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Abstract—A fast and robust analytical procedure for the
design of high performance digital optimal band-pass finite
impulse response filters for dual-tone multi-frequency applica-
tions is introduced. The filters exhibit equiripple behavior of
the frequency response. The approximating function is based
on Zolotarev polynomials. The presented closed form solution
provides formulas for the filter degree and for the impulse
response coefficients. Several examples are presented.
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I. I NTRODUCTION

There are two basic tasks in the processing of dual-tone
multi-frequency (DTMF) signals, namely the detection of
DTMF frequencies and the removal of the DTMF frequencies
in a broad band signal. The DTMF frequencies form two
groups with four frequencies each. The lower group consists
of frequencies 697, 770, 852 and 941 Hz while the higher
group comprises sinusoids of 1209, 1336, 1477 and 1633
Hz. For the processing of DTMF signals, the infinite impulse
response (IIR) filters are usually applied because of their
lower number of coefficients. The IIR filters are usually part
of the famous Goertzel procedure [1]. In the removal of
DTMF frequencies in a broad band signal, the IIR filters
produce substantial distortions of the output signal which
appear near its flat region due to the group delay variation.
This behavior is especially apparent, if pulse like components
are present in the signal as demonstrated in [2]. In order
to minimize these distortions in the processing of DTMF
signals we propose the application of finite impulse response
(FIR) filters which inherit a constant group delay. In order
to maximize the discrimination of the DTMF sinusoids, the
selective bands of the FIR filters should be as narrow as
possible. In this paper we are focused upon the design of
narrow optimal equiripple (ER) band-pass (BP) FIR filters for
the DTMF decoding. They are optimal in terms of the shortest
possible filter length related to the frequency specification.
Note that the proposed filter design is based on formulas, i.e.
no numerical procedures are involved. The presented closed
form solution includes the degree equation and formulas for
the robust evaluation of the impulse response coefficients of
the filter.

II. T ERMINOLOGY

We assume a general FIR filter of type I represented by
its impulse responseh(k) with odd length ofN = 2n + 1
coefficients and with even symmetry (1). In our further con-
siderations we use thea-vectora(k), which is related to the
impulse responseh(k)

a(0) = h(n) , a(k) = 2h(n+ k) = 2h(n− k) , k = 1 ... n .
(1)

Further, we introduce an auxiliary real variablew

w =
1

2
(z + z−1)|

z=ejωT = cos(ωT ) = cos

(

2π
f

fs

)

, (2)

wherefs is the sampling frequency. The transfer function of
the filter is

H(z) =
2n
∑

k=0

h(k) z−k

= z−n

[

h(n) + 2

n
∑

k=1

h(n± k)
1

2

(

zk + z−k
)

]

= z−n

n
∑

k=0

a(k)Tk(w) = z−nQ(w) (3)

whereTk(w) = cos(k arccos(w)) is Chebyshev polynomial of
the first kind andQ(w) is the real valued zero phase transfer
function which we express using thea-vector in form of the
expansion of Chebyshev polynomials

Q(w) =

n
∑

k=0

a(k)Tk(w) . (4)

The zero phase transfer function of an ER BP FIR filter is

Q(w) =
Zp,q(w, κ) + 1

ym + 1
, (5)

where Zp,q(w, κ) represents the Zolotarev polynomial [8].
For illustration, the shape of a Zolotarev polynomial is shown
in Fig. 1 and the corresponding frequency response is shown
in Fig. 2.
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Fig. 1. Zolotarev polynomialZ12,6(w, 0.79023439).
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Fig. 2. Amplitude frequency response20 log |H(ejωT )| [dB] corresponding
to the Zolotarev polynomial from Fig. 1.

III. O PTIMAL BAND-PASS FIR FILTER

An optimal ER BP FIR filter (Fig. 2) is specified by the
pass band frequencyω0T (or f0 = ω0Tfs/2π), width of
the pass band∆ωT (or ∆f = ∆ωTfs/2π), attenuation in
the stop-bandsas[dB] and by the sampling frequencyfs. An
approximation of the frequency response of a filter is based on
the generating function. The generating function of an ER BP
FIR filter is the Zolotarev polynomialZp,q(w, κ) which ap-
proximates a constant value in equiripple Chebyshev sense in
two disjoint intervals〈−1, w1〉 and〈w2, 1〉 as shown in Fig. 1.
The main lobe with the maximal valuey0 = Zp,q(w0, κ) is
located inside the interval(w1, w2). The notationZp,q(w, κ)
emphasizes the fact that the integer valuep counts the number
of zeros right from the maximumw0 and the integer valueq
corresponds to the number of zeros left from the maximum
w0. The real value0 ≤ κ ≤ 1 is in fact the Jacobi elliptical
modulus. It affects the maximum valuey0 and the width
w2 − w1 of the main lobe (Fig. 1). For increasingκ the

valuey0 increases and the main lobe broadens. The Zolotarev
polynomial is usually expressed in terms of Jacobi elliptic
functions [6]-[8]

Zp,q(w, κ) =
(−1)p

2
(6)

×









H(u−
p

n
K(κ))

H(u+
p

n
K(κ))





n

+





H(u+
p

n
K(κ))

H(u−
p

n
K(κ))





n

 .

The factor(−1)p/2 appears in (6) as the Zolotarev polynomial
alternates(p+ 1)−times in the interval(w2, 1). The variable
u is expressed by the incomplete elliptical integral of the first
kind F (x|κ), namely

u =F






sn
( p

n
K(κ)|κ

)

√

√

√

√

1 + w

w + 2 sn2
( p

n
K(κ)|κ

)

− 1
|κ






.

(7)
The functionH (u± (p/n) K(κ)) is the Jacobi Eta function,
sn(u|κ), cn(u|κ), dn(u|κ) are Jacobi elliptic functions and
K(κ) is the quarter-period given by the complete elliptic inte-
gral of the first kind. The degree of the Zolotarev polynomialis
n = p+q. A comprehensive treatise of Zolotarev polynomials
was published in [8]. It includes the analytical solution ofthe
coefficients of Zolotarev polynomials, the algebraic evaluation
of the Jacobi Zeta function Z( p

n
K(κ)|κ) and of the elliptic

integral of the third kindΠ(σm, p

n
K(κ)|κ). The positionw0

of the maximum valuey0 = Zp,q(w0, κ) is

w0 = w1 + 2
sn
( p

n
K(κ)|κ

)

cn
( p

n
K(κ)|κ

)

dn
( p

n
K(κ)|κ

) Z
( p

n
K(κ)|κ

)

(8)
where the edges of the main lobe are

w1 = 1− 2 sn2
( p

n
K(κ)|κ

)

(9)

w2 = 2 sn2
( q

n
K(κ)|κ

)

− 1 . (10)

The relation for the maximum valuey0

y0 = cosh 2n
(

σmZ(
p

n
K(κ)|κ)−Π(σm,

p

n
K(κ)|κ)

)

(11)

is useful in the normalization of Zolotarev polynomials. The
degree of the Zolotarev polynomialZp,q(w, κ) is expressed by
the degree formula

n ≥
ln(y0 +

√

y2
0
− 1)

2σmZ( p
n

K(κ)|κ)− 2Π(σm, p

n
K(κ)|κ)

. (12)

The auxiliary valueσm in (11), (12) is given by the formula

σm = F

(

arcsin

(

1

κ sn
(

p

n
K(κ)|κ

)

√

w0 − ws

w0 + 1

)

|κ

)

(13)

= F













arcsin

√

cos

(

2π
f0
fs

)

− cos

[

2π

fs

(

f0 +
∆f

2

)]

κ sn
( p

n
K(κ)|κ

)

√

1 + cos

(

2π
f0
fs

)

|κ













.
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The Zolotarev polynomialZp,q(w, κ) satisfies the differential
equation

(1− w2)(w − w1)(w − w2)

(

dZp,q(w, κ)

dw

)2

(14)

= n2
(

1− Z2

p,q(w, κ)
)

(w − w0)
2 .

Based on the differential equation (14) we have developed an
algorithm for the evaluation of thea-vector and of the impulse
responseh(k) corresponding to the Zolotarev polynomial
Zp,q(w, κ) in form of its expansion into Chebyshev polynomi-
als (4). This algorithm is summarized in Table I. There are two
goals in the filter design. The first one is to obtain the minimal
filter length ofN coefficients satisfying the filter specification.
The second one is to evaluate its impulse responseh(k).
In the standard design of an ER BP FIR filter, which is
represented by the numerical Parks-McClellan procedure (e.g.
the functionfirpm in Matlab), the exact filter length is not
available because of no approximating function. Consequently,
the filter length is not the result of the design, it is in fact an
input argument in the Parks-McClellan procedure. The filter
length is either estimated or successively adjusted in order to
meet the filter specification, or it is obtained from empirical
approximating formulas. Moreover, a successful design is not
guaranteed in the Parks-McClellan procedure. The alternative
design approach that we use here is based on the analytical
design which we have developed for ER notch FIR filters and
introduced in [3]. The available pass band frequencies which
we denotefQ are quantized because there is always an integer
number of ripples (Fig. 2). That is why we additionally tune
the actual pass band frequencyfQ of the initial filter to the
specified valuef0. This tuning consists in multiplying thea-
vector of the initial filter by a transformation matrix, resulting
in thea-vector of the tuned filter (16) which exactly meets the
specified pass band frequency. For the tuning, we present an
efficient algebraic procedure which is a simplified version of
that one introduced in [4]. The tuning procedure results in the
zero phase transfer function of the tuned filter, which is

Qt(w) =

n
∑

k=0

a(k)Tk(λw±λ
′

) =

n
∑

k=0

a(k)

k
∑

m=0

αk(m)Tm(w).

(15)

Based on (15), thea-vectorat(k) of the tuned filter and the
a-vector a(k) of the initial filter are related by a triangular
transformation matrixA

at(k) = [at(0) at(1) · · · at(n)] = [a(0) a(1) · · · a(n)]×

×



















α0(0) 0 0 0 · · · 0
α1(0) α1(1) 0 0 · · · 0
α2(0) α2(1) α2(2) 0 · · · 0
α3(0) α3(1) α3(2) α3(3) · · · 0
...

...
αn(0) αn(1) αn(2) αn(3) · · · αn(n)



















= a(k)A .

(16)

A fast algorithm for the evaluation of the coefficientsαk(m)
is summarized in Tab. II. The presented tuning of the pass
band frequency preserves the attenuationas[dB] in the stop
bands.

IV. D ESIGN OF THEOPTIMAL BAND-PASS FIR FILTER

Let us specify the optimal ER BP FIR filter by the pass band
frequencyf0[Hz], width of the pass band∆f [Hz], sampling
frequencyfs[Hz] and by the attenuation in the stop bands
as[dB]. The design procedure reads as follows:
Calculate the Jacobi elliptic modulusκ

κ =

√

1−
1

tan2(ϕ1) tan
2(ϕ2)

(17)

for the auxiliary valuesϕ1 andϕ2

ϕ1 =
π

fs

(

f0 +
∆f

2

)

, ϕ2 =
π

fs

(

fs
2

− f0 +
∆f

2

)

.

(18)
Calculate the rational valuespn and q

n

p

n
=

F (ϕ1, κ)

K(κ)
,

q

n
=

F (ϕ2, κ)

K(κ)
, (19)

where K(κ) is a complete elliptic integral of the first kind,
which here represents the elliptic quarter-period. Determine
the valuey0

y0 =
2

100.05as[dB]
. (20)

Calculate the auxiliary valueσm (13).
Calculate and round up the valuen (12) which represents the
degreen = p + q of the Zolotarev polynomialZp,q(w, κ).
Calculate the integer indicesp and q of the Zolotarev
polynomialZp,q(w, κ)

p =

x





y

n
F (ϕ1, κ)

K(κ)

x





y

, q =

x





y

n
F (ϕ2, κ)

K(κ)

x





y

. (21)

The arrow brackets in (21) stand for rounding. For valuesp,
q (21), κ (17) andy0 (20) evaluate thea-vectora(k) and the
related impulse responseh(k) of the filter using the algebraical
procedure summarized in Tab. I. Check the actual pass band
frequencyfQ of the initial BP FIR filter

fQ =
fs
2π

arccos

[

1− 2 sn2
( p

n
K(κ), κ

)

(22)

+2
sn
( p

n
K(κ), κ

)

cn
( p

n
K(κ), κ

)

dn
( p

n
K(κ), κ

) Z
( p

n
K(κ), κ

)

]

.

Because of the inherent quantization of the available pass
band frequenciesfQ mentioned above, the actual pass band
frequencyfQ usually slightly differs from the specified pass
band frequencyf0. That is why we tune the quantized pass
band frequencyfQ of the initial filter to the specified valuef0
using (16) and Tab. II. In our calculations, the Jacobi elliptic
Zeta function Z(x, κ) in (8), (11), (12) and the incomplete
elliptic integral of the first kindF (x, κ) in (13) are evaluated
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given p, q, κ, y0

initialization n = p+ q , w1 = 1− 2 sn2
(

p

n
K(κ), κ

)

, w2 = 2 sn2
(

q

n
K(κ), κ

)

− 1 , wa =
w1 + w2

2

wm = w1 + 2

sn
(

p

n
K(κ), κ

)

cn
(

p

n
K(κ), κ

)

dn
(

p

n
K(κ), κ

) Z
(

p

n
K(κ), κ

)

α(n) = 1 , α(n + 1) = α(n+ 2) = α(n+ 3) = α(n + 4) = α(n+ 5) = 0
body
(for m = n+ 2 to 3)

8c(1) = n2 − (m+ 3)2 , 4c(2) = (2m + 5)(m + 2)(wm −wa) + 3wm[n2 − (m + 2)2]

2c(3) =
3

4
[n2 − (m + 1)2] + 3wm[n2wm − (m+ 1)2wa]− (m+ 1)(m + 2)(w1w2 −wmwa)

c(4) =
3

2
(n2 −m2) +m2(wm − wa) +wm(n2w2

m −m2w1w2)

2c(5) =
3

4
[n2 − (m − 1)2] + 3wm[n2wm − (m− 1)2wa]− (m− 1)(m − 2)(w1w2 −wmwa)

4c(6) = (2m − 5)(m − 2)(wm − wa) + 3wm[n2 − (m− 2)2] , 8c(7) = n2 − (m− 3)2

α(m − 3) =
1

c(7)

6
∑

µ=1

c(µ)α(m + 4− µ)

(end loop on m)

normalization s(n) =
α(0)

2
+

n
∑

m=1

α(m)

a-vector a(0) = (−1)p
α(0)

2s(n)
, (for m = 1 to n) , a(m) = (−1)p

α(m)

s(n)
, (end loop on m)

impulse response h(n) =
a(0) + 1
y0 + 1 , (for m = 1 to n) , h(n±m) =

a(m)

2(y0 + 1)
, (end loop on m)

TABLE I
FAST ALGORITHM FOR EVALUATING THE a-VECTORa(k) AND THE IMPULSE RESPONSEh(k).

given fQ, f0, fs, k

initialization if fQ < f0 : λ =

cos

(

2π
fQ

fs

)

− 1

cos

(

2π
f0

fs

)

− 1
, s = 1, else :λ =

cos

(

2π
fQ

fs

)

+ 1

cos

(

2π
f0

fs

)

+ 1
, s = −1

λ
′
= 1− λ , αk(k + 1) = αk(k + 2) = αk(k + 3) = 0 , αk(k) = λk

body
(for µ = −3 ... k − 4 )

αk(k − µ− 4) =
{

−2s

[

(µ + 3)(2k − µ− 3) − λ
′

λ
(k − µ− 3)(2k − 2µ− 7)

]

αk(k − µ− 3)

+2 λ
′

λ
(k − µ− 2) αk(k − µ − 2)

+2s

[

(µ + 1)(2k − µ− 1)− λ
′

λ
(k − µ− 1)(2k − 2µ− 1)

]

αk(k − µ− 1)

+µ(2k − µ) αk(k − µ)
} / (µ+ 4)(2k − µ− 4)

(end loop onµ)

TABLE II
FAST ALGORITHM FOR EVALUATING THE COEFFICIENTSαk(m) OF TRANSFORMATIONMATRIX A.
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by the arithmetic-geometric mean [7]. The Jacobi elliptic
integral of the third kindΠ(x, y, κ) in (12) is evaluated by
a fast procedure proposed in [3].
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Fig. 3. Amplitude frequency responses20 log |H(ej2πf/fs)| [dB].
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Fig. 4. Amplitude frequency responses20 log |H(ej2πf/fs)| [dB] of the
filters with N = 13141 coefficients.

V. EXAMPLES OF DESIGN

Let us design three sets of band pass FIR filters specified
by the DTMF frequenciesf0 = 697, 770, 852, 941, 1209,
1336, 1477, 1633 Hz, width of the pass bands∆f = 50Hz,
sampling frequencyfs = 8000Hz and with the attenuations
in the stop bandsas = −80dB, −120dB and−160dB.
Using the presented design procedure, we get filter lengths
N = 1083 coefficients foras = −80dB, 1551 coefficients
for as = −120dB and2019 coefficients foras = −160dB.
The corresponding amplitude frequency responses are shown
in Fig. 3. In order to demonstrate the remarkable selectivity
of the ER BP FIR filters and the robustness of the presented
design procedure, let us design the DTMF filters with
very narrow pass band of∆f = 5Hz, sampling frequency
fs = 8000Hz and with the attenuation in the stop bands
as = −100dB. The filter length isN = 13141 coefficients.
The amplitude frequency responses are shown in Fig. 4.

VI. CONCLUSION AND FUTURE WORK

We have presented a fast and robust procedure for the
design of optimal equiripple narrow band-pass FIR filters for
DTMF applications. In contrast to the established numerical
design procedure the proposed methodology solves the
approximation problem and provides a formula for the degree
of the filter and formulas for the evaluation of the coefficients
of the impulse response of the filter. Our future activity will
include an efficient implementation of the DTMF filters using
digital signal processors.
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[5] N. I. Achieser, Über einige Funktionen, die in gegebenen Intervallen am
wenigsten von Null abweichen,Bull. de la Soc. Phys. Math. de Kazan,
Vol. 3, pp. 1 - 69, 1928.

[6] D. F. LawdenElliptic Functions and ApplicationsSpringer-Verlag, New
York Inc., 1989.

[7] M. Abramowitz, I. Stegun,Handbook of Mathematical Function, Dover
Publication, New York Inc., 1972.
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