows that the delay of the “Keyboard
input” action does not increase as the disk usage increases.
This phenomenon is expected as the processing of a keyboard
input on the VDI server does not need to use any disk I/O
operation. As a result, the delay of the “Keyboard input” action
has no relationship with the current disk usage on the VDI

Figure 6. Screen response time of opening and closing Microsoft Word under different
allocated memory sizes per VM

Figure 7. Screen response time of opening and closing Microsoft Word under different
numbers of VMs each executing compression

Figure 8. Screen response time of opening and closing Microsoft Word under different
link delays

server. From these three figures, we see that the maximum
and minimum delays measured for the “Keyboard input” action
under different server loading conditions only differ by about
30 milliseconds. This difference is quite small and the VDI
user will not notice such a difference.

However, Figure 13 and Figure 14 show that the network
conditions can dramatically increase the delay of keyboard
input. As expected, the link delay between the VDI client

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 9. Screen response time of opening and closing Microsoft Word under different
packet loss rates

Figure 10. Screen response time of keyboard input under different numbers of VMs
each executing CPU-bound jobs

and server linearly increases the delay of keyboard input. This
is reasonable as the data amount that needs to be exchanged
between the VDI client and server for a keyboard input is
only a few bytes. Thus, the processing time required for the
exchanged data on the VDI server is little and constitutes only
a very tiny portion of the delay. That is, most of the delay
comes from the link delay between the VDI client and server.
Regarding the packet loss rate, we see that it also affects the
delay of keyboard input significantly. We see that when the
packet loss rate exceeds 18%, the delay abruptly jumps to
1.078 seconds, which is very noticable and annoying for the
VDI user.

In summary, we found that the delay of the “Keyboard
input” action generally is not affected by the server loading
conditions but will be affected by large link delays and high
packet loss rates in the network.

Figure 15 - 17 show the response time of compressing files
under different server loading conditions. We do not measure
the response time of compressing files under network condi-
tions. This is because the time required to finish compressing
files is too large (e.g., above 100,000 ms) compared to the
tested link delays, whose maximum value is 500 ms. For such
a situation, the link delay affects the delay of compressing files
very minimally. In addition, because the “compressing files”
action compresses the files on the VDI server without the need
to transfer any file from the VDI client to the server, the packet

Figure 11. Screen response time of keyboard input under different allocated memory
sizes per VM

Figure 12. Screen response time of keyboard input under different numbers of VMs
each executing compression

Figure 13. Screen response time of keyboard input under different link delays

loss rate does not affect the delay of the “compressing files”
action at all. As a result, we do not study its effects on the
delay of the “compressing files” action.

As shown in Figure 15, the “compressing files” action
requires much CPU resource. This is evident because the figure
shows that when more and more CPU-bound VMs are compet-
ing for the CPU resource, the delay of the “compressing files”
action increases rapidly. Figure 16 shows that the “compressing

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 14. Screen response time of keyboard input under different packet loss rates

Figure 15. Screen response time of compressing files under different numbers of VMs
each executing CPU-bound jobs

files” action also requires much memory resource to finish the
job quickly. Comparing Figure 16 with Figure 6 and Figure 11,
we see that the “compressing files” action requires much more
memory than the “Word Open” action or the “Keyboard input”
action because its delay starts to go up when the allocated
memory size is less than 3 GB while the delays of the other two
actions go up only when the allocated memory sizes are less
than 1.7 GB and 1.3 GB, respectively. Figure 17 shows that the
“compressing files” action also requires much disk throughput
resource because when more and more VMs are compressing
files to compete for the disk throughput resource, the delay
of the “compressing files” action goes up rapidly. From these
figures, we see that the delay of the “compressing files” action
is affected by high CPU usage, insufficient memory allocation,
and high disk usage.

VI. CONCLUSION

In this paper, we developed a VDI performance bench-
marking tool and used it to study the delay performance of the
XenDesktop VDI platform under various network conditions
and server loading conditions. Using the EstiNet network
emulator to create various network conditions, our study shows
that the following factors can increase the experienced delay of
XenDesktop VDI significantly: the link delay and the network
packet loss rate between the VDI client and server, the CPU
utilization of the VDI server, the disk read/write load of the

Figure 16. Screen response time of compressing files under different allocated memory
sizes per VM

Figure 17. Screen response time of compressing files under different numbers of VMs
each executing compression

VDI server, and the size of the memory allocated to a VM
running the virtual desktop. Our measurement results reveal
that these factors affect the experienced delay of XenDesktop
VDI differently. The delay features of these factors can be
used to judge what factor(s) is (are) causing the delay when a
user operates a virtual desktop. Based on these unique delay
features, a diagnostic tool can be developed to help network
service providers and cloud service providers to jointly identify
the real causes for large experienced VDI delays. In the future,
we will extend our work to study the perceived VDI delays
when the VM that runs a virtual desktop migrates from one
physical server to another. This topic is important as a VM may
frequently migrate in a cloud for load balancing purposes.

REFERENCES

[1] “XenDesktop Product Information,” URL: http://www.citrix.com [ac-
cessed: 2015-03-04].

[2] “Virtual Desktop Infrastructure in Windows Server 2008,” URL:
http://www.microsoft.com [accessed: 2015-03-04].

[3] “Oracle Virtual Desktop Infrastructure Product Information,” URL:
http://www.oracle.com [accessed: 2015-03-04].

[4] “VMWare EMC.” URL: http://www.vmware.com [accessed: 2015-03-
04].

[5] J. Rhee, A. Kochut, and K. Beaty, “Deskbench: flexible virtual desk-
top benchmarking toolkit,” in Integrated Network Management, 2009.
IM’09. IFIP/IEEE International Symposium on. IEEE, 2009, pp. 622–
629.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

[6] N. Zeldovich and R. Chandra, “Interactive performance measurement
with vncplay.” in USENIX Annual Technical Conference, FREENIX
Track, 2005, pp. 189–198.

[7] J. Nieh, S. J. Yang, and N. Novik, “Measuring thin-client performance
using slow-motion benchmarking,” ACM Transactions on Computer
Systems (TOCS), vol. 21, no. 1, 2003, pp. 87–115.

[8] A. Berryman, P. Calyam, M. Honigford, and A. M. Lai, “Vdbench:
A benchmarking toolkit for thin-client based virtual desktop environ-
ments,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on. IEEE, 2010, pp.
480–487.

[9] F. Wang, Y. Liu, B. Lei, and J. Li, “Benchmark driven virtual desktop
planning: A case study from telecom operator,” in Proceedings of the
2012 International Conference on Cloud and Service Computing. IEEE
Computer Society, 2012, pp. 204–211.

[10] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, “EstiNet OpenFlow network
simulator and emulator,” Communications Magazine, IEEE, vol. 51,
no. 9, 2013, pp. 110–117.

[11] S.-Y. Wang, “Comparison of SDN OpenFlow network simulator and
emulators: EstiNet vs. Mininet,” in Proceedings of the 2014 IEEE
International Symposium on Computers and Communication (ISCC).
IEEE, 2014, pp. 1–6.

[12] “EstiNet Network Simulator and Emulator,,” URL:
http://www.estinet.com [accessed: 2015-03-04].

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

