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Abstract—A robust analytical design procedure for high per-
formance digital equiripple band-pass finite impulse response
filters for direct sampling receivers is introduced. The filters are
optimal in Chebyshev sense. The underlaying generating function
of the equiripple approximation is the Zolotarev polynomial. The
closed form solution provides a straightforward evaluation of the
filter degree and of the impulse response coefficients from the
filter specification. One example is included. The robustness of
the design procedure is emphasized.
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I. I NTRODUCTION

Direct sampling receivers are based on the sampling and
processing of the amplified radio-frequency (RF) signal in-
comming from the aerial. The selectivity in the RF signal
is obtained using narrow-band band-pass (BP) digital filters.
Because of the high ratio between the pass-band frequency and
the bandwidth of the filters, high performance digital filters
are required. Such filters can be used in the receivers with
direct intermediate frequency (IF) sampling and in frequency
analyzers as well. Because of the inherent stability and because
of the linear phase the digital finite impulse response (FIR)
filters are preferred. A filter is optimal in terms of its length
provided its frequency response exhibits an equiripple (ER)
behavior. In [1] we have introduced an analytical design
procedure for the digital ER notch FIR filters. Here, we present
an analytical design procedure for the ER BP FIR filters. The
proposed design procedure is based on Zolotarev polynomials
[2]-[5]. We present here the closed form solution for the design
of ER BP FIR filters. It includes the degree equation and
formulas for the robust evaluation of the impulse response
coefficients of the ER BP FIR filter.

II. Z ERO PHASE TRANSFERFUNCTION

We assume the impulse responseh(k) with odd lengthN =
2n+ 1 with even symmetry

a(0) = h(n) , a(k) = 2h(n− k) = 2h(n+ k) , k = 1 ... n .
(1)

The transfer function of the filter is

H(z) =

2n
∑

k=0

h(k) z−k

= z−n

[

h(n) + 2

n
∑

k=1

h(n± k)
1

2

(

zk + z−k
)

]

= z−n

n
∑

k=0

a(k)Tk(w) = z−nQ(w) (2)

where

Tk(w) = cos(k arccos(w)) (3)

is Chebyshev polynomials of the first kind. The function

Q(w) =

n
∑

k=0

a(k)Tk(w) (4)

represents a polynomial in the variable

w =
1

2
(z + z−1) (5)

which on the unit circlez = ejωT reduces to the real valued
zero phase transfer function (ZPTF)Q(w) of the real argument

w = cos(ωT ) . (6)

III. G ENERATING POLYNOMIAL

An approximation of the frequency response of a filter is
based on the generating function. The generating function of
an ER BP FIR filter is the Zolotarev polynomialZp,q(w, κ)
which approximates a constant value in equiripple Chebyshev
sense in two disjoint intervals(−1, w1) and(w2, 1) as shown
in Fig. 1. The lobe with the maximal valueym = Zp,q(wm, κ)
is located inside the interval(w1, w2). The notationZp,q(w, κ)
emphasizes the fact that the integer valuep counts the number
of zeros right from the maximumwm and the integer value
q corresponds to the number of zeros left from the maximum
wm. The real value0 ≤ κ ≤ 1 which is in fact the Jacobi
elliptical modulus affects the maximum valueym and the
width w2 − w1 of this lobe (Fig. 1). For increasingκ the
value ym increases and the lobe broadens. E. I. Zolotarev
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Fig. 1. Zolotarev polynomialZ12,6(w, 0.79023439).
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Fig. 2. Amplitude frequency response20 log |H(ejωT )| [dB] corresponding
to the Zolotarev polynomial from Fig. 1.

(1847-1878) derived the general solution of this approximation
problem in terms of Jacobi elliptic functions [3]-[5]

Zp,q(w, κ) =
(−1)p

2
(7)

×









H(u−
p

n
K(κ))

H(u+
p

n
K(κ))





n

+





H(u+
p

n
K(κ))

H(u−
p

n
K(κ))





n

 .

The factor(−1)p/2 appears in (7) as the Zolotarev polynomial
alternates(p+ 1)−times in the interval(w2, 1). The variable
u is expressed by the incomplete elliptical integral of the first
kind

u =F






sn
( p

n
K(κ)|κ

)

√

√

√

√

1 + w

w + 2 sn2
( p

n
K(κ)|κ

)

− 1
|κ






.

(8)

The functionH (u± (p/n) K(κ)) is the Jacobi Eta function,
sn(u|κ), cn(u|κ), dn(u|κ) are Jacobi elliptic functions,K(κ)
is the quarter-period given by the complete elliptic integral of
the first kind andF (φ|κ) is the incomplete elliptic integral
of the first kind. The degree of the Zolotarev polynomial is
n = p+q. A comprehensive treatise of Zolotarev polynomials
was published in [5]. It includes the analytical solution ofthe
coefficients of Zolotarev polynomials, the algebraic evaluation
of the Jacobi Zeta function Z( p

n
K(κ)|κ) and of the elliptic

integral of the third kindΠ(σm, p

n
K(κ)|κ). The Jacobi Zeta

function and the elliptic integral of the third kind are connected
by the formula

Π(u, u0|κ) =
1

2
ln

Θ(u− u0)

Θ(u+ u0)
+ uZ(u0|κ) (9)

where
u0 =

p

p+ q
K(κ) (10)

andΘ(w) is the Jacobi Theta function [4]. The positionwm

of the maximum valueym = Zp,q(wm, κ) is

wm = w1 + 2
sn
( p

n
K(κ)|κ

)

cn
( p

n
K(κ)|κ

)

dn
( p

n
K(κ)|κ

) Z
( p

n
K(κ)|κ

)

(11)
where the edges of the lobe are

w1 = 1− 2 sn2
( p

n
K(κ)|κ

)

(12)

w2 = 2 sn2
( q

n
K(κ)|κ

)

− 1 . (13)

The relation for the maximum valueym

ym = cosh 2n
(

σmZ(
p

n
K(κ)|κ)−Π(σm,

p

n
K(κ)|κ)

)

(14)

is useful in the normalization of Zolotarev polynomials. The
degree of the Zolotarev polynomialZp,q(w, κ) is expressed by
the degree equation

n ≥
ln(ym +

√

y2m − 1)

2σmZ( p
n

K(κ)|κ)− 2Π(σm, p
n

K(κ)|κ)
. (15)

The auxiliary parameterσm is given by the formula

σm = F

(

arcsin

(

1

κ sn
(

p

n
K(κ)|κ

)

√

wm − ws

wm + 1

)

|κ

)

(16)
where F (Φ|κ) is the incomplete elliptical integral of the
first kind. The Zolotarev polynomialZp,q(w, κ) satisfies the
differential equation

(1− w2)(w − w1)(w − w2)

(

dZp,q(w, κ)

dw

)2

(17)

= n2
(

1− Z2

p,q(w, κ)
)

(w − wm)2 .

The differential equation expresses the fact that the derivative
dZp,q(w, κ)/dw does not vanish at the pointsw = ±1, w1,
w2 whereZp,q(w, κ) = ±1 for which the right hand side
of eq. (17) vanishes, and thatw = wm is a turning point
corresponding to the local extrema at whichZp,q(w, κ) 6= ±1.
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Based on the differential equation (17) we have derived the
recursive algorithm for the evaluation of the impulse response
h(k) corresponding to the Zolotarev polynomialZp,q(w, κ)
based on its expansion into Chebyshev polynomials of the
first kind

Zp,q(w, κ) =

n
∑

k=0

a(k)Tk(w) . (18)

The corresponding recursive algorithm is summarized in
Table I.

IV. D ESIGN PROCEDURE

There are two goals in the design of any filter. The first
one is to obtain the minimal filter degreen (or minimal filter
lengthN ) satisfying the filter specification while the second
one is to evaluate the impulse responseh(k) of the filter. The
ER BP FIR filter is specified by the pass-band frequencyωmT
and by the bandwidth∆ωT for the attenuationas [dB] in the
stop-bands (Fig. 2). The proposed design procedure consists
of several steps as follows:

1) Specify the pass-band frequencyωmT (or fm), width of
the pass-band∆ωT (or ∆f ) and the attenuation in the
stop-bandsas [dB] (Fig. 2). For the non-normalized fre-
quenciesfm and∆f specify additionally the sampling
frequencyfs.

2) Evaluate the normalized frequencies

ωmT = π
fm
fs
2

, ∆ωT = π
∆f
fs
2

. (19)

if the filter is specified by the non-normalized ones.
3) Calculate the band edges

ω2T = ωmT −
∆ωT

2
, ω1T = ωmT +

∆ωT

2
. (20)

4) Evaluate the Jacobi elliptic modulusκ

κ =

√

1−
1

tan2(ϕ1) tan
2(ϕ2)

(21)

for the auxiliary parametersϕ1 andϕ2

ϕ1 =
ω1T

2
, ϕ2 =

π − ω2T

2
. (22)

5) Calculate the rational valuesp/n andq/n

p

n
K(κ) = F (ϕ1|κ) ,

q

n
K(κ) = F (ϕ2|κ) . (23)

6) Determine the required maximum valueym

ym =
2

100.05as[dB]
. (24)

7) Calculate and round up the minimum degreen required
to satisfy the filter specification using the degree equa-
tion (15). For the algebraic evaluation of the Jacobi Zeta
function Z( p

n
K(κ)|κ) and of the elliptic integral of the

third kindΠ(σm, p

n
K(κ)|κ) in the degree equation (15)

use the algebraical procedures [5].

8) Calculate the integer valuesp and q of the Zolotarev
polynomialZp,q(w, κ)

p =

[

n
F (ϕ1|κ)

K(κ)

]

, q =

[

n
F (ϕ2|κ)

K(κ)

]

. (25)

The brackets[ ] in (25) stand for rounding.
9) For the valuesp, q, κ and ym evaluate the impulse

reponseh(k) algebraically using the procedure summa-
rized in Tab. I.

V. EXAMPLE OF THE DESIGN

Design the ER BP FIR filter specified by the pass-band
frequencyfm = 10.7 MHz and by the bandwidth∆f = 50
kHz for minimal attenuation in the stop-bandas = −80 dB.
The specified sampling frequency isfs = 30 MHz.

From the filter specification we getωmT/π = 0.713 and
∆ωT/π = 0.003 (19). Further we getκ = 0.16239149 (21),
n = 2026 (15), p = 1445 and q = 581 (25). The filter
length isN = 4053 coefficients. The actual attenuation in the
stop-bands isas act = −80.13 dB. The amplitude frequency
response of the ER BP FIR filter is shown in Fig. 3. A
detailed view of its passband is shown in Fig. 4.
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Fig. 3. Amplitude frequency response20 log |H(ej2πf/fs)| [dB].

VI. ROBUSTNESS OF THEDESIGN PROCEDURE

In order to demonstrate the robustness of the presented
design procedure, let us design the filter which was specified
in our example, however, with modified bandwidth which is
now specified by∆f = 5 kHz.
We getκ = 0.05166139 (21), n = 20248 (15), p = 14444
and q = 5804 (25). The filter length isN = 40497
coefficients. The actual attenuation in the stop-bands is
as act = −80.04 dB. The amplitude frequency response
of the ER BP FIR filter is shown in Fig. 5. A detailed
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TABLE I
ALGORITHM FOR THE EVALUATION OF THE IMPULSE RESPONSEh(k).

given
p, q, κ, ym

initialisation
n = p+ q

w1 = 1− 2 sn2
(

p

n
K(κ)|κ

)

w2 = 2 sn2
(

q

n
K(κ)|κ

)

− 1

wa =
w1 + w2

2

wm = w1 + 2

sn
(

p

n
K(κ)|κ

)

cn
(

p

n
K(κ)|κ

)

dn
(

p

n
K(κ)|κ

) Z
(

p

n
K(κ)|κ

)

α(n) = 1

α(n+ 1) = α(n+ 2) = α(n+ 3) = α(n+ 4) = α(n+ 5) = 0

body
(for m = n+ 2 to 3)

8c(1) = n2 − (m+ 3)2

4c(2) = (2m + 5)(m + 2)(wm − wa) + 3wm[n2 − (m+ 2)2]

2c(3) =
3

4
[n2 − (m + 1)2] + 3wm[n2wm − (m+ 1)2wa]− (m+ 1)(m + 2)(w1w2 −wmwa)

c(4) =
3

2
(n2 −m2) +m2(wm − wa) +wm(n2w2

m −m2w1w2)

2c(5) =
3

4
[n2 − (m − 1)2] + 3wm[n2wm − (m− 1)2wa]− (m− 1)(m − 2)(w1w2 −wmwa)

4c(6) = (2m − 5)(m − 2)(wm − wa) + 3wm[n2 − (m− 2)2]

8c(7) = n2 − (m− 3)2

α(m − 3) =
1

c(7)

6
∑

µ=1

c(µ)α(m + 4− µ)

(end loop on m)
normalisation

s(n) =
α(0)

2
+

n
∑

m=1

α(m)

a(0) = (−1)p
α(0)

2s(n)
(for m = 1 to n)

a(m) = (−1)p
α(m)

s(n)
(end loop on m)

impulse response

h(n) =
ym − a(0)
ym + 1

(for m = 1 to n)

h(n±m) = −
a(m)

2(ym + 1)
(end loop on m)
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Fig. 4. Detailed view of the pass-band.

0 5 10 15
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

f [MHz]

2
0
lo

g
|H

(
e
j
2
π
f
/
f
s
)
|

[d
B

]

Fig. 5. Amplitude frequency response20 log |H(ej2πf/fs)| [dB].

view of its passband is shown in Fig. 6. In order to
point out the robustness of our design procedure, let us do
comparative designs of both filters presented above by the
established numerical Parks-McClellan procedure [6] which
is implemented e.g. in the Matlab functionfirgr. The filter
with the length of4053 coefficients from our example can
be designed using the function call [h,err,res]=firgr(4052,[0
10.675 10.7 10.725 15]/15,[0 0 1 0 0],’n’ ’n’ ’s’ ’n’
’n’) easily. Note that the Matlab functionfirgr returns
filters with different normalization of the ripples of the
corresponding frequency response. Except for the difference
in the normalization, the obtained results are identical. On
the other hand the design of the filter with the length of
40497 coefficients specified in this section cannot be designed
using the function call [h,err,res]=firgr(40496,[0 10.6975
10.7 10.7025 15]/15,[0 0 1 0 0],’n’ ’n’ ’s’ ’n’ ’n’) as it
collapses (Matlab R2010b) because of numerical problems.
We assume that this failure is caused by the failed numerical
evaluation of the densely located roots (isoextremal values)
of the optimized function. To our knowledge, our design
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Fig. 6. Detailed view of the pass-band.

procedure presented here has no parallel in the design of
high performance ER BP FIR filters with the length beyond
several thousands of coefficients. Further note that in the
Parks-McClellan design procedure the length of the filter is
an input argument, not the result of the design.

VII. I MPLEMENTATION OF THE FILTER

There are various ways for implementing of FIR filters
in real time available. For high order filters, the digital
signal processors (DSP) and the field programmable gate
arrays (FPGA) dominate. We prefer the filter implementation
using digital DSPs over the implementation using FPGAs
mainly because it is a less time consuming process. The
band-pass FIR filter with the length of4053 coefficients from
our example requires 122 billions multiply-and-accumulate
(GMACs) operations per second. The adequate DSP is
the eight-core DSP TMS320C6678 [7] which provides
320GMACs operations per second in the 16-bit fixed point
arithmetics. For the real-time implementation of the filterwe
use the DSP Evaluation Module TMDXEVM6678 (Fig. 7).
The implementation of the filter in the IEEE-754 compliant
single precision floating point arithmetics would require a
two chip solution based on the DSP TMS320C6678 which
provides 160 billions floating point operations (GFLOPs) per
second per chip, or a single chip solution based on the 32-core
DSP TMS320TCI6609 [8]. The implementation of the filter
with the length of40497 coefficients from previous section
requires 1215 GMACs and consequently its implementation
would require a multi-chip solution, e.g. three chip solution
based on the 32-core DSP TMS320TCI6609.

VIII. C ONCLUSIONS

We have presented an analytical design of high performance
digital equiripple band-pass finite impulse response filters. In
contrast to the established numerical design procedures the
proposed design method is based on the generating polynomial
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Fig. 7. Evaluation Module TMDXEVM6678.

and provides a formula for the degree of the filter and formulas
for the evaluation of the coefficients of the impulse response
of the filter. The demonstrated robustness is another advantage
of the proposed design method.
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