
MTRP: Multi-Topology Recovery Protocol

Paulo V. A. Pinheiro
Universidade Estadual do Ceará (UECE)

Av. Paranjana 1700
Fortaleza - CE - Brazil

paulovap@larces.uece.br

Marcial P. Fernandez
Universidade Estadual do Ceará (UECE)

Av. Paranjana 1700
Fortaleza - CE - Brazil
marcial@larces.uece.br

Abstract—Link and node failure recovery is critical in any
production network and recover the failures in times below
50 milliseconds is desired to maintain the quality of real
time application. In this paper, we propose the Multi-Topology
Recovery Protocol (MTRP) that provides network protection
using pre-calculate routes and a multi-topology approach.
The protocol was based on the state-of-the-art recovery and
protection techniques. MTRP is based on Resilient Routing
Layers (RRL) algorithm, used to generate the sub-topology.
The MTRP prototype was implemented and tested in a
virtualized environment, providing real IP stack in an actual
operating system. The tests show that the MTRP provides
a quick convergence, below few milliseconds, similar to ring
protection protocol for partial mesh topology. MTRP evaluation
shows that it also produces recovery paths with costs (distance)
almost as low as the primary ones.

Keywords-network recovery; protocol; resilience.

I. INTRODUCTION

Since the inception of the Internet, the problem of pro-
tection and failure’s recovery on networks has aroused
interest of researchers. This area has received enough at-
tention because it keeps the quality of services provided
by communication networks as regards the stability and
availability. This is done by using mechanisms that aim to
ensure protection of the network. Not limited to this, these
mechanisms also restore the network to its normal operating
condition, since there is a failure situation. This ability that
the network has to keep itself alive, thus in an operational
state, is called, in literature, survivability or resilience [1].
The most networks are designed to take advantage of that
assumption, exploring the use of two topologies types: mesh
and ring topology.

Ring recovery protocols are simple and provide recovery
in a shorter time, restoring the network to its fully functional
state in a time close to 50 milliseconds. However, this
topology has limited recoverability: only a single failure
can be recovered (only one spare path). These are some
examples of protocols for this type of architecture: Ethernet
Automatic Protection Switching (EAPS) [2], Ethernet Ring
Protection Switching (ERPS) [3] and SONET/SDH. A mesh
recovery protocol permits broader recovery, limited only by
the amount of multiple paths available, but it has a greater
recovery time. Since the protocol does not know the network

topology to perform its protection, it always takes longer
time to calculate a new viable path, typically in the order of
seconds. Despite this recoverability, it provides a slow return
to the natural state of the network because, when there is an
error, a signaling process to notify the topology change to
all nodes starts. These are examples of this type of protocol:
Spanning Tree Protocol (STP) [4], Open Shortest Path First
(OSPF) [5] and Intermediate System to Intermediate System
Routing Exchange Protocol (IS-IS) [6].

This paper proposes a new protocol to ensure recovery
of a partially mesh network quickly and efficiently. This
proposal takes advantage of better recoverability from a
mesh network, but it offers a recovery time close to the
ring topology networks, such as SONET/SDH. The protocol
will be based on the pre-computation of paths and the
use of multi-topologies for network recovery, based on a
technique known as Resilient Routing Layers (RRL) [7].
Our contribution is to propose and validate a new recovery
protocol based on a small variation of this algorithm. The
proposal validation was made by implementing a prototype
in a virtualized network, created with Mininet tool [8].

This article is organized as follows. In Section II, we
present related works. In Section III, the proposal of the
Multi-Topology Recovery Protocol (MTRP) protocol is de-
scribed. Then, in Section IV, the proposal evaluation is
described. In the Section V, results are shown. Finally, in
Section VI, we present the conclusion and future works.

II. RELATED WORKS

These are some related works that propose failure recov-
ery protocol in mesh topologies in a short convergence time.

Barreto [9] presents a proactive approach that is added
to the OSPF protocol. Emergency paths are computed in
advance in each node, adding a secondary route for each
available neighbor. This proposal is based on IP Fast re-
route scheme.

Psenak et al. [10] propose an RFC that describes an
extension of the OSPF protocol, called OSPF-MT. This
extension suggests the use of multi topologies for using of
the routing protocol. Among the possible uses, there are:
new route’s creation, isolation of classes of service and the
management. Przygienda et al. [11], proposed an extension

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

to the IS-IS Protocol, in which they suggest the use of
multiple topologies for general purpose.

The literature presents many proposals of IP Fast Reroute
(IPFRR) technologies [12]. IPFRR refers to the set of
mechanisms aiming to provide fast rerouting using pure
IP protocol forwarding and routing. Several proposals have
been made to IETF IPFRR, such as, Release Point, Down-
stream Routes, Loop-Free Alternates, U-Turns and Not-Via
Adresses [13]. The goal of the IPFRR mechanism is to set
alternate routing paths, which avoid micro loops under node
or link failures. However, IPFRR recalculates new routes
after failure detection (reactive), and it requires to work only
over IP protocol.

III. MULTI-TOPOLOGY RECOVERY PROTOCOL (MTRP)

In this section, a new protocol for network recovery will
be presented; whose primary goal is to ensure the recovery
of failure in links or nodes in times near to the telecommu-
nications networks based on rings (typically below 50 ms),
using the least of redundant resources.

The protocol presented in this work was called Multi-
Topology Recovery Protocol (MTRP), due to its most strik-
ing characteristic: using a set of sub topologies created from
the actual topology of the network to keep the packets
routing. MTRP has features to optimize the recovery process
and provide new features to the routing protocol, making it
more flexible, efficient and looking forward to becoming a
good option for network’s deployment.

A. Characteristics

This section aims to present several of these features
which were incorporated to MTRP.

1) Local Recovery: When a failure occurs, the affected
traffic is redirected by passing through the recovery mecha-
nism, following a new path. This path, or more specifically
the track used in the path, can be built through the principles
of local and global recovery. The local recovery is done
as close as possible to the point of failure, so in general,
detection and recovery are performed much faster than the
global recovery, and in most cases, requires fewer states. In
order to achieve times shorter than 50ms, MTRP protocol
uses this local recovery scheme, where the traffic is rerouted
to an alternative route to join a node next to the failure.

2) Hardware Failures Detection: The main mechanism
to detect a failure is the hardware mechanisms in equipment
physical layers. A mechanism on the equipment operating
systems detects the link down by the loss of optical signal
at an interface, starting the recovery procedure. So it can
achieve a shorter failure detection time, and it can change
to a new topology. In these there is not a hardware detection
engine, it is necessary to send HELLO messages to supply
this lack, consuming a little more network bandwidth and
delaying the failure detection time.

3) Precalculated Recovery Paths: Using reactive schema
to perform network nodes and link’s recovery has been
shown to be inefficient when the recovery time is important.
Much time is spent in signaling; the dissemination of the
new topology is slow and, finally, it is necessary to run
an algorithm to generate the shortest path tree. A way to
optimize the recovery time is the pre calculation of some
steps that can be in advance for quick recovery. Using pre-
computed paths to ensure recovery of all possible failures
is impractical due to the large number of states that would
be necessary. However, it is likely to cover 100% of single
failures and (≥ 80%) of multiple failures with few layers
[7].

4) Multiple Topologies: The use of Multiple Topologies
(MT) is a consequence of pre-calculating paths. Each pos-
sible path takes part of one (or more) viable topology. It
is a relatively new approach, which many authors have
been proposing to incorporate this feature to the traditional
protocols such [10] [11]. Its basic principle is to generate
virtual topologies based on its real network topology, where
resources belonging to the network may not be present in
all topologies.

5) Centralized Processing: The best set of routes to the
network recoverability can be obtained when you have all
the information about the topology and define the configu-
ration in the same place. The Central Processor unit is the
equipment responsible for the generation and distribution of
routes to the routers, giving a huge management power to
network operator.

B. MTRP Architecture

Processing
Unit

Router
Unit

Router
Unit

Router
Unit

Router
Unit

Processing
Unit(backup)

Router
Unit

Figure 1. MTRP Architecture

The MTRP routing process involves two entities: the
central node, called Processing Unit (PU), which will be
responsible for the generation of multiple network topolo-
gies and the routes’ calculation, as well as some minor
managerial activities, and the router, called Router Unit

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

(RU), which will manage the traffic that passes through the
network using route tables generated by PU.

During the network initializing, each RU recognizes its
neighbors and discovers the link metrics through their
HELLO message. At the same time, the PU sends a message
identifying itself as the control node. This message, called
Processing Unit Advertisement (PUA), is sent via broad-
cast to all the network RUs, which in their turn, learn by
which interface it should communicate to the PU. If the PU
receives this message from more than one interface, it will
consider only the interface from which the PUA message
came first.

Once the information about the neighbors and the path
to the PU are established, each RU sends its routing table
to the PU, using the message Neighbor Advertisement
(NA)) through the newly discovered PUA message path. PU
receives all NAs and creates the actual topology, called Real
Topology (RTOP). With the RTOP defined the PU starts
the process to create n virtual topologies, called Virtual
Topology (VTOP). The VTOP will be used to define the
predefined routing paths (Routing Table (RT)).

C. Protocol Messages

The MTRP protocol uses the following messages: (1)For-
warding Packet, When a data packet enters on the network,
it is encapsulated within a MTRP and it can be forwarded
through the network; (2)Hello packets, used to maintain
the neighborhood relationship between nodes, and detect
failures that were not detected by the hardware; (3) Pro-
cessing Unit Advertisement, Message sent just by PU to all
RUs in the network to inform the active PU; (4) Neighbor
Advertisement, message sent only by the RU to inform PU
the list of its neighbor’s nodes and the metrics of each link;
(5)Route Database Update, after the routes are created, the
PU will send this packet to update each RU routing tables,
according to the number of sub topologies; (6)Acknowledge-
ment, message used to confirm the messages received.

D. Processing Unit (PU)

The Processing Unit (PU) is the entity responsible for
characterization, topologies generation, route’s computation,
topologies distribution and, finally, network monitoring.

1) Topologies Generation: The main feature of PU is
the route generation, including pre-calculated primary and
backup routes. In order to have it, it is necessary that PU has
a set of VTOPs which will ensure these alternative routes, no
matter how they are created. There are several ways to create
VTOPs according to different network routing characteris-
tics. VTOPs can be created prioritizing the size of backup
paths, increasing coverage to multiple failures, minimizing
the amount of VTOPs to simple failure’s protection and
many other possible customizations.

As a standard tool for VTOPs generation, the MTRP uses
a variation of the Resilient Routing Layers (RRL) algorithm

proposed in [14], showed at Algorithm 1. Our algorithm
aims to ensure greater network redundancy, expanding cov-
erage to multiple failures (k-fault) and avoid the back hauling
effect [1]. The Algorithm 1 shows the layers generation.

Algorithm 1: MTRP: VTOP Generation for k-failures
Input: G(V,E): Bidirectional Graph of Real Network

Topology.
Input: nTopo: Minimum Number of Layers to be

Generate
Input: k: Number of Simultaneous Failures Supported
Input: artPoints(G): List of articulated nodes, i.e.,

nodes that if removed would split the network
Result: L[i]: List of Graphs of Virtual Topologies

VTOP
S = artPoints(G)
foreach n ∈ V do

c(n) = 0
cl(E) = 0

end
i = 0
while (i < nTopo) or (|S| < |V |) do

Li(Vi, Ei) = G
P = {}
while |P | < |V | do

n = min(c(n)) such that n 6∈ P
if n 6∈ artPoints(Li) then
{l1, . . . , lk} = links(n,Ei)
Ei = Ei − {l1, . . . , lk}
e = min(cl({l1, . . . , lk}))
Ei = Ei + e
cl(e) = cl(e) + 1
S = S ∪ {n}
c(n) = c(n) + 1

end
P = P ∪ {n}

end
i = i + 1

end

The algorithm starts by creating two lists (c() and cl())
containing integers indicating how many times a node (c(n))
and a link (cl(E)) were used for layer’s generation. Then,
a loop starts in each sub topology created, which will be
added to the list L. P stores the list of nodes already used for
creation of the Li sub topology. In the innermost algorithm
loop, there is a link removal to ensure they will be saved by
other layers. For each layer, the node less used is selected
min(c(n)), so that, their edges are removed (Ei = Ei −
l1, lk, . . .) excepting the not as much used edge (Ei = Ei+
e)). After all nodes have been saved for at least one layer
(S = V), the algorithm ends and returns the list L(i) of sub
topologies.

If the network is a connected graph, the path is guaranteed

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

by the routing algorithm, e.g., in our experiment Dijsktra’s
was used. The only constraints we assume is that the graph
should have, at least, one path from any node to any other
node in the graph.

E. Router Unit (RU)

The Router Unit (RU) is the entity responsible for the
packets’ forwarding on the network. Unlike to what happens
with traditional routing protocols, such as OSPF and IS-IS,
where the network control is done in a distributed way,
the RU takes care only for the packet forwarding, report
changes and errors. This ensures that the RU may become
a simpler equipment with less processing power and thus,
lower cost. Another advantage is the reduction of signaling
overhead that occurs in distributed routing protocols, e.g.,
the tables’ synchronization among routers and designated
router election in OSPF. The following sections describe
the RU state machine, the messages between RU-PU and
the algorithms to recovery mechanism.

1) Signaling: There are two possible signals that start
from RU: topology change and packet drop alert. The
topology change may occur due to a failure, resulting in the
loss or addition of links or nodes. The change notification
is sent only to the PU and occurs in parallel to other RU
activities, there is no dependency in that signals nor other
critical router functionalities.

2) Recovery Mechanism: Since its route tables are com-
pleted, the RU is able to perform the packet forwarding
and repair paths down. As described previously, the protocol
used the table referring to RTOP during its regular function-
ing. Once there is the failure, the neighbor, that would use it
as the next hop to deliver the packet, runs the Algorithm 2
to select a new routing table that does not present the failure
element.

Algorithm 2: MTRP: RU Packet Forward Algorithm
Input: Tn: Route table
Input: pkt: Packet to be forward

sent = False;
if sendNextHop(pkt) not True then

foreach t ∈ Tn do
if canSendVia(t,pkt) then

mark(pkt,t);
sendNextHop(pkt);
sent = True;

end
end
if sent not True then

drop(pkt);
end

end

At the beginning of the Algorithm 2, the RU tries to send
the packet using the RTOP routing table, or the VTOP table
in use marked on the packet. The packet is sent using the
sendNextHop() function that receives the packet to be
sent as a parameter. This function checks which table should
be used reading TOPOIDX field on packet and checks
if the next hop in this table is possible (if the link has no
failures). If it is not possible to send, this function returns the
value False, which causes the algorithm to find a new route
table to be used for this packet. Once the destination is found
on the table, the function canSendVia returns the value
True indicating that the table t can be used. The packet is
marked by the mark function to indicate the next RU which
table should be used. Then it is sent by sendNextHop
function, but now using another table.

IV. PROTOTYPE VALIDATION

The computational virtualization enables various operat-
ing systems to run concurrently on shared hardware equip-
ment, so it is possible to have multiple operating sys-
tems logically isolated between them running on a single
hardware. The use of virtual machines connected through
network interfaces has been shown to be quite efficient and
presents a higher degree of realism and interactivity than the
use of network simulators like ns-2 [15].

MTRP evaluation shall be carried out in a scenario created
for the rapid prototyping network tools Mininet [8]. This tool
creates a network topology through the use of Lightweight
Virtualization, i.e., a virtualization scheme where an isolated
environment is created to group processes in containers,
where logical devices of each container are not shared
among themselves.

Scenarios were created based on real-world topologies:
GEANT, IINET and SPRINT. Database containing informa-
tion about these and other actual topologies can be found
on [16]. For worst case evaluation; it was used the bigG
topology, an artificial network generated from the algorithm
proposed in [17], containing 123 nodes and 243 links.

For each topology, the metrics, network initialization time,
recovery path distance, memory used to store routing table
and time to recover a simple failure will be reviewed. With
such data, we can have an overview of the performance of
the protocol on these networks.

V. RESULTS

In this section, the results of the tests will be presented and
analyzed, demonstrating the effectiveness of the protocol.

A. Network Initialization

Tests to establish the network startup time were made
to define how the use of a centralized point for processing
and distribution routes would affect the network startup. The
startup time is the time interval between the first HELLO
message sent by PU until the last ACK message received by

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

it, indicating that all routes were sent successfully. Table I
shows the startup times for each topology [18].

Table I
NETWORK INITIALIZATION TIME

Topology Network Initialization Time (sec)
Sprint(11, 18) 0.89882
Geant(27, 38) 0.999489
Iinet(31, 35) 1.03966

medG(42, 81) 1.51030
bigG(123, 243) 5.1478

According to the Table I, the network boot time is around
one second, gradually increasing with the rise of network
complexity. The MTRP protocol presented low boot times
compared to others such as Routing Information Protocol
(RIP) and OSPF. According to [18], in a network with seven
routers, the OSPF protocol takes, in average, ten seconds to
carry out the convergence of its nodes, which is about the
time of a network initialization. RIP takes, in average, more
than 100 seconds.

B. Average Route Length

Table II shows the average of all possible paths between
two different nodes in the whole topology in all topologies
generated by MTRP algorithm. To perform the calculation
the Equation 1 was used:

x̄ =
∑
s,t∈V

d(s, t)

n(n− 1))
(1)

where s and t are nodes belonging to the network, n
represents the total number of nodes and d(s, t) is the
smallest path which goes from s to t. Table II shows the
results of average of route’s length.

In a failure situation, the protocol will use one of the
sub-topologies created to perform the packets’ forwarding,
choosing the shortest path between source and destination.
The failure was simulating by removing a link or a node.
However, we only considered the situations where the graph
still connected, i.e., there is at least one backup path. Non-
connected graphs cannot be fully restored, so it is impossible
to infer an average route length.

On the Sprint network, it was noted that the paths gener-
ated by sub-topologies are on average 1.19x to 1.49x larger
than the original path without failures. Geant presented a
variation from 1.10x to 1.50x and, finally, the algorithm
obtained from 1.10x to 1.24x in Iinet. BigG, in its turn,
presented sub-topologies with the smallest paths (Topo3 -
1, 002x) as well as the largest ones (Topo1 - 3.6x) in the
tests.

The VTOP generation algorithm used does not consider
the topology metrics to split the network into layers. So, it
was created the ”bad” Topo 1 topology on bigG. However,
the table shows the worst path in this topology, so there

Table II
MTRP - AVERAGE PATH LENGTH (NR. OF HOPS)

Topology Real Topo 1 Topo 2 Topo 3
Sprint(11, 18) 1.89091 2.2545 2.8363 2.3818
Geant(27, 38) 2.9373 4.5641 4.2222 3.2421
Iinet(31, 35) 2.8215 3.1053 3.5053 3.3677

bigG(123, 243) 2.9648 10.6743 3.3145 2.9722

are other topologies that give the optimal paths, thus more
eligible to be used as recovery topology. This is not really
an issue once you use a fair number of virtual topologies (5,
6..), and it would not be difficult to generate the VTOP that
the ”good” paths would be fairly distributed by the VTOPs.

It is noticed that the algorithm generates good recovery
paths, with sizes close to the original one. Even with good
results, there are some ways to improve the algorithm so
that it generates shorter paths. The use of more topologies
is necessary, and each topology may have a larger set of
bindings. It is important to note that as a consequence of
the number of topologies rises, there is also the increase use
of memory in the router.

C. Memory Use

The amount of memory used for tables storing is an
important parameter for the protocol, because the creation of
new sub topologies implies the increase of memory usage
for storing the routing tables. For the scenarios described
earlier, Table III shows the amount of memory use for each
topology, when the protocol is written in Python [19]; and
the amount of the memory use in an equivalent protocol
written in C.

Table III
MEMORY USED TO STORE ROUTING TABLE

Topology Topo number Mem(Py) Mem(C)
Sprint(11, 18) 3+1 7.5923 kb 352 b
Geant(27, 38) 3+1 21.1996 kb 864 b
Iinet(31, 35) 3+1 22.2615 kb 992 b

bigG(123, 243) 3+1 84.1110 kb 3.84375 kb

The Python implementation of the protocol implies in
high memory usage. It is caused by the excessive use of
the object orientation. To store the value of the link cost
or router ID in Python, we need to use an integer type,
which is 24 bytes long. In a more efficient implementation
in C, these elements would be stored in an unsigned int of
4 bytes. In Table III we can see that the memory usage in
an implementation in C is small, that permit to store more
layers in the router. For the memory estimation in C, the we
use the formula mem = |V | ∗ (t + 1) ∗ obj, where |V | is
the number of vertex of the graph, t is the number of sub
topologies created and obj is the memory size required to
store the RouterID and the link cost (8 bytes). In summary,

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

the use of memory space for storage of routing tables grows
linearly (O(t)) with the number of created sub topologies.

D. Network Recovery Time

Recovery time of MTRP protocol basically consists of
three steps: failure detection, next-hop table lookup and set
the packet tag. In our proposal, any failure detection protocol
can be used, e.g., the Bidirecional Forwarding Detection
(BFD) protocol [20]. BFD protocol works with IP protocol
and guarantee link failure detection in milliseconds (usually
below 50ms).

The Table IV shows the times found in tests to perform
the table lookup of the next hop, returning the network
address of the next hop of the new path, without failures.
The values showed in Table IV did not consider the time
of failure detection, in order of tens of milliseconds. The
packet should follow the next hop and the time of packet
tag, indicating which recovery table will be used. Then, to
perform the recovery time, the tasks were performed one
thousand times, to define the table lookup execution time
with greater accuracy. To get the recovery time, only the
worst case was considered. The tests were conducted by
generating different amounts of sub topologies.

Table IV
RECOVERY TIME OF SINGLE FAILURE

Topology t(topo=4) t(topo=8) t(topo=12)
Sprint(11, 18) 2.740 µs 5.279 µs 7.463 µs
Geant(27, 38) 2.995 µs 5.524 µs 7.204 µs
Iinet(31, 35) 2.790 µs 5.031 µs 7.422 µs

bigG(123, 243) 3.119 µs 5.139 µs 7.049 µs

The table lookup time grows linearly considering the
quantity of topologies used by network, as it was expected
due to its linear complexity algorithm. Packet tagging time
is constant and was included in the test’s execution time.
Considering one thousand executions, we can realize that the
tasks of lookup and packet tagging are performed on the mi-
croseconds’ scale (10−6), becoming insignificant compared
to the hardware detection time. Therefore, the recovery time
may be considered, only the failure detection time; it shows
a big performance gain compared to the reactive protocols
that take more than a second to perform the recovery, such
as OSPF.

VI. CONCLUSION AND FUTURE WORKS

Through the results presented, it is possible to verify
the viability of the MTRP protocol for network recovery
in mesh topology. The MTRP shows recovery times in the
milliseconds range, equivalent to SDH/SONET networks. In
addition, you can see that the use of a central authority
reduces the amount of processing required for signaling,
compared to distributed protocols. Reducing the amount of
messages relieves the individual processing of each router,

ensuring the possibility of the use of equipment with less
processing power to perform the transfer of packets. The
subtopologies generation is done only on network initializa-
tion, 5 sec in BigG network (bigger than tradicional operator
backbones), we may guarantee the proposal scalability for
real networks. As the recovery is done using pre computed
paths, there is no impact of network length in recovery time.

The MTRP promotes a quick startup, because link state
distribution throughout the network is not necessary, only to
the control node, PU. Our work also confirms the validation
of RRL algorithm done in [7] and [14].

The MTRP protocol presents a range of possibilities for
future works. To continue the development of the MTRP
protocol, a better definition of message authentication sys-
tem and use of header fields are important. Several improve-
ments can be made to increase the protocol performance,
such as implementation in C and integration of routing
packets with the kernel of the operating system. Another
possibility is the addition of Quality of Service (QoS) exten-
sion in protocol. A network can provide different classes of
service to clients and divide its network into sub topologies
with distinct QoS classes, where their packets will be routed
exclusively for each sub topology. When a packet from a
client joins the network edge, this packet would be already
marked for the topology to which the class belongs.

Finally, a study on the integration of the protocol with the
OpenFlow technology can be made. The centralizing feature
of the MTRP protocol is similar to the OpenFlow control
architecture, so the adaptation should not be difficult.

REFERENCES

[1] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recov-
ery: Protection and Restoration of Optical, SONET-SDH, IP,
and MPLS. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004.

[2] S. Shah and M. Yip, “Extreme Networks’ Ethernet
Automatic Protection Switching (EAPS) Version 1,” RFC
3619 (Informational), Internet Engineering Task Force, Oct.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3619.txt

[3] J. Ryoo, H. Long, Y. Yang, M. Holness, Z. Ahmad, and
J. Rhee, “Ethernet ring protection for carrier ethernet net-
works,” Communications Magazine, IEEE, vol. 46, no. 9, pp.
136–143, 2008.

[4] R. Perlman, Interconnections: bridges and routers. Redwood
City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 1992.

[5] J. Moy, “OSPF Version 2,” RFC 2328 (Standard), Internet
Engineering Task Force, Apr. 1998, updated by RFCs 5709,
6549. [Online]. Available: http://www.ietf.org/rfc/rfc2328.txt

[6] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” RFC
1142 (Informational), Internet Engineering Task Force, Feb.
1990. [Online]. Available: http://www.ietf.org/rfc/rfc1142.txt

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

[7] A. Kvalbein and A. F. Hansen, “Fast recovery from link
failures using resilient routing layers,” in ISCC ’05: Pro-
ceedings of the 10th IEEE Symposium on Computers and
Communications. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 554–560.

[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in HotNets,
G. G. Xie, R. Beverly, R. Morris, and B. Davie, Eds. ACM,
2010, p. 19.

[9] F. Barreto, “Esquema de caminhos emergenciais rápidos para
amenizar perdas de pacotes,” Ph.D. dissertation, Universidade
Técnologica Federal do Paraná, 2010.

[10] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-
Esnault, “Multi-Topology (MT) Routing in OSPF,” RFC 4915
(Proposed Standard), Internet Engineering Task Force, Jun.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4915.txt

[11] T. Przygienda, N. Shen, and N. Sheth, “M-ISIS: Multi
Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs),” RFC 5120 (Proposed
Standard), Internet Engineering Task Force, Feb. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5120.txt

[12] M. Shand and S. Bryant, “IP Fast Reroute Framework,” RFC
5714 (Informational), Internet Engineering Task Force, Jan.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc5714.txt

[13] M. Gjoka, V. Ram, and X. Yang, “Evaluation of ip fast reroute
proposals,” in Communication Systems Software and Middle-
ware, 2007. COMSWARE 2007. 2nd International Conference
on. IEEE, 2007, pp. 1–8.

[14] T. Čičić, A. Hansen, S. Gjessing, and O. Lysne, “Applicability
of resilient routing layers for k-fault network recovery,”
Networking-ICN 2005, pp. 173–183, 2005.

[15] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu et al.,
“Advances in network simulation,” Computer, vol. 33, no. 5,
pp. 59–67, 2000.

[16] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The internet topology zoo,” Selected Areas in
Communications, IEEE Journal on, vol. 29, no. 9, pp. 1765–
1775, october 2011.

[17] S. Dorogovtsev, A. Goltsev, and J. Mendes, “Pseudofractal
scale-free web,” Physical Review E, vol. 65, p. 066122, Jun
2002.

[18] H. Pun, “Convergence behavior of rip and ospf network
protocols,” Ph.D. dissertation, University of British Columbia,
1998.

[19] M. Lutz, Programming python. O’Reilly Media, Inc., 2011.

[20] D. Katz and D. Ward, “Bidirectional Forwarding Detection
(BFD),” RFC 5880 (Proposed Standard), Internet Engineering
Task Force, Jun. 2010. [Online]. Available: http://www.ietf.
org/rfc/rfc5880.txt

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

