
Task Allocation Algorithms for 2D Torus Architectur e

Lukasz Jakimczuk, Wojciech Kmiecik, Iwona Pozniak-Koszalka, and Andrzej Kasprzak
Department of Systems and Computer Networks

Wroclaw University of Technology
Wroclaw, Poland

e-mail: 170922@student.pwr.wroc.pl, {wojciech.kmiecik, iwona.pozniak-koszalka, andrzej.kasprzak}@pwr.wroc.pl

Abstract — Efficient allocation of computers to incoming tasks
is crucial for achieving high performance in modern networks.
A good allocation algorithm should identify available
computers with minimum overhead and allocate incoming
tasks in as short period of time as possible. This paper
concerns allocation problem for torus-structured system. The
new allocation mechanism, called Improved Tree Allocation
for Torus (ITAT), based on tree architecture, has been
proposed. ITAT-algorithm was compared with other known
allocation algorithms on the basis of simulation experiments
made with the designed and implemented experimentation
system. The obtained results justify a conclusion that the
created allocation algorithm seems to be very promising.

Keywords-torus; allocation; algorithm; experimentation
system; efectiveness

I. INTRODUCTION

Multicomputer systems, consisting of many processing
elements connected through a high speed network, have
become widespread in engineering and scientific
applications [1]. Such networks are intended to deal with
tasks which cannot be handled by single computer. Two-
dimensional (2D) torus is one of the interconnection
topologies developed for mentioned system [2]. For each
topology including 2D torus, predefined allocation
algorithms exist. In this paper, contiguous processor
allocator for torus structured network is considered (Fig. 1).

The requirement here is to allocate incoming jobs to free
subtorus of appropriate size in 2D torus connected system.
The allocation scheme should provide maximal resource
utilization what is done by minimizing any kind of
fragmentation [3]. Allocation algorithm must be fast, deliver
low overhead and be able to support systems with thousands
of nodes. A critical attribute of all mechanisms is ability to
find available subtoruses for incoming requests, if they
exist, what is called subtorus recognition ability. An
allocation algorithm has complete subtorus recognition
ability when it can always find a free subtorus (if one is
available) for an incoming job [4].

In this paper, recognition-complete allocation scheme
based on non-binary tree called Improved Tree Allocation
(ITAT) is presented. It was designed with intent of
maximize the utilization.

The rest of the paper is organized as follows. Section II
presents definitions and notations used throughout the
paper. The existing job allocation mechanisms and

accessory algorithms are reviewed in Section III. Section IV
describes our novel scheme in detail. In Section V
experimentation system is shortly presented. Within Section
VI properties of the created algorithm are analysed and
compared with other well-known algorithms. Future work
and conclusion are finally included in Section VII.

Figure 1. An example of 2D torus.

II. NOMENCLATURE

We use the classic notation presented, e.g., in [5][6][7]:
A 2D torus topology, denoted by T(w,h), consists of w

× h nodes arranged in a w × h 2D grid. The node in column
c and row r is identified by address <c,r> where 0 ≤ c < w
and 0 ≤ r < h. A node <c,r> is connected by direct
communication channel to its neighbouring nodes <c±1,r>
and <c,r±1>. Thus each node has four neighbouring nodes.

A 2D subtorus S(p,q) in the torus T(w,h) is a subgrid
T(p,q) such that 1 ≤ p ≤ w and 1 ≤ q ≤ h. A job requesting a
subtorus p × q is denoted by J(p,q). A subtorus S is
identified by its base (lower left node) and end (upper right
end) and is denoted as S[<xb,yb> <xe,ye>]. In contrast to the
2D-mesh topology, in torus xb can be greater than xe, and yb
can be greater than ye. However, the base still remains as
lower left corner with end on the upper right node.

A busy node is a node which has been allocated to a job.
A busy subtorus β is a subtorus, where all of its nodes have
been allocated to jobs.

A free node is a node which is not allocated to any job.
A subtorus is free when all of its nodes have not been
allocated to jobs.

A busy array of a torus T(w,h) is a bit map B[w,h], in
which element B[c,r] has a value 1 or 0 if node <c,r> is
busy or free, respectively.

A busy list is a set of all busy subtoruses in the system.
Similarly, a free list is a set of all free subtoruses available.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

The coverage of a busy subtorus β with respect to a job
J is denoted by ζβ,J and it is a set of processors such that use
of any node in ζβ,J as the base of free subtorus for the
allocation of J will cause the job J to be overlapped with β.
The coverage set with respect to J is denoted by CJ and it is
the set of the coverages of all busy subtoruses.

A base block with respect to a job J is a subtorus whose
nodes can be used as base for free subtoruses to allocate job
J. A set of disjoint base blocks is called the base set.

External fragmentation is the ratio of the number of
free processors to the total number of processors in the
torus, when the allocation of incoming task fails but there is
sufficient number of free processors.

The given definitions are illustrated in example of a
torus T(6,6) with respect to J(2,3) and J(2,2) (see Fig. 2).

Figure 2. Busy and free nodes, coverage area, busy array and free list for a

torus T(6,6).

III. KNOWN ALLOCATION ALGORITHMS FOR TORUS

ARCHITECTURE

The algorithms, based on busy list and busy array, create
coverage area set [8] in one of the first steps. For k-array 2-
cube four possible cases of task allocation can be distinguish
and they are presented in Fig. 3.

 Figure 3. Four different cases of job J(4,3) allocation.

These cases are characterized by: 1) xb > xe and yb > ye,;
2) xb ≤ xe and yb > ye,; 3) xb > xe and yb ≤ ye ; 4) regular case
known from 2D-mesh networks.

For every presented instance, coverage needs to be
determined in a different way. For a given β=[<x b,yb>
<xe,ye>], its coverage with respect to J(p,q) is ζβ,J=[<x 1,y1>
<x2,y2>] , where x1, y1, x2, y2 are determined according to the
Construction of Coverage algorithm described in [1].

IBMAT Algorithm. First existing allocation algorithm
is Improved Bit Map Allocation for Torus [9]. The general
idea of the IBMAT is based on the approach used in IFF
algorithm [4]. With respect to an incoming job, the busy
array is scanned to create a coverage array CT in the form of
bit map. Each coverage ζβ,J is divided into three regions: job
coverage, left coverage and bottom coverage, presented in
Fig. 4. In the worst case, two inspections through a CT are
required:

All rows from right to left, each row two times
(determining the left coverage of a job).

All columns from top to bottom, each column two times
(creating bottom coverage of a job).

The IBMAT is recognition complete by manipulating
the job orientation. If for a given J(p,q) the allocation fails
and p ≠ q, the scheme will change the orientation of the job
and then J(q,p) possibility is checked. When both attempts
fail, the allocation of the job fails.

Figure 4. Coverage of job J(4,3) with respect to incoming job J(2,3).

IBLAT Algorithm . Second existing allocation

algorithm is Improved Busy List Allocation for Torus [10].
The IBLAT is based on the strategy employed in the IAS
scheme [11]. For an incoming job J(p,q), the IBLAT scans a
busy list and creates coverage set CT which is also in a list
form. Both busy and coverage lists contains coordinates of
each β and ζβ,J respectively. When CJ is created, each node is
tested for membership in CJ , what is done by inspecting the
whole CJ for every node. Node which is not in CJ can be a
base for given job, in the other case, the algorithm checks
another node. The IBLAT scheme is recognition complete.

IRAT Algorithm. Third existing mechanism, based on
randomness, is called Improved Random Algorithm. It can
only pick random node from system and check if it can
become base for an incoming request. If node is available as
base job is allocated, otherwise scheme will change
orientation of job J(p,q) and J(q,p) possibility is checked.
When both attempts fail, the allocation of the job fails [12].

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

IV. IMPROVED TREE ALLOCATION FOR TORUS

ALGORITHM

The task allocation algorithm proposed in this paper has
complete subtorus recognition ability. The allocation
scheme is particularly attractive for large systems, what is
confirmed in experimentation section of this paper.

ITAT achieves recognition completeness by
manipulating the orientation of the subtorus request. In
allocation a job J(p,q), the scheme first tries to allocate the
task using the given orientation p × q. If allocation fails, the
algorithm creates a new request J(q,p) by rotating the
original orientation and tries to allocate rotated request. If
this attempt also fails, the allocation of the job also fails.

The following definitions are introduced:
A busy tree, denoted by T(n), incorporates n nodes

including root, free and busy leaves and base nodes.
A root of the tree is the node with address <0,0>.
Subtree, denoted by ST(x), is a tree incorporates x nodes

including only base nodes of tree T(n) such that 0 < x < n.
Free leave, denoted by Lf(c,r), is the node with address

<c,r> such that it is not base of any existing subtoruses and
it is not allocated to a job.

Busy leave, denoted by Lb(c,r), is the node with address
<c,r> such that it is not base of any existing subtoruses but
it is allocated to a job.

In Fig. 5(a), the introduced notions are illustrated for an
exemplary torus T(6,6).

Figure 5(a). Illustration of the introduced notions for torus T(6,6).

Allocation scheme always starts from node with address
<0,0> which is a root of busy tree. The root is a constant
element of tree and exists even if it is not allocated as base
to any job. With first allocated job, tree evolution process
starts, that lasts until there are no more requests to allocate.
Tree evolution process is divided into two main sections.

Base of every allocated job generates children nodes
(leaves, shown in Fig. 5(a)) as follows:

Add adjacent nodes, from left to right, along top of the
busy subtorus.

Add adjacent nodes, from bottom to top, along the right
side of the busy subtorus.

After that, busy tree is recursively updated and every
leaf receives its status – free or busy. Free leaves are
potentially base nodes and hence are directly under
consideration. Tree is searched level by level from left to
right, start with root level. First free leaf that meets the
requirement is returned as base for given job. Search
scheme is presented in Fig. 5(b).

Figure 5(b). Search scheme for busy tree T(11).

The search scheme, with respect to children creation
mechanism, provides good fit of the incoming task to the
existing configuration of torus, marked as border in Fig.
6(b).

Every allocated job, after elapse of its duration time is
deallocated. It means that base node and its leaves are
deleted from busy tree. Children that represent base are
reattached to other base from current level or level up as
follows:

If any base exists on the left side of deleted base
descendants are attached to the base on the left side.

If none base does not exist on the left side of deleted
base but does exist on the right side descendants are
attached to the base on the right side.

If none base does not exist in current level descendants
are attached to the parent base of deleted one.

V. EXPERIMENTATION SYSTEM

Experimentation system was developed in C++.
Input parameters:

The following task allocation problem parameters are
taken into consideration:

P1: the number of jobs in the queue (important data for
static case of allocation).

P2: the range of uniformly distributed pseudorandom
sizes of each job in the queue (range of p and q).

P3: the range of uniformly distributed pseudorandom
numbers for execution time of each job in the queue.

P4: the size of torus T(w,h) i.e., the values of w and h.

Output parameters:
The following indices of performance (measures of

efficiency, criteria) are treated as system outputs:

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

Simulation time ts [ms]: defined as total time of
simulation. It is the time needed to allocate and process all
given jobs. This criterion is being analysed during static
experiments.

Effectiveness E [%]: defined as percentage of process
jobs with respect to all given jobs. This criterion is being
analysed during static experiments. Effectiveness is also
measured in specific period of time for dynamic
experiments.

Unreliability U [%]: defined as complement of
effectiveness in specific period of time. Unreliability can be
calculated using eq. 1.

 EU −= 1 (1)
This criterion is not being analysed itself due to the fact it is
calculated based on knowledge of effectiveness. It is
important during dynamic experiments.

Remark: The series of simulation experiments were
carried out on the Intel Pentium i5 machine with 4 GB of
RAM memory.

VI. INVESTIGATION

A. Static Allocation – Experiment Design

First experiment was focused on comparing total
simulation times ts and effectiveness E for the considered
algorithms. List of tasks was generated according to range
of P2 and P3 presented in Table I.

TABLE I. RANGE OF INPUT PARAMETERS

Parameter Range

Job size 2÷7

Job time [s] 5÷20

Parameter P4 was equal: 25×25, 50×50, 75×75, and
100×100. For each system, ten measurements were made
on the basis of which the average result for each system
was calculated. Each algorithm had to allocate respectively
25, 50, 75, 100, 150, 200, 300, and 400 tasks.

B. Static Allocation – Results

The averaged results, concerning the total simulation
time ts and the effectiveness E are presented in Fig. 6 and
Fig. 7.

Figure 6. Average total simulation time ts.

It may be observed, that the best algorithm, with respect
to ts is IRAT which is not reliable because it is based on
randomness. Thus it is able to get through the whole list of
tasks in short period of time but a substantial part of them
will not be allocated and processed (Fig. 7). Due to the fact,
that the best results were achieved for IBLAT and ITAT
algorithms.

More complex structure of system does have noticeable
impact on allocation time. Although differences are not
significant and can be consider as neglected due to
simulation error – experiments were done in the
multitasking operating system that can cause measurement
errors.

Testimony that the Improved Random Allocation
Algorithm is not reliable is shown in Fig. 7. The IRAT
works faster than the other mechanisms but a substantial
part of tasks is not allocated and processed. Due to this fact
the effective results were achieved for IBLAT, ITAT and
IBMAT algorithms.

Figure 7. Average effectiveness E[%] .

C. Dynamic Allocation – Experiment Design

The second complex experiment was focused on
comparing the total number of processed jobs N and
unreliability U. Two cases were considered depending on
the two sets of input parameters.

In the Case 1, incoming tasks were created according to
the ranges of P2 and P3 parameters presented in Table II.
Input parameter P4 was equal: 25×25, 50×50, 75×75, and
100×100.

TABLE II. CASE 1: RANGE OF INPUT PARAMETERS P2 AND P3

Parameter Range

Job size 2÷7

Job time [s] 10÷30

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

In the Case 2, incoming tasks were created according to
range of P2 and P3 parameters presented in Table III. Input
parameter P4 was equal: 100×100, 200×200, and 300×300.

TABLE III. CASE 2: RANGE OF INPUT PARAMETERS P2 AND P3

Parameter Range

Job size 20÷40

Job time [s] 50÷100

For the both sets of parameters and for each considered

torus 10 measurements were performed on the basis of
which the average result for each system was calculated.
Each algorithm had to allocate incoming tasks during
respectively 10, 20, 30, 40, 50, and 60 seconds.

D. Dynamic Allocation - Results

The averaged results of the experiments for both cases
are presented in Fig. 8 and 9.

Figure 8. Average effectiveness E for Case 1

As expected, randomness has noticeable impact on the
effectiveness and thus also on number of allocated tasks and
unreliability. It allows processing large number of jobs
(tasks) but at the cost of high unreliability what is a result of
this, that system gets more tasks than it can be processed. It
is important to know, that quality of algorithms cannot be
determined solely by the number of allocated and processed
tasks.

It can be said that effectiveness of algorithms for case 1
is comparable, or even the same - differences are barely
noticeable. The effectiveness is not an ideal parameter
because it is based on the speed of processing tasks within
the system. Simplify algorithm, i.e. IRAT are faster, thus
whole process of allocation for one task does not take a lot
time. Because of that the number of processed tasks can be
higher when compared with other algorithms, however in
comparison with the all given jobs results are worse.

The probability of allocation success decreases with
every processed job and so unreliability decreases.

It does not mean that every algorithm with ability to
allocate large number of jobs, even at the cost of low
effectiveness, is efficient. The efficient allocation technique
needs to have balanced parameters.

Every incoming task can be described by the probability
of its allocation. As the size of torus grows, the probability

Figure 9. Average effectiveness E for Case 2.

of allocation grows as well. The same can be said about
effectiveness and total allocation time parameters that
achieve higher values for larger systems. The reverse
situation can be observed for duration time and size of
incoming tasks. As the size and duration time of tasks falls,
probability of allocation, effectiveness and total allocation
time grows.

VII. CONCLUSION AND FUTURE WORK

In this paper the Improved Tree Allocation for Torus
(ITAT) was proposed. Based on experiments it may be
observed that each allocation algorithm has its advantages
and disadvantages. The proposed algorithm is particularly
attractive for large toruses and large tasks. ITAT uses non-
binary tree to identify free subtoruses which can be
allocated to an incoming request.

Busy tree as the algorithm is a very complex structure
that is why for smaller systems ITAT work worse than other
schemes. It is important to know that modern networks with
torus topology do have hundreds of nodes. Thus ITAT’s
quality is comparable with other existing schemes.

The future work includes plans to extend ITAT by
implementing more intelligent scheme for leaves creation
process. It is necessary in order to maximize utilization of
nodes. Other process that needs to be reviewed is
recursively update of busy tree that has negative impact on
total simulation time and allocation time. We also intend to
combine leaves update scheme with leaves creation process.

REFERENCES
[1] T. Srinivasan,, J. Seshadri, A. Chandrasekhar, and J. B.

Siddhart, “A minimal fragmentation algorithm for task
allocation in mesh-connected multicomputers,” Report in
Department of Computer Science, College of Engineering,
Sriperumbudur, India, 2004.

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

[2] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal
of Distributed Computing, vol. 1, no. 4, 1986, pp. 187-196.

[3] W. Kmiecik, L. Koszalka, I. Pozniak-Koszalka, and A.
Kasprzak, “Evaluation scheme of tasks allocation with
metaheuristic algorithms in mesh connected processors,”
Proceedings of 21st International Conference on Systems
Engineering (ICSEng), IEEE CPS, 2011, pp. 241-246.

[4] S. Yoo and R. Das, “An efficient task allocation scheme for
2D mesh architectures,” IEEE Transaction on Computers, vol.
8, no. 9, 2002, pp. 934-938.

[5] T. Liu, W. Huang, F. Lombardi, and L. N. Bhuyan, “A
submesh allocation scheme for mesh connected
multiprocessor systems,” Proceedings of International
Conference on Parallel Processing, vol. II, 1995, pp. 193-200.

[6] I. Pozniak-Koszalka, L. Koszalka, and M. Kubiak,
„Allocation algorithm for mesh structured networks”
Proceedings of IARIA International Conference on Systems,
2006, pp. 24-30.

[7] D. M. Zydek and H. Selvaraj, “Implementation of processor
allocation schemes for mesh-based chip multiprocessors,”
Journal of Microprocessors and Microsystems, ISSN 0141-
9331, vol. 34, no. 1, 2011, pp. 39-48.

[8] J. Ding, and L. N. Bhuyan, L. N., “An adaptive submesh
allocation strategy for two-dimensional mesh connected
systems" Proceedings of International Conference on Parallel
Processing, vol. II, 1993, pp. 193-200.

[9] Y. Zhu, “Efficient processor allocation strategies for mesh-
connected parallel computers,” Journal of Parallel and
Distributed Computing, vol. 16, no. 4, 1992, pp. 328-337.

[10] D. M. Zydek, “Processor allocator for chip multiprocessors,”
PhD. Dissertation, University of Nevada, Las Vegas, USA,
2010.

[11] D. M. Zydek and H. Selvaraj, “Fast and efficient processors
allocation algorithm for torus-based chip multiprocessors,”
Journal of Computers & Electrical Engineering, ISSN 0045-
7906, October 2010.

[12] T. Baba, Y. Iwamoto, and T. Yoshinaga, “A network-
topology independent task allocation strategy for parallel
computers,” Proceedings of ACM/IEEE conference on
Supercomputing, IEEE Computer Society Press Los
Alamitos, CA, USA, 1990, pp. 878-887.

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

