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Abstract — Efficient allocation of computers to incoming taks
is crucial for achieving high performance in modernnetworks.
A good allocation algorithm should identify availalie
computers with minimum overhead and allocate inconmg
tasks in as short period of time as possible. Thipaper
concerns allocation problem for torus-structured sgtem. The
new allocation mechanism, called Improved Tree Allcation
for Torus (ITAT), based on tree architecture, has lken
proposed. ITAT-algorithm was compared with other known
allocation algorithms on the basis of simulation eperiments
made with the designed and implemented experimentain
system The obtained results justify a conclusion that the
created allocation algorithm seems to be very proring.
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l. INTRODUCTION
Multicomputer systems, consisting of many processin

elements connected through a high speed netwonke ha
scientific

become widespread in engineering and
applications [1]. Such networks are intended tol aath
tasks which cannot be handled by single computen-T
dimensional (2D) torus is one of the interconnettio
topologies developed for mentioned system [2]. Each
topology including 2D torus, predefined allocation
algorithms exist. In this paper, contiguous prooess
allocator for torus structured network is consideffeig. 1).

The requirement here is to allocate incoming jab&de
subtorus of appropriate size in 2D torus connesiedem.
The allocation scheme should provide maximal resour
utilization what is done by minimizing any kind of
fragmentation [3]. Allocation algorithm must betfadeliver
low overhead and be able to support systems withsthnds
of nodes. A critical attribute of all mechanismsalslity to
find available subtoruses for incoming requeststhiéy
exist, what is called subtorus recognition abilithn
allocation algorithm has complete subtorus recagmit
ability when it can always find a free subtorus dife is
available) for an incoming job [4].

In this paper, recognition-complete allocation sube
based on non-binary tree called Improved Tree Alion
(ITAT) is presented.
maximize the utilization.

The rest of the paper is organized as follows. iSedt
presents definitions and notations used throughtet
paper. The existing
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It was designed with intent of

accessory algorithms are reviewed in Section Bcten 1V
describes our novel scheme in detail. In Section
experimentation system is shortly presented. Wig8gction
VI properties of the created algorithm are analysed
compared with other well-known algorithms. Futurerkv
and conclusion are finally included in Section VII.

5
o
o
o
o
0

Figure 1. An example of 2D torus.

1. NOMENCLATURE

We use the classic notation presented, e.g., [|6][3]:

A 2D torus topology, denoted byT(w,h) consists ofw
x h nodes arranged inva x h 2D grid. The node in column
¢ and rowr is identified by addressc,r> where 0<c <w
and 0< r < h. A node<c,r> is connected by direct
communication channel to its neighbouring nodesl,r>
and<c,r£l>. Thus each node has four neighbouring nodes.

A 2D subtorus S(p,q)in the torusT(w,h)is a subgrid
T(p,g)such that K p<wand 1< g < h. A job requesting a
subtorusp x q is denoted byJ(p,q) A subtorusS is
identified by its base (lower left node) and endpr right
end) and is denoted &§<x,, > <XeYe>]. In contrast to the
2D-mesh topology, in torus, can be greater thaq, andy,
can be greater thay.. However, the base still remains as
lower left corner with end on the upper right node.

A busy nodeis a node which has been allocated to a job.
A busy subtorug is a subtorus, where all of its nodes have
been allocated to jobs.

A free nodeis a node which is not allocated to any job.
A subtorus is free when all of its nodes have neerb
allocated to jobs.

A busy array of a torusT(w,h)is a bit mapB[w,h], in
which elementB[c,r] has a value 1 or O if nodec,r> is
busy or free, respectively.

A busy list is a set of all busy subtoruses in the system.

LI
CIICICICIC,
LTI,
CIICICICIC,
DT,

job allocation mechanisms andimilarly, a free list is a set of all free subtees available.
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The coverageof a busy subtorug with respect to a job

These cases are characterized by, B X. andy,> Ve,;

Jis denoted by} ; and it is a set of processors such that use) x, < x. andyy, > Ye,; 3) X, > Xe andy, <VYe ; 4) regular case
of any node in{;; as the base of free subtorus for theknown from 2D-mesh networks.

allocation ofJ will cause the johl to be overlapped with.
The coverage set with respectltes denoted byC; and it is
the set of the coverages of all busy subtoruses.

A base blockwith respect to a joBl is a subtorus whose
nodes can be used as base for free subtorusdsdataljob
J. A set of disjoint base blocks is called the beete

External fragmentation is the ratio of the number of
free processors to the total number of processortheé
torus, when the allocation of incoming task failg there is
sufficient number of free processors.

The given definitions are illustrated in example af
torusT(6,6)with respect tad(2,3)andJ(2,2)(see Fig. 2).
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Figure 2. Busy and free nodes, coverage area,dusy and free list for a
torusT(6,6)

I1l.  KNOWN ALLOCATION ALGORITHMS FOR TORUS
ARCHITECTURE

The algorithms, based on busy list and busy amagte
coverage area set [8] in one of the first steps kFarray 2-
cubefour possible cases of task allocation can béndjgtsh
and they are presented in Fig. 3.
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Figure 3. Four different cases of jag,3)allocation.
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For every presented instance, coverage needs to be
determined in a different way. For a givés[<x, >
<XeYe>], its coverage with respect 8gp,q)is s =[<X 1,y1>
<X,,Y>>] , wherexy, yi, %, ¥, are determined according to the
Construction of Coverage algorithm described in [1]

IBMAT Algorithm. First existing allocation algorithm
is Improved Bit Map Allocation for Torus [9]. Theegeral
idea of the IBMAT is based on the approach usetFk
algorithm [4]. With respect to an incoming job, thasy
array is scanned to create a coverage &xay the form of
bit map. Each coveragg; is divided into three regions: job
coverage, left coverage and bottom coverage, pregen
Fig. 4. In the worst case, two inspections throagbr are
required:

All rows from right to left, each row two times
(determining the left coverage of a job).

All columns from top to bottom, each column two disn
(creating bottom coverage of a job).

The IBMAT is recognition complete by manipulating
the job orientation. If for a gived(p,q) the allocation fails
andp # q, the scheme will change the orientation of the job
and thenJ(q,p) possibility is checked. When both attempts
fail, the allocation of the job fails.

i
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Figure 4. Coverage of jal(4,3)with respect toncoming jobJ(2,3).

IBLAT Algorithm . Second existing allocation
algorithm is Improved Busy List Allocation for Tarj10].
The IBLAT is based on the strategy employed in Ih8
scheme [11]. For an incoming jdp,q) the IBLAT scans a
busy list and creates coverage Getwhich is also in a list
form. Both busy and coverage lists contains coattais of
eachp and{; ;respectively. Whel; is created, each node is
tested for membership i@; , what is done by inspecting the
whole C; for every node. Node which is not @ can be a
base for given job, in the other case, the algoritthecks
another node. The IBLAT scheme is recognition catl

IRAT Algorithm. Third existing mechanism, based on
randomness, is called Improved Random Algorithntalt
only pick random node from system and check ifahc
become base for an incoming request. If node idadla as
base job is allocated, otherwise scheme will change
orientation of job J(p,q) and J(qg,p) possibilitydsecked.
When both attempts fail, the allocation of the faits [12].
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IV. IMPROVEDTREEALLOCATION FORTORUS Base of every allocated job generates children siode
ALGORITHM (leaves, shown in Fig. 5(a)) as follows:

. : : : Add adjacent nodes, from left to right, along tdpte

The task allocation algorithm proposed in this pabas busy subtorus.

complete_ subt_orus recognit_ion ability. - The alloc_ati Add adjacent nodes, from bottom to top, along thhtr
sche_me is partlculgrly attractlve f_or Iarge_ systembat is side of the busy subtorus.
confirmed in experimentation section of this paper. After that, busy tree is recursively updated anergv

ITAT ~ achieves  recognition — completeness  Dyjeaf receives its status — free or busy. Free e
manipulating the orientation of the subtorus requés  sentially base nodes and hence are directly under

allocation a job)(p,q), the scheme first tries to allocate the cqngideration. Tree is searched level by level fiefh to
task using the given orientatignx g. If allocation fails, the gt start with root level. First free leaf thateets the

algorithm creates a new reque{g,p) by rotating the requirement is returned as base for given job. Gear
original orientation and tries to allocate rotateduest. If  ¢cheme is presented in Fig. 5(b).

this attempt also fails, the allocation of the @ibo fails.

The following definitions are introduced: s ﬁm®

A busy tree denoted byT(n), incorporatesn nodes
including root, free and busy leaves and base nodes AN

A root of the tree is the node with address <0,0>. 034

Subtreg, denoted bys(X), is a tree incorporatesnodes sahas s>
including only base nodes of tréén)such thab <x<n. /oo

Free leave denoted by «(c,r), is the node with address smhasthﬂdi>
<c,r> such that it is not base of any existing subtaswsw ‘
it is not allocated to a job.

Busy leave denoted by (c,r), is the node with address
<c,r> such that it is not base of any existing subtoriumes
it is allocated to a job.

In Fig. 5(a), the introduced notions are illustcafer an

first free
5> <5 23 B3 B4 leaf

Figure 5(b). Search scheme for busy FéEL)

The search scheme, with respect to children creatio
mechanism, provides good fit of the incoming taskhe
existing configuration of torus, marked bsrder in Fig.

exemplary torud (6,6) 6(b).
Every allocated job, after elapse of its durationet is
, (Ir[(g{%% {E{E{E deallocated. It means that base node and its leawes
deleted from busy tree. Children that represent ba®
) (H]D7 ﬁ@{} D [®7Busy teat reattached to other base from current level orlleyeas
3 = o . follows:
| Lrl [}{}ﬁ} Nre If any base exists on the left side of deleted base
’ CFDD {}{}{}) [O]Frec leaf descendants are attached to the base on thedeft si
! (H] Eﬁ}{}ﬂ}ﬂ} o If none base does not exist on the left side oéteel
, 3 {}Qﬁ} —=— base but does exist on the right side descendamts a
— 01 - attached to the base on the right side.

- -
e
s

If none base does not exist in current level dedaets
are attached to the parent base of deleted one.

node - base <«
' root V. EXPERIMENTATION SYSTEM

Experimentation system was developed in C++.
Input parameters:

\ The following task allocation problem parameters ar

busy loaf taken into consideration:
P.: thenumber of jobs in the queue (important data for
static case of allocation).

P,: the range of uniformly distributed pseudorandom
Figure 5(a). lllustration of the introduced notidostorusT(6,6) sizes of each jOb in the queue (rangp ahdq).

Allocation scheme always starts from node with adsr Ps: the range of uniformly distributed pseudorandom
<0,0> which is a root of busy tree. The root is a camsta NUmbers for execution time of each job in the queue
element of tree and exists even if it is not altedaas base P,: the size of toru3(w,h) i.e., the values ofv andh.
to any job. With first allocated job, tree evolutiprocess Qutput parameters:
starts, that lasts until there are no more requesadiocate. The following indices of performance (measures of
Tree evolution process is divided into two maintisers. efficiency, criteria) are treated as system outputs

<0,5>WRgL.3K=2,5>  <33>  <34>

examples of free leaf
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Simulation time ¢ [ms]: defined as total time of It may be observed, that the best algorithm, wéspect
simulation. It is the time needed to allocate anocess all to ts is IRAT which is not reliable because it is based on
given jobs. This criterion is being analysed durstgtic = randomness. Thus it is able to get through the evhist of
experiments. tasks in short period of time but a substantiat parthem

Effectiveness E [%]: defined as percentage of processwill not be allocated and processed (Fig. 7). Dughe fact,
jobs with respect to all given jobs. This criteritmbeing that the best results were achieved BLAT and ITAT
analysed during static experiments. Effectivenesslso algorithms.
measured in specific period of time for dynamic  More complex structure of system does have notleeab

experiments. impact on allocation time. Although differences aret
Unreliability U [%]: defined as complement of significant and can be consider as neglected due to
effectiveness in specific period of time. Unrellapican be  simulation error — experiments were done in the
calculated using eq. 1. multitasking operating system that can cause measamt
U=1-E (1) errors. _
This criterion is not being analysed itself dughte fact it is Testimony that the Improved Random Allocation
calculated based on knowledge of effectivenessisit Algorithm is not reliable is shown in Fig. 7. THRAT
important during dynamic experiments. works faster than the other mechanisms but a sufirta

Remark: The series of simulation experiments werdart of tasks is not allocated and processed. Dukis fact
carried out on the Intel Pentium i5 machine witiGB of  the effective results were achieved #@&LAT, ITAT and
RAM memory. IBMAT algorithms.

VI. INVESTIGATION 100.0

A. Static Allocation — Experiment Design
First experiment was focused on comparing tota

TIBLAT
IBMAT
ITAT
IBLAT
IBMAT
ITAT
TIBLAT
IBMAT
ITAT
IBLAT
IBMAT
ITAT
TIBLAT
IBMAT
ITAT
IBLAT
IBMAT
ITAT
IBLAT
IBMAT
ITAT
TBLAT
IBMAT
ITAT

98.0

simulation timest; and effectivenes& for the considered R N e N N e N A
algorithms. List of tasks was generated accordingahge

of P, andP; presented in Table I. 2l ' E IRIE IR I BEnm e
TABLE I. RANGE OF INPUT PARAMETERS oo NN BIELE BRLI SSS S SR S S

=1 = | i3] 5]

Parameter Ran E 2 g é E = 5 2
ge B 00,0 MR . LR TEL L

Job size 2+7 : -

Job time [s] 5+20 88.0 — — — — — — — n

Parameter P was equal: 25x25, 50x50, 75x75, and 860 - = - = - = - -
100%100. For each system, ten measurements were ma
on the basis of which the average result for eagsem o “ 100 o a0 w0 400
was calculated. Each algorithm had to allocateaetsgely Number of tasks

25, 50, 75, 100, 150, 200, 300, and 400 tasks.

Figure 7. Average effectiveneB§].
B. Static Allocation — Results

The averaged results, concerning the total simarati C. Dynamic Allocation — Experiment Design
Fig. 7. comparing the total number of processed jdtbsand
unreliability U. Two cases were considered depending on
the two sets of input parameters.

10000

] ITAT

2000 B In the Case 1, incoming tasks were created acaptdin
—-y the ranges oP, and P; parameters presented in Table II.
=-g= 8 Input parameteP, was equal: 25%25, 50x50, 75x75, and
e 100x100.
N TABLE II. CASE 1: RANGE OF INPUT PARAMETERS; AND P;
- L Parameter Range
[ [ Job size 2+7
B i Job time [s] 10+30

Figure 6. Average total simulation tirhe
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In the Case 2, incoming tasks were created acaptdin

It does not mean that every algorithm with ability

range ofP, and P; parameters presented in Table Ill. Inputallocate large number of jobs, even at the costoof

parameteP, was equal: 100x100, 200x200, and 300x300.

TABLE lll. CASE 2: RANGE OF INPUT PARAMETER®, AND P;

Parameter Range
Job size 20+40
Job time [s] 50+100

For the both sets of parameters and for each ceresid
torus 10 measurements were performed on the bdsis
which the average result for each system was ekl
Each algorithm had to allocate incoming tasks duyrin
respectively 10, 20, 30, 40, 50, and 60 seconds.

D. Dynamic Allocation - Results

The averaged results of the experiments for bofesa
are presented in Fig. 8 and 9.

120

100

IBLAT |
TBMAT
ITAT |
IBLAT |
IBMAT |
ITAT |
IBLAT |
TBMAT
ITAT |
IBLAT |
IBMAT |
ITAT |
IBLAT |
IBMAT |
ITAT |
IBLAT |
IBMAT |
ITAT |

Number of allocated

10 30 40

Time [s]

50

Figure 8. Average effectiveneBdor Case 1

As expected, randomness has noticeable impacten t
effectiveness and thus also on number of allocitsks and
unreliability. It allows processing large number jobs
(tasks) but at the cost of high unreliability witat result of
this, that system gets more tasks than it can beegsed. It
is important to know, that quality of algorithmsncat be
determined solely by the number of allocated amtgssed
tasks.

It can be said that effectiveness of algorithmsctase 1
is comparable, or even the same - differences arelyb
noticeable. The effectiveness is not an ideal patam
because it is based on the speed of processing vethin
the system. Simplify algorithm, i.e. IRAT are fastéhus
whole process of allocation for one task does ake ta lot
time. Because of that the number of processed akde
higher when compared with other algorithms, howewer
comparison with the all given jobs results are wors

The probability of allocation success decreased wit
every processed job and so unreliability decreases.
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effectiveness, is efficient. The efficient allocatitechnique
needs to have balanced parameters.

Every incoming task can be described by the prdibabi
of its allocation. As the size of torus grows, prebability

IBMAT ‘

IBLAT ‘
ITAT ‘
IBLAT
IBMAT ‘
ITAT ‘
IBLAT ‘
IBMAT
ITAT ‘

(]

Effectiveness [%]

IRAT ‘

30
Lime 5]

Figure 9. Average effectiveneBgor Case 2.

of allocation grows as well. The same can be saiout
effectiveness and total allocation time paramettrat
achieve higher values for larger systems. The sever
situation can be observed for duration time anc f
incoming tasks. As the size and duration time skdafalls,
probability of allocation, effectiveness and to#dllocation
time grows.

VII.
In this paper the Improved Tree Allocation for Teru

CONCLUSIONAND FUTUREWORK

(ITAT) was proposed. Based on experiments it may be

observed that each allocation algorithm has itsaathges

and disadvantages. The proposed algorithm is péatly

attractive for large toruses and large task&T uses non-

binary tree to identify free subtoruses which cae b
llocated to an incoming request.

Busy tree as the algorithm is a very complex stmgct
that is why for smaller systemi§AT work worse than other
schemes. It is important to know that modern nelaavith
torus topology do have hundreds of nodes. THUSTs
quality is comparable with other existing schemes.

The future work includes plans to exteh@AT by
implementing more intelligent scheme for leavesation
process. It is necessary in order to maximizezatiion of
nodes. Other process that needs to be reviewed
recursively update of busy tree that has negatiygact on
total simulation time and allocation time. We alstend to
combine leaves update scheme with leaves creatomesgs.
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