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Abstract—A fast and robust analytical procedure for the Il. TERMINOLOGY

design of high performance digital optimal band-pass finite

impulse response filters for dual-tone multi-frequency apfica- We assume a general FIR filter of type | represented by

tions is introduced. The filters exhibit equiripple behavia of ;o impulse responsé(k) with odd length of N = 2n + 1
the frequency response. The approximating function is bask fficient d with trv (1), | furth )
on Zolotarev polynomials. The presented closed form solutin C_Oe |C|§n S and with even symmetry (_ )- ,n our further con
provides formulas for the filter degree and for the impulse Siderations we use the-vectora(k), which is related to the

response coefficients. Several examples are presented. impulse responsé(k)

Keywords-FIR filter; narrow band filter; dual-tone multi-

frequency; iso-extremal approximation. a(0) = h(n) , a(k) =2h(n+k)=2h(n—k), k=1..n

@
Further, we introduce an auxiliary real variahle
|. INTRODUCTION
w=z(z+27Y)
There are two basic tasks in the processing of dual-tone
multi-frequency (DTMF) signals, namely the detection of . . .
DTMF frequencies and the removal of the DTMF frequenci%\%zefriﬁg? ilss the sampling frequency. The transfer function of

in a broad band signal. The DTMF frequencies form two

z—ejwT

—coste) = cos (201 ) @

S

N =

groups with four frequencies each. The lower group consists 2n

of frequencies 697, 770, 852 and 941 Hz while the higher H(z) = Zh(k) zk

group comprises sinusoids of 1209, 1336, 1477 and 1633 k=0

Hz. For the processing of DTMF signals, the infinite impulse n 1

response (IIR) filters are usually applied because of their =z |h(n) +2)_h(nLk) 3 (zF +27")
lower number of coefficients. The IIR filters are usually part k=1

of the famous Goertzel procedure [1]. In the removal of
DTMF frequencies in a broad band signal, the IIR filters
produce substantial distortions of the output signal which
appear near its flat region due to the group delay variatioRhereT},(w) = cos(k arccos(w)) is Chebyshev polynomial of
This behavior is especially apparent, if pulse like comptsie the first kind andQ(w) is the real valued zero phase transfer
are present in the signal as demonstrated in [2]. In ordginction which we express using thevector in form of the
to minimize these distortions in the processing of DTMExpansion of Chebyshev polynomials

signals we propose the application of finite impulse respons

=z " Z a(k) Ty (w) = 27" Q(w) 3)

k=0

n

(FIR) filters which inherit a constant group delay. In order n
to maximize the discrimination of the DTMF sinusoids, the Qw) = Za(k) Ty (w) - (4)
selective bands of the FIR filters should be as narrow as k=0

possible. In this paper we are focused upon the designgfg zero phase transfer function of an ER BP FIR filter is
narrow optimal equiripple (ER) band-pass (BP) FIR filtens fo

the DTMF decoding. They are optimal in terms of the shortest Zpq(w, k) +1

possible filter length related to the frequency specificatio Q(w) = T ym 1l ()
Note that the proposed filter design is based on formulas, i.e

no numerical procedures are involved. The presented closeldere Z, ,(w, k) represents the Zolotarev polynomial [8].
form solution includes the degree equation and formulas fBor illustration, the shape of a Zolotarev polynomial iswho

the robust evaluation of the impulse response coefficiehtsin Fig. 1 and the corresponding frequency response is shown
the filter. in Fig. 2.
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valuey, increases and the main lobe broadens. The Zolotarev
polynomial is usually expressed in terms of Jacobi elliptic
functions [6]-[8]

g Zpq(w, k) = (_21)p 6)
H(w— 2 K(w)) "+ Hu+ 2 K\

s X —

: H(u+ % K () H(u— g K (x))

The factor(—1)? /2 appears in (6) as the Zolotarev polynomial
alternateqp + 1)—times in the intervalws, 1). The variable

u is expressed by the incomplete elliptical integral of thstfir
kind F(z|x), namely

u=F Sn(g K(x |Ii) 1;—11) |k
Fig. 1. Zolotarev polynomialZi2 ¢ (w, 0.79023439). " w + 2 sr? (EK(H”H) -1
(7
i The functionH (u + (p/n) K(x)) is the Jacobi Eta function,
sn(u|k), cn(u|x), dn(u|x) are Jacobi elliptic functions and
K (k) is the quarter-period given by the complete elliptic inte-
gral of the first kind. The degree of the Zolotarev polynornsal
n = p+q. A comprehensive treatise of Zolotarev polynomials
was published in [8]. It includes the analytical solutiontioé
coefficients of Zolotarev polynomials, the algebraic eatiln
of the Jacobi Zeta function (2K (k)| ) and of the elliptic
integral of the third kindlI(c,,, 2K ()| ). The positionwy
) of the maximum valueyy = Z, ,(wo, k) iS

| wo_w1+2sn(gK(m)|f<¢) Cn(gK(m)M)
dn (%K(Ii |f<a)

0 ) ) ) ) 05 ! ; ! } (8)
e where the edges of the main lobe are

Fig. 2. Amplitude frequency respongé log | H (e?*T")| [dB] corresponding _ p
to the Zolotarev polynomial from Fig. 1. wy =1—2sr EK (5)|K ()]
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z (BK(/@)M)

n

wy = 27 (EK(n)m) 1. (10)
n
1. OPTIMAL BAND-PASSFIR FILTER The relation for the maximum valug,
An optimal ER BP FIR filter (Fig. 2) is specified by the / — cosn2n (crmZ(BK(n)M) — (o, BK(H”I{)) (11)
pass band frequenayoT' (or fo = woT fs/2m), width of n n
the pass band\wT (or Af = AwTf,/2x), attenuation in is useful in the normalization of Zolotarev polynomials.€Th

the stop-bands,[dB] and by the sampling frequencf;. An degree of the Zolotarev polynomid}, ,(w, ) is expressed by
approximation of the frequency response of a filter is based e degree formula

the generating function. The generating function of an ER BP In( 7
) . ) . Yo+ Vys—1)
FIR filter is the Zolotarev polynomiak,, ,(w, x) which ap- n= 20 Z(EK (%)) — 21L(oy, PR(R)]R) (12)

proximates a constant value in equiripple Chebyshev sense i . , o
two disjoint intervals/—1, w;) and(ws, 1) as shown in Fig. 1. The auxiliary values,, in (11), (12) is given by the formula
The main lobe with the maximal valug) = Z, 4(wo, ) iS . 1 Wo — Ws

located inside the intervalw;, w;). The notationZ,, ,(w,x) om = I | arcsin ksn(Z K(m)lr) V wo + 1 |k (13)
emphasizes the fact that the integer vglusounts the number "

of zeros right from the maximumy, and the integer value fo 2w Af
corresponds to the number of zeros left from the maximum \/COS (27T_> o8 [E (fo T 7)]
wg. The real value) < x < 1 is in fact the Jacobi elliptical= F' | arcsin
modulus. It affects the maximum valug, and the width o Sn(g K(n)|n) 1+ cos <2W@)
ws — wy Of the main lobe (Fig. 1). For increasing the

|k

S
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The Zolotarev polynomiak, ,(w, ) satisfies the differential A fast algorithm for the evaluation of the coefficients(m)

equation is summarized in Tab. Il. The presented tuning of the pass
9 band frequency preserves the attenuatigfuB] in the stop
2 dZypq(w, ) band
(1—w?)(w—w)(w— ws) di (14) bands.
w
— 2 (1 _ 72 (w K)) (w — wo)2 IV. DESIGN OF THEOPTIMAL BAND-PASS FIR FILTER
Db, ! :

Let us specify the optimal ER BP FIR filter by the pass band

Basepl on the differentia_l equation (14) we have deyeloped fBquency fo[Hz], width of the pass bane f[Hz], sampling
algorithm for the evaluation of the-vector and of the impulse frequency f.[Hz] and by the attenuation in the stop bands

responseh(k) corresponding to the Zolotarev polynomialas[dB]_ The design procedure reads as follows:

Zy.q(w, k) in form of its expansion into Chebyshev polynomixg|culate the Jacobi elliptic modulus
als (4). This algorithm is summarized in Table |. There are tw

goals in the filter design. The first one is to obtain the minima 1

filter length of N coefficients satisfying the filter specification. h= N tan2 (1) tan?(pg) (17)
The second one is to evaluate its impulse respaon@e. .

In the standard design of an ER BP FIR filter, which i&r the auxiliary valuesp; andp;

represented by the numerical Parks-McClellan proceduge (e T Af T [ fs Af

the functionfirom in Matlab), the exact filter length is not ~ #1 = %~ (fO + 7) PR (3 —Jot 7)
available because of no approximating function. Conseiiyjen (18)
the filter length is not the result of the design, it is in faot aCalculate the rational value% and%

input argument in the Parks-McClellan procedure. The filter

length is either estimated or successively adjusted inrdale p_ M , q_ M , (19)
meet the filter specification, or it is obtained from empirica n K(x) n K(x)

approximating formulas. Moreover, a successful desigrots nwhere K (k) is a complete elliptic integral of the first kind,
guaranteed in the Parks-McClellan procedure. The altematwhich here represents the elliptic quarter-period. Deieem
design approach that we use here is based on the analytihal valuey,

design which we have developed for ER notch FIR filters and Yo = 2 _ (20)
introduced in [3]. The available pass band frequencies hhic 100-05a5[dB]

we denotef(, are quantized because there is always an intege§culate the auxiliary value,, (13).

number of ripples (Fig. 2). That is why we additionally tung gjcylate and round up the value(12) which represents the
the actual pass band frequenfy of the initial filter to the degreen = p + ¢ of the Zolotarev polynomialZ,, ,(w, ).

specified valuefy. This tuning consists in multiplying the-  cgjculate the integer indices and ¢ of the Zolotarev
vector of the initial filter by a transformation matrix, rétsug polynomial Z, , (w, )
p,q ’

in the a-vector of the tuned filter (16) which exactly meets the
specified pass band frequency. For the tuning, we present an 1 F(e1,k) T F(p2,k)
efficient algebraic procedure which is a simplified versidn o =" K(k) A K(k)

D e i rocedure sS4 e v brackes in (23 stan for rounding. For vales
P ' q (21), k (17) andy, (20) evaluate the-vectora(k) and the

(21)

n , n k related impulse responég¢k) of the filter using the algebraical
Qi(w) = Z a(k) Ti(AwE) = Za(k) Z ax(m)T(w).  procedure summarized in Tab. I. Check the actual pass band
k=0 k=0 m=0 (15) frequencyfq of the initial BP FIR filter
. o s P p
Based on (15), the-vectora;(k) of the tuned filter and the fa= o Arecos ll —2s (EK(K)W) (22)
a-vector a(k) of the initial filter are related by a triangular
transformation matrix4 sn(gK(n), n) cn (BK(/-;), n)
+2 L " Z<£K(K)7ﬁ)] .
ar(k) = [a¢(0) a¢(1) -+ ax(n)] =[a(0) a(1) --- a(n)]x dn(%K(n), H) n
[ap(0) 0 0 0 0 7 Because of the inherent quantization of the available pass
ar(0) ai(1) 0 0 0 band frequenciegg mgntioneq above, the actual pass band
ax(0) a2(1) ax(2) 0 0 frequencyfg usually shg_htly differs from the specn_ﬁed pass
X az(0) az(1) as(2) as(3) 0 =a(k)A. band frequencyfo. That is why we tune the quantized pass

band frequency of the initial filter to the specified valug,

: : using (16) and Tab. Il. In our calculations, the Jacobi &dip
an(0) an(l) an(2) an(3) - an(n) | Zeta function Zz,x) in (8), (11), (12) and the incomplete
(16) elliptic integral of the first kindF'(z, x) in (13) are evaluated
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given p, q, K, Yo

initializaton n=p+gq,w; =1—2sr? (EK(H),H) , wo = 2K (EK(H),H) —1,we = w1+ w2
n n

2

P K), K p K), K
b Cuil P
an)=1,an+1)=an+2)=an+3)=an+4) =an+5)=0

body
(for r m=n+2 to 3

8c(1) = n? — (m +3)2 , 4¢(2) = 2m + 5)(m + 2)(wm — wa) + 3wm[n? — (m + 2)?]
2¢(3) = Z[nz — (m+1)?] + 3wm[n*wm — (M + 1)%wa] — (m + 1)(m + 2)(wi1w2 — Wmwa)
c(4) = g(nz - m2) + mz(wm — wq) + U)m(’fl2w72n - m2w1w2)

2¢(5) = %[nz —(m — 1)2] + 3wm[n2wm —(m — 1)2wa} — (m—1)(m — 2)(wrw2 — WmwWa)

4¢(6) = (2m — 5)(m — 2)(wm — wa) + 3wm[n? — (m — 2)?], 8¢(7) = n? — (m — 3)?
6
alm - 3) = % 3 clwatm +4 - p)
(end loop on m) =

n
normalization s(n) = @ + Z a(m)
=1

a-vector a(0) = (—1)? ;;(((;L)) , form=1 to n, a(m)= (—1)7’% , (end loop on m)
impulse response h(n) = ay(g—):ll , form=1 to n, hintm)= % , (end loop on m)
Yo

TABLE |
FAST ALGORITHM FOR EVALUATING THE a-VECTORa(k) AND THE IMPULSE RESPONSE (k).

given fq, fo. fs, k
cos (27rf—Q) -1 cos (27rf—Q) +1
initialization it fo<fo:r= + s=1, else A= ——fL— s =1
cos (27r—) -1 cos (27r—) +1
, fs fs
AN=1-X, opk+1) =ap(k+2) =ar(k+3)=0 , ap(k)=2F
body
(forpy=-3..k—4)
?k(k_“_4) =

~25 [(u+ 32k~ n=3) = X (h— = (k-2 - 7)] @k —u-3)
) +2%l(k—,u—2) ar(k —p—2)
+2s [(u+1)(2k—,u— 1) — 3(k—p—1)(2k —2u— 1)} ap(k—p—1)
+u(2k — p) ar(k —p)

} /(e 4)(2k — - 4)
(end loop onw)

TABLE Il
FAST ALGORITHM FOREVALUATING THE COEFFICIENTSak(m) OF TRANSFORMATIONMATRIX A.
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by the arithmetic-geometric mean [7]. The Jacobi elliptic of :
integral of the third kindII(z,y, ) in (12) is evaluated by

a fast procedure proposed in [3].

20 log | H (e327f/ fs | [dB]
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Fig. 4. Amplitude frequency respons@8 log | H (e727f/fs)| [dB] of the
filters with N = 13141 coefficients.

V. EXAMPLES OF DESIGN

Let us design three sets of band pass FIR filters specified
by the DTMF frequencieg, = 697, 770, 852, 941, 1209,
1336, 1477, 1633 Hz, width of the pass band& f = 50Hz,
sampling frequencyf, = 8000Hz and with the attenuations
in the stop banda, = —80dB, —120dB and—160dB.

Using the presented design procedure, we get filter lengths
N = 1083 coefficients fora;, = —80dB, 1551 coefficients

for a;, = —120dB and 2019 coefficients fora, = —160dB.

The corresponding amplitude frequency responses are shown
in Fig. 3. In order to demonstrate the remarkable selegtivit
of the ER BP FIR filters and the robustness of the presented
design procedure, let us design the DTMF filters with
very narrow pass band cdAf = 5Hz, sampling frequency

fs = 8000Hz and with the attenuation in the stop bands
as = —100dB. The filter length isNV = 13141 coefficients.
The amplitude frequency responses are shown in Fig. 4.

VI. CONCLUSION AND FUTURE WORK

We have presented a fast and robust procedure for the
design of optimal equiripple narrow band-pass FIR filtens fo
DTMF applications. In contrast to the established numérica
design procedure the proposed methodology solves the
approximation problem and provides a formula for the degree
of the filter and formulas for the evaluation of the coeffitgen
of the impulse response of the filter. Our future activitylwil
include an efficient implementation of the DTMF filters using
digital signal processors.
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