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Abstract—In this paper, we propose a novel framework for
traffic classification that employs machine learning techniques
and uses only packet header information. The framework con-
sists of a number of key components. First, we use an efficient
combination of clustering and classification algorithms to make
the identification system robust in various network conditions.
Second, we introduce traffic granularity levels and propagate
information between the levels to increase accuracy and ac-
celerate classification. Third, we use customized constraints
based on connection patterns to efficiently utilize state-of-the-
art clustering algorithms. The components of the framework
are evaluated step-by-step to examine their contribution to the
performance of the whole system.
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I. INTRODUCTION

In-depth understanding of the Internet traffic is a chal-

lenging task for researchers and a necessary requirement

for Internet Service Providers (ISP). Usually, Deep Packet

Inspection (DPI) is used by ISPs to profile networked traffic.

Using the results ISPs may apply different charging policies,

traffic shaping, and offer differentiated QoS guarantees to

selected users or applications (where legally possible). Deep

Packet Inspection usually extracts information from both the

packet headers and the payload. In some cases, this approach

is not feasible due to, e.g., processing constraint or when the

payload is encrypted.

Our goal is to classify traffic based solely on packet header

information, such as packet size, arrival time, addresses,

protocols and ports. The following requirements have to be

fulfilled by our system:

• It should be robust: the characteristics of the network,

such as speed or load should not impact accuracy

• It should be fast: classification results shall be provided

after as few packets of a flow as possible

• It should be accurate: results should have high true

positive (TP) with minimal false positive (FP) ratio

In current state-of-the-art, traffic classification engines,

which rely only on packet header information, the effects

of network environment changes influence the performance

of the identification methods (e.g., [1], [2]). This results in

reduced accuracy when the model trained in one network is

used for testing in a different one. To become robust in such

scenarios, our proposed method incorporates unsupervised

learning for the basic clustering of the input flows and

supervised clustering to automatically deduce the resulting

classes. In this way we achieved a method that performs

well under changing network conditions.

Another disadvantage of current state-of-the-art methods

is that they can provide information about a flow only after

its full processing (e.g., [3], [4]). They cannot conclude the

processing of the data flow even if a certain confidence

is reached in the middle of it. In the proposed framework

data collection happens on several granularity levels and the

results of one level are fed to a lower granularity level.

Therefore result generation can be considered at several

checkpoints during the flow to provide information the

soonest possible.

Constraint clustering is a state-of-the-art [5],[6] technique

to improve clustering. We propose to use this technique with

constraints based on connectivity patterns to further increase

classification accuracy.

The main contributions of the paper are as follows:

• The evaluation of various clustering and classification

algorithms and an efficient combination of them

• The introduction of traffic granularity levels and a

proposal to efficiently utilize them

• The efficient utilization of constraint-based clustering

algorithms

This paper is organized as follows. Section II overviews

the related work and introduces the terms used in the paper.

In Section III, the data used for evaluation purposes is

described. Section IV compares clustering and classification

algorithms and proposes a combination of them. In Sec-

tion V, the granularity levels of the traffic and its effective

use are discussed. In Section VI, some preprocessing steps

are introduced to exploit the advantages of constraint-based

clustering algorithms. Finally, the paper is concluded in

Section VII.

II. RELATED WORK AND TAXONOMY

In the following bullets, we define the terms used in

current state-of-the-art papers about machine learning (ML).

• Feature: An attribute of the studied objects (e.g., the

average bitrate of a flow), the input to machine learning
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Flow ID avg IAT psize dev sum byte time len Label Classification Clustering (hard) Clustering (soft)

1 41 54 53 74 P2P P2P 1 1(80%), 2(15%)

2 64 6 62 45 P2P P2P 1 1(75%),3(10%)

3 48 80 27 83 E!mail P2P 2 2(95%)

4 48 83 35 78 VoIP VoIP 3 3(45%),2(9%)

Features (measured) Test result

Fig. 1. Example input for ML algorithms derived from network traffic

algorithms. The algorithms aim at segment the space

defined by the features as dimensions.

• Label: The goal of ML is to learn to categorize objects

based on features. The labels are the name of the

categories, hence the label is the result of the testing

phase.

• Training: The first phase of ML algorithms, when the

set of input samples are evaluated (using their features)

and models are created.

• Testing: The second phase when the models are utilized

and tested on unknown traffic to find which model

describes them the best. The input to this phase is the

models and the features of an unknown object (e.g.,

flow).

• Accuracy: In the test phase, what fraction of the tested

objects get the proper label. Labeled test data is needed

to measure the accuracy.

• Classification is a type of ML algorithm. Label infor-

mation is used during training (along with the features)

that is why it is called supervised learning.

• Clustering is another type of ML algorithm, also called

unsupervised learning. This method automatically as-

signs points into clusters based solely on the features.

The label information is not needed during clustering

thus it makes possible to deal with new unknown ap-

plications. After clustering the label to cluster mapping

function must still be defined. One approach is e.g., the

most labels in the specific cluster.

Figure 1 shows an example input for ML algorithms derived

from network traffic.

There are a large number of publications in the clustering

and packet classification area. Most papers usually focus on

either clustering [3], [7] or classification [8], [2], [4], [9] but

not on their combination. In [10], authors introduced hybrid

clustering method which first uses k-means and k-neighrest

neighbor clustering to deal with the issue of applications

clustered in overlapping clusters, thus improving accuracy

and improve performance. In our work, the combination of

clustering and classification is used to exploit the different

robustness of the methods in case of network parameter

changes.

The majority of the publications deal with algorithms

working on flow level [1], [2], [8], [3], [7], [11], [12], [4],

[13], [14]. Papers introducing methodologies working on

packet level information also exist [15], [16], [17]. The flow

level information based methods can only identify the flows

after the complete processing of the flow. The packet level

TABLE I
COMPOSITION OF MERGED TRAINING DATA

Protocol flow% Protocol flow%

BitTorrent 61.11 RTP 0.02

DNS 4.50 RTSP 0.02

DirectConnect 0.06 SIP 0.94

FTP 0.01 SMTP 0.01

Gnutella 6.87 SSH 0.01

HTTP 19.82 Source-engine 0.53

ICMP 4.05 UPnP 0.05

IGMP 0.01 WAP 0.22

IMAP 0.03 Windows 1.40

POP3 0.18 XMPP 0.01

PPStream 0.16

information based methods can deduce a hint for a traffic

flow after a few packets, but they neglect the case when

the flow changes traffic characteristics during its lifetime

e.g., a VoIP flow starts with signaling and later used for

the transferring of the voice. In mobile environments where

the available resources of a user is dependent on the load

of the mobile cell and the channel resources are reserved

according the traffic needs the information in the first few

packets of the flow may not sufficient for a robust decision.

Our proposed solution operates simultaneously on packet,

flow slice and flow levels to achieve a robust and accurate

decision as early as possible.

III. INPUT DATA

Later, in the paper, the following data is used for eval-

uation purposes. We constructed the training and testing

data in the same way as it was done in [8]. The training

data of the system we used a one day long measurement

from an European FTTH network, a 2G and a 3G network

measurement from Asia and a measurement from a North-

American 3G network each of them measured in 2011.

We aimed at choosing measurements from networks with

very different access technologies and geolocations to make

the traffic characteristics varied. Flows are created from

the network packet data, where a flow is defined as the

packets traveling in both directions of a 5-tuple identifier,

i.e., protocol, srcIP, srcPort, dstIP, dstPort with a 1 min

timeout. Flows are labeled with a DPI tool developed in

Ericsson [18]. The flows are randomly chosen into the

training and testing data set with 1/100 probability from

those flows where the protocol is recognized by the DPI

tool and contained at least 3 packets. From Section IV-D

we merge all the training and testing data from the several

networks sets into one training and testing dataset containing

50 million flows each. Table I shows the composition of the

merged training data.

IV. CLUSTERING VS. CLASSIFICATION

We found that clustering and classification methods per-

form differently when we use them to identify traffic on

unknown networks. In this section we examine an algorithm

that mixes these two types of algorithms.
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TABLE II
MEASURED ACCURACY OF CLUSTERING METHODS

Method Tested on same net-

work

Cross-check on

other networks

Expectation Maximalization (EM)

[3], [7]

85% 65%

K-Means [7] 84% 62%

Cobweb hierarchic clustering [22] 70% 42%

Shared Nearest Neighbor Cluster-

ing [23]

95% (20% of the

flows are clustered)

93% (12% of the

flows)

Autoclass [24] 79% 55%

Constrained clustering [5] 88% 48%

Average 78.5% 60.8%

We made experiments with several tools [19], [20], [21],

algorithms and with several parameter settings. The features

we used are the total set of features, which were mentioned

in the related work in Section II (e.g., [2], [11]) and the

feature reduction in [12] were applied on them. The results

of the classification experiments are collected in Table II

and III. The first column shows the case when the training

data and the testing data are from the same network, the

second column shows the case when the testing data is

from a different network than the training data (similar

experiment as in [1]). In both columns, we show the result of

those scenarios and parameter settings, which give maximum

accuracy. The accuracy measures the ratio of correctly

classified flow number in terms of the protocol.

In case of clustering methods, the mapping of a specific

cluster to an application is a majority decision, e.g., if in the

training phase Cluster_5 contained 100 Bittorrent flows

and 10 HTTP flows than during the testing phase if a flow

happen to fall into Cluster_5 it is considered Bittorrent.

We found that clustering is more robust to network

parameter changes thus the accuracy drops less when the

test set is measured in a different network than the training

set comparing to the classification algorithms. On the other

hand, classification algorithms can learn a specific network

more accurately, thus trained and tested on the flows of the

same network, the achieved accuracy is usually higher than

the one in the clustering case. Algorithms mainly differ in

learning speed and in the number of parameters which has

to be set (same conclusion in [8]).

In the following section, we propose a method to combine

the advantages of both clustering and classification algo-

rithms.

A. Refinement of clustering with classification

In current state-of-the-art, solutions either standalone

supervised (e.g., [8], [2], etc.), or unsupervised methods

(e.g., [3], [7], etc.) are used. They either perform well on

one specific network but significantly worse on others or

they provide more balanced, but less accurate results. We

also note that in case of the usage of unsupervised methods,

the mapping function has to be defined manually.

Below, we propose a method incorporating unsupervised

learning for the basic clustering of the input flows and

TABLE III
MEASURED ACCURACY OF CLASSIFICATION METHODS

Method Tested on

same network

Cross-check on

other networks

SVM [13], [17], [14], [25] 89% 61%

Logistic Regression 89% 59%

Naive Bayes (complete pdf estimation)

[8], [2]

74% 58%

Naive Bayes Simple (mix normal distri-

butions) [8], [2]

70% 57%

Random Forrest [9] 93% 54%

Multilayer Perception [26] 85% 47%

C4.5 [2] 90% 45%

Bayes Net [26] 89% 43%

Average 85% 53.1%

supervised clustering to automatically deduce the resulting

label. Our method is divided into two main phases.

1) Training phase: The input of the training phase is the

labeled raw traffic. The output of the system is the clustering

and classification models. First, flow descriptors (features)

are calculated from the raw traffic, e.g., average payload size,

deviation of payload size, etc. Next, an automatic unsuper-

vised clustering is performed, and the resulting clustering

model is stored. Finally, the result of the clustering is added

to the features of the raw traffic as an additional feature and

this extended feature set is fed to an automatic supervised

classification system. The resulting classification models are

also stored. See Figure 2 for details.

2) Testing phase: The input of the testing phase is the

unknown raw traffic. Features are calculated for each flow as

in the training phase and are tested on the clustering model.

The number of the resulting cluster is added to the feature

set, which is then tested on the classification model. The

output of the system is a list of traffic types with a confidence

level. The classification method also works as a cluster to

application mapping function. See Figure 3 for details.

B. Combination of clustering and classification methods

There are two possible ways of combining the clustering

and classification methods:

Classification with clustering information: The result

of clustering (with the cluster to application mapping com-

pleted) is fed to the classification algorithm as a new

feature. In this case, the feature expressiveness is chosen

arbitrary by the classification method. The advantage of this

approach is that it is easy to implement. On the other hand,

the clustering information may be neglected or considered

with low importance by the classification method thus the

clustering cannot always improve the overall accuracy.

Model refinement with per cluster based classification:

After the clustering step, a separate classification model is

built for the set of flows of each cluster (see Figure 4). The

advantage of this approach is that the clustering results are

considered always with high importance. The classification

methods can construct simple models because the clusters

contain a limited number of flow types. As a result, the
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impact of the overfitting of the classification model is

decreased. This approach showed significant improvement

over the classification with clustering information scenario

(but results in a more verbose model).

C. Preferred implementation

We selected the constrained clustering [5] algorithm (see

Section VI for further details) and the SVM [25] clas-

sification algorithm to perform the experiments as these

algorithms were the most robust for the case when the

training and testing data were from different networks.

The focus of the ML-algorithms is slightly different in

the clustering and classification case. Clustering calculates

Euclidean distances. SVM is a Kernel-based algorithm that

projects data into high dimension feature space where the

instances are separated using hyperplanes. An important task

regarding SVM is to choose an appropriate kernel function.

To extend the linear models that constraint clustering can

learn, SVM implementations can be tuned to use Gaussian

or polynomial kernels. With such kernels it is possible to

model non-linear, but exponential dependence of variables

thus the clustering and classification models can complement

each others capability with linear and non-linear modeling

features.

D. Evaluation

Table IV shows that both types of combination improves

the performance of both the same network and cross-check

case. The increase of the cross-check case improves signifi-

cantly comparing to the standalone cases (see Tables II, III).

In case of the per cluster based classification, the increase

is even more significant in both cases than the classification

with clustering information case thus we will use it in the

rest of the paper.

TABLE IV
MEASURED ACCURACY OF THE COMBINATION OF CLUSTERING AND

CLASSIFICATION METHODS

Method Tested

on same

network

Cross-check

on other

networks

Classification with clustering information 89% 72%

Per cluster based classification 93% 75%

We also made measurements of the basic clustering (Fig-

ure 5 ’Clustering with majority decision’ column), classifi-

cation (Figure 5 ’Classification’ column), trivia combination
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Fig. 5. The summary of the accuracy in case of the application of the proposed improvements

(Figure 5 ’SVM with cluster info’ column) and per cluster

based classification (Figure 5 ’Per cluster based classifi-

cation’ column) case on the merged training and testing

data (see Section III). TP hit occurs when the label in the

original flow equals the hint given for the specific factor.

The classification with clustering information case improve

its accuracy slightly, but the per cluster based classification

overperforms all of them.

V. GRANULARITY LEVELS

Current state-of-the-art packet header-based traffic clas-

sification methods can provide information about the flow

after its full processing (e.g., [3], [4], etc.). They either

collect information at packet or flow level but they cannot

propagate the information to other levels.

A. Usage of granularity levels

ML-based traffic classification systems use a set of fea-

tures. Features can be calculated on several granularity

levels. We use multiple granularity levels in our system

(see Figure 6) as follows. Collecting traffic description

information on packet level introduces a limitation on the

derived descriptors (features). Practically, only the packet

inter-arrival time, packet size and the direction of the packet

is available. On the other hand, due to the large number of

packets this granularity level provides a sample-rich input.

The most straightforward descriptors on the flow level

are, e.g., the number of transmitted packets, the sum of

bytes transmitted, the distribution of the packet inter-arrival

times and packets sizes (or a certain derivative, such as

minimum, maximum, average, standard deviation, median,

quantiles, etc.). More complex statistical descriptors can also

be used, e.g., further moments, autocorrelation, spectrum, H-

parameter, recurrence plot-statistics, etc.

Flow characteristics can change over time. The same flow

can be used for multiple purposes during its lifetime. This

behavior results in misleading conclusions if one views only

the statistics calculated for the overall flow without paying

attention to the evolution of statistics during the life of the

flow. A somewhat finer level, “slices“, can be defined as

part of a flow divided into multiple pieces, e.g., comprising

a certain number of packets, bytes or a given time period.

Flow slices can be constructed on several aggregation levels,

e.g., based on 10, 100, 1000 packets. The flows can have

different characteristics on the different aggregation levels.

In this way the scaling property of the traffic can be captured

in a similar way as the Hurst-parameter does [27]. It is also

possible to segment a flow into slices using some algorithmic

determination of slice boundaries, e.g., using TCP flags,

significant changes in bitrate, etc. The statistical descriptors

can be the same as in case of flow granularity. This approach

has the potential of grabbing the temporal changes in the

flow during its lifetime and, e.g., remove the inactive periods,

which distort the statistical descriptors otherwise.

As we noted, features captured on a lower granularity

level (e.g., flow) are richer, but with low number of sam-

ples, whereas features captured on a high granularity level

(e.g., packet) are simpler, but with high number of samples.

It would be desirable if we could combine information

from both sources. Another aspect is that high granularity

descriptors allow to make a quicker decision, that is, after

fewer packets of the flow. An ideal system would provide a

quick (potentially lower accuracy decision) fast and would

keep refining it as more of the flow is processed. To quickly

establish a result, we keep modeling on multiple levels in

parallel and propagate information between the levels for

higher accuracy.
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B. Propagation of granularity information from one level to

an other

The system can provide results as soon as enough infor-

mation is gained on a granularity level to achieve a required

confidence level. This means that, for example, if only 5

packets are enough to provide classification with high level

of confidence then further processing is not needed. If the

confidence level is still low then the results of a specific

granularity level is passed to a lower granularity level. The

lower level can then make use of this unreliable, but still

potentially indicative information.

There are two possible ways to propagate granularity

information from one level to an other:

Propagate final result of a specific level: The result of

the refinement, thus the result of the classification, a specific

protocol, functionality value, etc. (with a text to number

mapping) are fed to the next level classification algorithm

as additional features.

Propagate clustering information of a specific level:

Each resulting cluster (without cluster to application map-

ping) is fed to the next level clustering as an additional

feature (see Figure 6). Cluster numbers are normalized,

aggregated results of several features. They mean that due

to some features some flows are similar to each other. This

information does not introduce any error to the system. See

also Figure 6 for further details.

We should note that it would be possible to use a per

cluster based classification like solution as it is proposed

in Section IV-B, thus flows in each cluster would generate

a separate model on the next granularity level. We did not

make experiments with such a setup as the resulting cluster

on, e.g., flow level would have a very limited number of

flows for training to create a meaningful model. Neverthe-

less, in a system that handles much more flows, this approach

can be feasible and may perform well.

C. Preferred implementation

On packet level the inter-arrival time, packet size, direc-

tion (uplink, downlink) and the TCP flags in case of TCP

packet can be stored for the first, e.g., 10 packets. This means

10 ∗ (3 + F ) features to be stored, where F is the number

of relevant flags.

On the slice level, we consider, e.g., 10 second long slices.

In this case, the first 10 seconds of the flow constitute the

first slice. Statistical descriptors are calculated for each slice

and all of these features are used as features to the ML-

algorithm. Statistics of the next 10 seconds of the flow are

also stored, and so on. It is also possible to define a fix

number of slices, e.g., 10 and only maintain the statistics
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descriptor for such many slices and cumulate statistics in a

circular fashion. Thus the first set of descriptors would hold

activity from seconds 0-10, 100-110, 200-210 and so on.

The memory consumption of the slices can be limited with

the above technique.

D. Evaluation

Figure 5 ’Granularity info propagation (Clust)’ column

shows that propagation of clustering information outper-

forms the propagation of classification info (’Granularity

info propagation (Class)’ column). The granularity informa-

tion introduced provides a further 6% gain comparing to the

’Per cluster based classification’ case.

We also made experiments to check which slice dimension

(packet/byte/time) contributes with the most information to

the final result. In these cases the features were calculated on

all scales (10, 100, 1000) and were propagated downward.

It is interesting to see that if we have to choose only one

of the slice dimensions the highest TP ratio can be achieved

with the packet based bin definition.

Another experiment we made that we removed all the

slice level information and packet level data was propagated

directly to the complete flow level statistics (see ’No slices’

column in Figure 5) in the first phase. Later, we extended the

information with slice level information considering only the

10 size bins in packet, kbyte and time dimensions as well

in the second phase and the 10, 100 size bins in the third.

Practically when all the information is propagated from the

slice to flow level that means 9 cluster numbers. When only

the time bins are propagated that means 3 cluster numbers

(for the time 10, 100, 1000 scales) and when e.g., the 10, 100

scales are propagated in all the dimensions it means 6 cluster

numbers (the packet, kbyte, time triplet once in the 10 size

scaled bin and an other triple for the 100 size scaled bin).

We found that providing more and more information by the

cluster values of the slices the TP ratio increases by 1-2%

step by step (see ’No slices’, ’Just 10 scale’, ’Just 10, 100

scales’ columns in Figure 5). Note that during the granularity

level info propagation phase the next level feature set is

extended after the feature selection phase therefore they are

considered by the clustering methods for sure.

The introduced method can correctly recognize 83% of

the flows on the packet level, 8% on segment level and 3%

on flow level.

VI. CONSTRAINED CLUSTERING

Constraint clustering is a state-of-the-art [5],[6] technique

to improve clustering. The key idea is to describe constraints,

which tell which instances must or must not be in the same

cluster. Then the feature-space is transformed to fulfill the

constraints as much as possible (see Figure 7). It is important

to note that constraint clustering can improve the feature

selection deficiencies as well (it improves features in a

similar way as in Principle Component Analysis [28]).

A. Introduced constraints

In our system, we introduced constraints providing in-

formation about the flow instances from independent traffic

classification methods. Note that we only propose must con-

straints. It is important that constraints must not introduce

error to the system. To achieve this we use only simple and

strong heuristics. The introduced must constraints are always

defined between flows with the same label.

We propose to use the following three constraints (defined

for flows being around the same time)

• Constraint Type 1 (red, row/col (1,3); (1,5); (2,3);

(2,5)): Flows originating from different srcIPs going

to the same dstIP (if we know they are both P2P, we

can be sure they are the same app client (factor #1), as

well, such as Azureus or uTorrent)

• Constraint Type 2 (orange, row/col (1,3); (1,4); (3,3);

(3,4); (4,3); (4,4)): Flows originating from the same

srcIP from the same srcPorts (and same for dst) (flows
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Port
Connection 

pattern
DPI

Traffic 

characteristics

Flow ID proto srcIP srcPort dstIP dstPort label

avg througput 

[Mbps] Constraints

1 TCP A B C D P2P 1 1  2

2 TCP E F C G P2P 1

3 TCP A B H I P2P 2 1  3

4 TCP A B J K P2P 1 1  4

5 TCP A L M N P2P 0.2 5  6

6 TCP A L M N P2P 5

Fig. 8. Introduced constraints

from the same IP:port share both application and client

program (factors #1 and #3), as well)

• Constraint Type 3 (yellow, row/col (5,3); (5,8); (6,3);

(6,8)): Flows with significantly different traffic charac-

teristics with the same user IP address (different charac-

teristics imply different network conditions, factor #5)

B. Evaluation

Figure 9 shows the TP ratio in the function of used

constraints. In general, a huge number of constraints could

be collected, e.g., for each of the flows which take part in

the definition of a type 2 constraint can be constructed a

constraint. As increasing the number of constraints increases

the run time of the constraint clustering algorithm a lot,

the constraints are sampled in practice. The two extreme

cases are easy to interpret: it is better to use constraints than

not, and it is also very clear that increasing the number of

constraints does not imply the increase of TP ratio directly.

In the right corner of Figure 9 the TP ratio shows a big

variance around the application of 600-1000 constraints.

What can be learned from these experiments is that it

is advisable to add more and more constraints iteratively

during the model construction phase and evaluate whether

it increased the overall accuracy or not. It is possible to

achieve even 2% gain in TP ratio with a limited number

of constraints. The detailed study of the variance of the

accuracy in the function of the introduced constraints can

be the focus of a further work.

VII. CONCLUSION

In this paper, we introduced several steps to improve

the current state-of-the-art in traffic classification engines

relying entirely on packet header data. To become robust our

proposed method incorporates clustering and classification

methods. This way our method performs well even under

changing network conditions. In this step we gained 3%

TP ratio compared to standalone clustering or classification

methods.

In the second step, we proposed to perform the data

collection on several granularity levels and the results of
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Fig. 9. TP ratio in the function of used constraints /Leftmost square: TP
ratio without constraints, dot line: trendline/

one level to be fed to a lower granularity level. In this step

a further 5% is gained relative to the previous step.

Third, we introduced constraint clustering based on con-

nectivity patterns. This resulted in a 2% increase of accuracy.

The overall accuracy of the system on a mix of real world

network traffic is 94% which is a 9-10% increase in accuracy

comparing to state-of-the-art algorithms.
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