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Abstract—A robust analytical design procedure for high per- The transfer function of the filter is
formance digital equiripple band-pass finite impulse respase
filters for direct sampling receivers is introduced. The filters are

—k
optimal in Chebyshev sense. The underlaying generating fuation H(z) = Z h(k) z
of the equiripple approximation is the Zolotarev polynomia. The k=0
closed form solution provides a straightforward evaluatio of the n 1
filter degree and of the impulse response coefficients from ¢h =z""|h(n) + 2Zh(ni k)= (zk + z*k)
filter specification. One example is included. The robustnesof 1 2
the design procedure is emphasized. n
N N

Keywords-FIR filter; band-pass filter; equiripple approxima- =z Za(k) Ti(w) = 27" Q(w) @)

tion; Zolotarev polynomial; direct sampling; digital receiver; k=0
where
Tk (w) = cos(k arccos(w)) 3)

I. INTRODUCTION
is Chebyshev polynomials of the first kind. The function

Direct sampling receivers are based on the sampling and n
processing of the amplified radio-frequency (RF) signal in- Q(w) = Za(k:) Tr(w) (4)
comming from the aerial. The selectivity in the RF signal k=0

is obtained using narrow-band band-pass (BP) digital $ilter

Because of the high ratio between the pass-band frequedcy g?Presents a polynomial in the variable
the bandwidth of the filters, high performance digital fiiter _ 1( g ©)
are required. Such filters can be used in the receivers with w=pleTs

direct intermediate frequency (IF) sampling and in frequen
analyzers as well. Because of the inherent stability andlmse

of the linear phase the digital finite impulse response (FII‘-%
filters are preferred. A filter is optimal in terms of its lehgt w = cos(wT) . (6)
provided its frequency response exhibits an equiripple)(ER

behavior. In [1] we have introduced an analytical design

procedure for the digital ER notch FIR filters. Here, we pnése

an analytical design procedure for the ER BP FIR filters. The [1l. GENERATING POLYNOMIAL

proposed design procedure is based on Zolotarev polynsmial
[2]-[5]. We present here the closed form solution for theigies
of ER BP FIR filters. It includes the degree equation a
formulas for the robust evaluation of the impulse respong$1
coefficients of the ER BP FIR filter. w

which on the unit circlez = 7“7 reduces to the real valued
sero phase transfer function (ZPT®E)}w) of the real argument

An approximation of the frequency response of a filter is
n%ased on the generating function. The generating function o
ER BP FIR filter is the Zolotarev polynomidl, ,(w, k)
ich approximates a constant value in equiripple Chebyshe
sense in two disjoint intervals-1, w;) and (w2, 1) as shown
in Fig. 1. The lobe with the maximal valug, = Z,, 4(wm, )
is located inside the intervgdv,, w2). The notationZ,, ,(w, k)
emphasizes the fact that the integer valusounts the number
_ _ of zeros right from the maximunw,, and the integer value
We assume the impulse resporigé) with odd lengthV' = ¢ rresponds to the number of zeros left from the maximum
2n + 1 with even symmetry wm. The real value) < x < 1 which is in fact the Jacobi
elliptical modulus affects the maximum valug, and the
a(0) = h(n), a(k) =2h(n—k)=2h(n+k),k=1..n. width ws — wy of this lobe (Fig. 1). For increasing the
(1) value y,, increases and the lobe broadens. E. |. Zolotarev

Il. ZEROPHASE TRANSFERFUNCTION
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Z12,6(w, 0.79023439)

Fig. 1. Zolotarev polynomialZi 2 ¢ (w, 0.79023439).

-20

20 log |H (7T |[dB]

Fig. 2. Amplitude frequency respong6 log | H (¢7“T)| [dB] corresponding
to the Zolotarev polynomial from Fig. 1.

(1847-1878) derived the general solution of this approxioma
problem in terms of Jacobi elliptic functions [3]-[5]

(=1
2
H(u - % K (k))

Zpq(w, k) =

(@)

n n

H(u+ £ K(x))
+

H(u+ 2 K(r)) H(u— 2 K(x)

The factor(—1)? /2 appears in (7) as the Zolotarev polynomiat1 — w?)(w — w1)(w — ws) <de7q(w, K) ) 2

alternateq(p + 1)—times in the intervalws, 1). The variable

u is expressed by the incomplete elliptical integral of thstfir

kind

u=F Sn(% K(/@)|/{)¢ Py

1+w

(%K(m)m) 1

|k

(8)
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The functionH (u £ (p/n) K(k)) is the Jacobi Eta function,
sn(u|x), cn(ulk), dn(u|x) are Jacobi elliptic functionXK (x)

is the quarter-period given by the complete elliptic intdgnf
the first kind andF'(¢|x) is the incomplete elliptic integral
of the first kind. The degree of the Zolotarev polynomial is
n = p+q. A comprehensive treatise of Zolotarev polynomials
was published in [5]. It includes the analytical solutiontioé
coefficients of Zolotarev polynomials, the algebraic eatithn

of the Jacobi Zeta function (ZK(x)| ) and of the elliptic
integral of the third kindll(o,,, 2K (x)| x). The Jacobi Zeta
function and the elliptic integral of the third kind are ceated

by the formula

I(u, ugl k) = % In % + uZ(up| k) 9)
where
up = —— K(x) (10)

T pta
and ©(w) is the Jacobi Theta function [4]. The positian,
of the maximum valuey,,, = Z, ,(wpm, k) IS

sn(%K(n)M)cn(%K(H)M) )
dn (2K (x)]) 2 (K lx)

W, = w1 + 2

(11)
where the edges of the lobe are
wy =1—2sr? (BK(H”FL) (12)
n
_ g _
wy = 2SI (nK(m)m) 1. (13)

The relation for the maximum valug,,
_ p _ p
Ym = cosh 2n (omZ(nK(m)M) (o, nK(Ii)|FL)) (14)

is useful in the normalization of Zolotarev polynomials.eTh
degree of the Zolotarev polynomizl, ,(w, k) is expressed by
the degree equation

n > In(ym + Vym — 1)
T 20mZ(EK(k)|K) — 2IL(0m, EK(K)[K)

The auxiliary parameter,, is given by the formula
—w, |
K
K(k)k) V wm +1

m = F si
g (aerln <KJ sn(%
(16)

where F(®|x) is the incomplete elliptical integral of the
first kind. The Zolotarev polynomiak, ,(w, k) satisfies the
differential equation

(15)

1 W,

Ju a7)

=n? (1 - 22 ,(w,K)) (w — wy,)?

The differential equation expresses the fact that the dtvi
dZ, q(w, k)/dw does not vanish at the points = £1, w;,
wy Where Z, ,(w,x) = +£1 for which the right hand side
of eq. (17) vanishes, and that = w,, is a turning point
corresponding to the local extrema at whigh,(w, k) # £1.

45



ICN 2012 : The Eleventh International Conference on Networks

Based on the differential equation (17) we have derived the8) Calculate the integer valugs and ¢ of the Zolotarev

recursive algorithm for the evaluation of the impulse rews@o polynomial Z, ,(w, )
h(k) corresponding to the Zolotarev polynomi&l, ,(w, x)
based on its expansion into Chebyshev polynomials of the p= {nw} , = { F(WW] (25)
first kind i K(x) K(x)
Zpo(w, k) = Za(k)Tk(w) ' (18) The bracketd | in (25) stand for rounding.

9) For the valuew, ¢, « and y,, evaluate the impulse
reponseh (k) algebraically using the procedure summa-
rized in Tab. I.

k=0

The corresponding recursive algorithm is summarized in
Table I.

IV. DESIGN PROCEDURE

There are two goals in the design of any filter. The first . V- EXAMPLE 9F THEDE_S_IGN
one is to obtain the minimal filter degree(or minimal filter  D€Sign the ER BP FIR filter specified by the pass-band
length N) satisfying the filter specification while the second’€dUencyfm = 10.7 MHz and by the bandwidti\f = 50
one is to evaluate the impulse responhgg) of the filter. The KHz for mlnlmal attenuation in the stop-baag = —80 dB.
ER BP FIR filter is specified by the pass-band frequengy” The specified sampling frequency fs = 30 MHz.
and by the bandwidtihwT for the attenuatiom, [dB] in the

stop-bands (Fig. 2). The proposed design procedure censist™"0m the filter specification we get,,7/x = 0.713 and
of several steps as follows: AwT /7 = 0.003 (19). Further we gek = 0.16239149 (21),

. . n = 2026 (15), p = 1445 and ¢ = 581 (25). The filter
1) Specify the pass-band frequency T' (or f,,), V.V'dth of length isN = 4053 coefficients. The actual attenuation in the
the pass-band\wT (or Af) and the attenuation in thestop-bands iS15001 = —80.13 dB. The amplitude frequency
stop-bands [dB] (Fig. 2). For the non-normalized fre- ac ’ :

. . g . response of the ER BP FIR filter is shown in Fig. 3. A
quenciesf,, and Af specify additionally the sampling detgiled view of its passband is shown in Fig. 4. °

frequencyf,.
2) Evaluate the normalized frequencies
m A
wyT = 7T]; , AwT =7 / . (29) -10F .
Fl Fl

if the filter is specified by the non-normalized ones.

3) Calculate the band edges
AwT AwT
woT = wp, T — % , w1T=me+%

4) Evaluate the Jacobi elliptic modulus

ol i
1
=,/1— 21 -
" \/ tan? (1) tan?(yp2) (1) %
for the auxiliary parameterg; and ¢ 7
-100

T _ T 5 ; 10 15
gl ol g s

-30F B B

. (20)

201log |H(eI27F/ fs )| [dB]

. Fig. 3. Amplitude frequency responge log |H (e727f/fs)| [dB].
5) Calculate the rational valuggn andq/n

p q
“K(k) = F(pilr) , ~K(k) = F(galr) . (23)
VI. ROBUSTNESS OF THEDESIGN PROCEDURE

9 In order to demonstrate the robustness of the presented

Ym = — 7 . (24) design procedure, let us design the filter which was specified
100-05a,[dB] in our example, however, with modified bandwidth which is

Calculate and round up the minimum degreeequired now specified byA f = 5 kHz.

to satisfy the filter specification using the degree equs¥e getx = 0.05166139 (21), n = 20248 (15), p = 14444

tion (15). For the algebraic evaluation of the Jacobi Zetnd ¢ = 5804 (25). The filter length isN = 40497

function Z(£K (k)| x) and of the elliptic integral of the coefficients. The actual attenuation in the stop-bands is

third kind I1(o,,,, 2K (k)| &) in the degree equation (15)as..: = —80.04 dB. The amplitude frequency response

use the algebraical procedures [5]. of the ER BP FIR filter is shown in Fig. 5. A detailed

6) Determine the required maximum valyg

7

~
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TABLE |
ALGORITHM FOR THE EVALUATION OF THE IMPULSE RESPONSE (k).

given

initialisation

body
(for

(end
normalisation

(for

(end
impulse response

(for

(end

P, 4, Ky, Ym

n=p+gq
wy =1—2sr? (EK(H”H)
n

2sr? (%K(n)\n) —1

w1 + w2

2
sn| — K)lk)CN|{ — K)|K
(iK( ) ) (ﬁK( ) )
dn(%K(n)\n) Z(%K(n)\n)
a(n) =1

an+1l)=an+2)=an+3)=an+4) =a(n+5)=0

w2

wWq =

W = w1 + 2

m=n+2 to 3

8c(1) = n? — (m + 3)2
4¢(2) = (2m +5)(m + 2)(wm — wa) + 3wm[n? — (M + 2)?]

2¢(3) = %[rﬂ — (m + 12 + 3wm [n%wm — (m + 1)%ws] — (m + 1)(m + 2)(wiws — wmwa)

0(4) = g(nZ - 777,2) + m2 (w'm - wa) + w'm(n2w3n — m2w1’w2)
20(5) = %[Tlg - (m - 1)2] + 3wm[n2wm — (m — 1)2100,} — (m — 1)(m — 2)(w1w2 — wmwa)
4c(6) = (2m — 5)(m — 2)(wm — wa) + Bwm[n® — (m — 2)?]
)

1
(m=3)=—= ;cw)a(m+4—u)
loop on m)
a(0)
s(n) = - + Z a(m)
m=1
o) — (1 (0)
O = (150
m=1 to n)
L palm)
alm) = (~1P
loop on m)

_ ¥m —a(0)
m=1 to n

a(m)

h(n * m) T 2(ym + 1)

loop on m)
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Fig. 4. Detailed view of the pass-band. Fig. 6. Detailed view of the pass-band.

procedure presented here has no parallel in the design of
“or ) high performance ER BP FIR filters with the length beyond
several thousands of coefficients. Further note that in the
Parks-McClellan design procedure the length of the filter is
an input argument, not the result of the design.
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VII. | MPLEMENTATION OF THE FILTER

20 log |H(eI27F/ fs )| [dB]
8

There are various ways for implementing of FIR filters
in real time available. For high order filters, the digital

-80 signal processors (DSP) and the field programmable gate
o arrays (FPGA) dominate. We prefer the filter implementation

using digital DSPs over the implementation using FPGAs
-100

|
~
=

5 P 15 mainly because it is a less time consuming process. The
band-pass FIR filter with the length @053 coefficients from
Fig. 5. Amplitude frequency respongeé log | H (eJ27//f)| [dB]. our example requires 122 billions multiply-and-accumailat

(GMACs) operations per second. The adequate DSP is
the eight-core DSP TMS320C6678 [7] which provides
view of its passband is shown in Fig. 6. In order t@20GMACs operations per second in the 16-bit fixed point
point out the robustness of our design procedure, let us ddthmetics. For the real-time implementation of the fikes
comparative designs of both filters presented above by thee the DSP Evaluation Module TMDXEVM6678 (Fig. 7).
established numerical Parks-McClellan procedure [6] WhicThe implementation of the filter in the IEEE-754 compliant
is implemented e.g. in the Matlab functiditgr. The filter single precision floating point arithmetics would require a
with the length of4053 coefficients from our example cantwo chip solution based on the DSP TMS320C6678 which
be designed using the function call [h,err,res]=firgr(405%2 provides 160 billions floating point operations (GFLOPSs) pe
10.675 10.7 10.725 15}/15,/0 0 1 0 Q],'n’ 'n’ ’s" 'n’ second per chip, or a single chip solution based on the 32-cor
'n’) easily. Note that the Matlab functiorfirgr returns DSP TMS320TCI6609 [8]. The implementation of the filter
filters with different normalization of the ripples of thewith the length of40497 coefficients from previous section
corresponding frequency response. Except for the diffeenequires 1215 GMACs and consequently its implementation
in the normalization, the obtained results are identical. Gvould require a multi-chip solution, e.g. three chip salunti
the other hand the design of the filter with the length djased on the 32-core DSP TMS320TCI6609.
40497 coefficients specified in this section cannot be designed
using the function call [h,err,res]=firgr(40496,[0 10.697
10.7 10.7025 15)/15,0 0 1 0 0];)n’ 'n’ 'S’ 'n’ 'n’) as it VIIl. CONCLUSIONS
collapses (Matlab R2010b) because of numerical problemsWe have presented an analytical design of high performance
We assume that this failure is caused by the failed numerichgjital equiripple band-pass finite impulse response §ltém
evaluation of the densely located roots (isoextremal \&luecontrast to the established numerical design proceduees th
of the optimized function. To our knowledge, our desigproposed design method is based on the generating polyhomia
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Fig. 7. Evaluation Module TMDXEVM6678.

and provides a formula for the degree of the filter and formula
for the evaluation of the coefficients of the impulse respons
of the filter. The demonstrated robustness is another agigant
of the proposed design method.
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