
Modeling and Evaluation of SWAP Scheduling

Policy Under Varying Job Size Distributions

Idris A. Rai

Makerere University

Faculty of Computing and Informatics Technology

Kampala, Uganda

rai@cit.mak.ac.ug

Michael Okopa

Makerere University,

Faculty of Computing and Informatics Technology

Kampala, Uganda

michaelokopa@yahoo.co.uk

Abstract—Size-based scheduling policies have been shown to be
effective resource allocation policies in computing and networked
environments. One of the recently proposed size-based scheduling
policy is called SWAP. It is a non-preemptive, threshold based
policy that was proposed to approximate the Shortest Job First
(SJF) policy by introducing service differentiation between short
and large jobs such that short jobs are given service priority
over the large jobs. Original study of the SWAP scheduling
policy was based on only simulations, which are known to have
a number of restrictions. In this paper, we derive SWAP models
and evaluate the scheduling policy using workloads that have
varying distributions. In contrast to simulations, the models
enable fast analysis of the scheduling policy under a wide range
of input parameters. Numerical results obtained from the derived
models show that SWAP approximates SJF better for heavy-tailed
workloads than for exponentially distributed workloads. We also
show that SWAP performs significantly better than First Come
First Serve (FCFS) and Processor Sharing (PS) policies regardless
of the distribution of the workload.

Keywords-Size-based scheduling; conditional mean response
time; temporal dependence.

I. INTRODUCTION

Motivated by the persistent evidence of heavy-tail distribu-

tion of stored and transferred file sizes, size-based scheduling

policies have been widely studied for efficient resource al-

location in time-sharing computing environments. Most size-

based scheduling policies however require the knowledge of

job sizes, which present a major limitation to their practical

implementations. Examples of common size-based scheduling

policies include Shortest Job First (SJF), which is a non-

preemptive scheduling policy that gives service to the shortest

job immediately after the job in service completes. Shortest

Remaining Processing Time (SRPT), on the other hand, is

a preemptive variant of SJF. It favors short jobs by giving

service to the job in the queue that has the shortest remaining

processing time. In order to know the remaining processing

time however, one needs to know the total service required

by the job (i.e., the size of the job). SRPT is known to

be the optimal policy in terms of providing the minimum

mean response time [3], [1]. Despite its optimum performance,

SRPT scheduling is not widely used in practice particularly

in network environments due to lack of information on flow

sizes [2]. Some authors have as a result investigated the use

of SRPT without accurate knowledge of job sizes [4], [5].

Blind scheduling policies, which are policies that don’t

require job sizes, are therefore often preferred in practice due

to their implementation simplicity. Some popular examples

of blind scheduling policies include Processor Sharing (PS),

First Come First Served (FCFS), and Round Robin [3]. There

also exist blind size-based scheduling policies; which are blind

scheduling policies that take into account a notion of size. The

most popular example is Least Attained Service (LAS) first,

which is a preemptive scheduling policy that favors short jobs

by giving service to the job in the system that has received the

least service [3], [7], [8]. LAS doesnt require the knowledge

of job sizes, and therefore can be used in network routers.

However, its implementation requires a router to keep track of

states of each flow that traverses the router, which may be a

very daunting task in high speed networks.

In this paper, we study another recently proposed size-based

scheduling policy called SWAP [6]. SWAP is size-based policy

that was proposed to improve on the response time of short

jobs while reducing the overhead required in identifying job

sizes. The basic idea behind SWAP is to use the measured

serial correlation of the service times to estimate the missing

information of job sizes. Once these reliable estimates of the

job service times are available, large jobs are delayed by

putting them at the tail of the queue whereas short jobs are

kept at the head of the queue for immediate service. SWAP

uses a threshold value to decide which jobs are to be delayed.

In such a way, delayed long jobs are served after most short

jobs in the queue have completed their service. We review

SWAP policy in detail in Section III-A.

In an effort to improve the performance of systems, studies

have shown that the recent past is indicative of the near

future. It is a generalization of the idea of locality which can

be exploited to leverage the need for knowing sizes of all

jobs. Furthermore, it can be observed that the real workload

data is far from independently and identically distributed.

Instead, similar jobs tend to arrive within bursty periods.

This observation is vividly true when the workload exhibits

heavy tailed distribution. SWAP was originally proposed to

take advantage of this observation in accomplishing its goals.

Authors in [6] proposed SWAP to approximate the behavior of

the optimal SJF scheduling policy by using workload temporal

dependence to forecast job service times without any a priori

115

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

knowledge of upcoming job demands.

Original study of SWAP was conducted through only

simulations of the policy. Simulations techniques however

have some limitations; they are restrictive in the sense that

often only programmers can comfortably adopt them, and it

often takes long to obtain results for a wide range of input

parameters. To complement the original work on SWAP, in

this paper, we derive analytical models of SWAP in terms of

the conditional mean response time of jobs. The models can

be used for quick performance evaluation of the policies. We

investigate the performance of SWAP in terms of approximat-

ing SJF under varying job size distributions, and numerically

compare the performance of SWAP to FCFS and Processor

sharing (PS) policies.

The rest of the paper is organized as follows: in the

next section, we present mathematical background that guides

models derivation of SWAP policy. In Section III, we review

SWAP scheduling and derive its models. We evaluate SWAP

in Section IV, and finally conclude the paper in Section V.

II. MATHEMATICAL BACKGROUND

Let’s denote the probability density function (pdf) of a job

size distribution as f(x). The cumulative distribution function

(F (x)) is obtained as F (x) =
∫ x

0 f(t)dt, and the survival

function (or reliability function) is given as F c(x) = 1−F (x).
We define xn

x =
∫ x

0
tnf(t)dt to be the nth moment for jobs

that are less than or equal to x. Therefore, xx is the mean and

x2
x is the second moment of the job size distribution due to job

sizes less than or equal to x. The mean and second moments

are obtained when the value of subscript x is infinity.

Let xl be a large job under SWAP scheduling, i.e., any job

that is greater than a specified threshold (xt). It follows that

xn
xl

=
∫ ∞

xl

tnf(t)dt is the nth moment for job sizes greater

than xl.

The load due to jobs with sizes less than or equal to x is

given as ρx = λ
∫ x

0
tf(t)dt while the load due to jobs with

sizes greater than xl is given as ρxl
= λ

∫ ∞

xl

tf(t)dt. Also

ρxl
= ρ−ρxl

where ρ is the total load in the system. We next

define the expressions for the conditional mean response time

under FCFS and SJF, which we shall use when deriving the

models for SWAP policy.

An arriving job to a FCFS queue has to wait for all jobs it

finds in the queue upon its arrival. Therefore, the conditional

average response time of a job of size x in an M/G/1/FCFS

system is given as

T (x) = x + W (x), (1)

where W (x) = λx2

2(1−ρ) is the mean waiting time due to jobs in

the system. Assume that an arriving job x finds only the jobs

that are less than or equal to a job size xt in the M/G/1/FCFS

queue. Its conditional average response time T (x) is given as

T (xt) = x + W (xt), (2)

where W (xt) =
λx2

xt

2(1−ρxt
) .

Under SJF, the shortest job in the queue is given non-

preemptive priority. Thus, at every completion instant of a job

in the server, the next job to receive service is the smallest

job in the queue. A job of size x is therefore delayed by only

jobs in the system that are less than or equal to its size. The

conditional average response time of the job size of x under

SJF is given as

T (xx) = x + W (xx), ∀x > 0, (3)

where W (xx) =
λx2

x

2(1−ρx)2 .

We will numerically evaluate the SWAP models under job

sizes with exponential distribution and job sizes with Bounded

Pareto distribution to mitigate workloads with varying vari-

ances. The variability of a job size distribution is determined

by its Coefficient of Variation (C), which is defined as the

ratio of the standard deviation to the mean of a distribution.

Exponential distribution has a low variability since its C = 1,

whereas a Bounded Pareto distribution has a high variability

(C > 1). In this paper, we specifically use exponential distri-

bution and Bounded Pareto BP (10, 5 ∗ 105, 1.1) distributions

with mean values of 72.7 to numerically evaluate SWAP

models. Similar distributions have been used in [1], [7]. The

probability density function of an exponential distribution is

given as:

f(x) = µe−µx, x ≥ 0, µ ≥ 0. (4)

Bounded Pareto distributions have commonly been used

to evaluate the performance of systems under heavy tailed

workloads with high variance [1], [7], [8]. In contrast to

Pareto distributions which assume infinite largest job size,

Bounded Pareto distributions can be used to represent realistic

workload with known largest values. We denote Bounded

Pareto distribution by BP (k, P, α) where k and P are the

minimum and the maximum job sizes and α is the exponent

of the power law. The pdf of the Pareto is given as:

f(x) =
αkα

1 − (k/P)
α x−α−1, k ≤ x ≤ P, 0 ≤ α ≤ 2. (5)

In the next section, we discuss SWAP scheduling and derive

its models.

III. SWAP SCHEDULING MODELS

A. A review of SWAP Scheduling

SWAP is a class-based, non-preemptive, size-based schedul-

ing policy where jobs are classified into two classes based on

their sizes, namely short (xs) jobs and large (xl) jobs classes.

SWAP uses a rather naive definition of job size based on

threshold (xt), which can be dynamic. All jobs that are less

than or equal to xt are classified as short whereas jobs that

larger than xt are classified as large jobs. The main goal of

SWAP scheduling policy is to approximate the SJF scheduling

policy so as to favor short jobs without apriori knowledge

of job service requirements or job sizes. It reduces the mean

response time for short jobs by designating higher priority to

short jobs compared to large jobs.

116

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

SWAP starts by serving all arriving jobs to a queue in FCFS

manner, and compares the service given to each job to the

threshold value. If a large job is served, next the entire queue

is scanned whereby size of each job in the queue is computed

and jobs in the queue are classified and marked as large or

short. Once classified, short jobs are moved at the head of the

queue and receive service before large jobs that are kept at

the tail of the queue. We shall term these scanned large jobs

as (delayed). Jobs within a class are serviced in their order of

arrival using FCFS scheduling. Once a job has been classified

under SWAP scheduling it will belong to that class for all

duration of its stay in the queue.

XL XS XS XL XL XS XL XS XS X1
L X

1
L X

1
L X

1
L XS XS XS XS XS

Unscanned Queue Scanned Queue

Fig. 1. Illustration of unscanned and scanned queues in SWAP(1)

It can be seen that compared to FCFS scheduling, SWAP

favors short jobs to the expense of delaying large ones within

the queue. Intuitively, SWAP policy should provide significant

performance improvement in terms of reducing mean response

time of short flows particularly for highly varying workloads

where only a tiny fraction of jobs contribute to more than half

of the system load.

Jobs that arrive to a scanned SWAP queue are buffered

in order of their arrival and are eventually served in FCFS

order once all scanned jobs in the queue have completed their

service. We call the state where served jobs in the queue are

not scanned an unscanned state of the queue. SWAP therefore

alternates between scanned and unscanned states.

Large jobs under SWAP scheduling can be delayed more

than once. We denote SWAP(i) as SWAP scheduling policy

which delays large jobs i times. Consider SWAP(1), the

service time of a large job that arrives to an unscanned queue

is interrupted by the short jobs that were in the queue upon

its arrival and the one large job that triggers the scanning of

the queue. The scanning evet will delay the large jobs once.

They will receive service immediately after the short scanned

jobs have completed their service. It can be seen that under

SWAP(1), the newly arriving short jobs in a scanned queue

have to wait until all scanned large jobs in the queue complete

their service before they can receive any service. Figure 1

illustrates SWAP(1) scheduling at scanned and unscanned

states where XS and X1
L denote a short job and large job

that has been delayed 1 time.

XL XS XS XL XS XL XS XSXL

X1
L X

1
L X

1
L X

1
L

Unscanned Queue

Scanned Queue Large Jobs

XS XS XS XS XS

X1
L X

1
L X

1
L X

2
L X

2
L X

2
L X

2
L

Scanned Queue Short Jobs

Scanned Queue Large Jobs

Fig. 2. Illustration of SWAP(2)

Increasing delays of large jobs under SWAP improves the

service of short jobs further by avoiding disruptions of their

service due to some large jobs that arrived in the queue before

them. Consider SWAP(2), for instance, once the first short

scanned jobs are served, the large scanned jobs wont receive

service immediately. Instead, the server will serve the arriving

unscanned jobs in the queue until the scanning is triggered

again by an unscanned large job. At that point, the entire queue

will be scanned to classify the jobs. The server will then give

priority to the scanned short jobs in the queue before it can

serve the large jobs that have been delayed twice.

Once large jobs have been delayed 2 times under SWAP(2),

they receive service immediately after all classified short

jobs in the queue have completed their services. Figure 2

demonstrates SWAP(2), where again XL and XS denote large

and small jobs, and X i
L are large jobs that have been delayed

i times. Note that we represent SWAP with two queues where

the second queue hosts delayed large jobs after they are

scanned. Delayed scanned jobs wait in the second queue until

they are delayed for i times equivalent to i− 1 new scanning

events since the time they were scanned.

B. Modeling SWAP Scheduling

In this section, we derive models of SWAP scheduling

in terms of conditional mean response time of short jobs

and large jobs. We consider a tagged job that arrives to

an M/G/1/SWAP(i) system at scanned and unscanned states

separately.

1) Models for arrivals at unscanned state: Assume a

tagged job arriving to a SWAP queue in an unscanned state,

but just before a large job receives service. Recall that such a

large job will trigger the scanning of the queue. If the tagged

job is short it will be placed at the tail of the short jobs class,

otherwise it will be placed at the tail of the queue.

Let’s consider SWAP(1), the tagged short job will be

delayed by the mean residual life of the large job that triggered

the scanning and will then wait for all scanned short jobs

it finds in the queue before it receives service. The waiting

time of the tagged job due to these jobs is given by W (xt)
defined in Section II. On the other hand, the tagged large

job will be delayed by all jobs it finds in the system upon

its arrival by the mean waiting time denoted by W (x). Note

that W (x) represents the delay of short and large scanned

jobs. The corresponding delays due to separate jobs classes are

denoted as (W (xl)) for large jobs and W (xt) for short jobs.

The resulting conditional mean response times under SWAP(1)

at unscanned state are given as:

T (x) =

{

W (xt) + x x ≤ xt

W (xl) + W (xt) + x x > xt

Note that the conditional mean response time for a large job

here is the same as the conditional mean response time of the

job under the FCFS queue (Equation 1).

We now derive the models for SWAP(2), under which large

jobs are delayed twice before they receive service. We assume

the steady state case of the queueing system at which arriving

jobs will always find scanned large jobs that have been delayed

117

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

once waiting in the queue. These delayed jobs will receive

service immediately after the newly scanned short jobs have

completed their service.

Again, assume a tagged job as the last job that arrives to the

queue before the queue turns from unscanned state to scanned

state. Let the tagged job be a short job; it will be delayed by

all short jobs it finds in the queue plus the remaining service

of the large job it finds in the server when it arrived. The

expression of its conditional mean response time is the same

as the conditional mean response time of short job arriving

at SWAP(1) at unscanned state shown in Equation (III-B1). If

the tagged job is a large job, it will be delayed by all jobs

it finds in the queue, which include all the short and large

jobs that have just been scanned, and the large jobs that were

scanned in the previous scanning event and the large jobs that

were delayed in the queue upon its arrival. Since itself has to

be delayed twice, the job will also be delayed by arriving new

short jobs, both unscanned and scanned. The conditional mean

response time of the tagged job arriving during unscanned state

of SWAP (2) is therefore given as follows:

T (x) =

{

W (xt) + x, x ≤ xt

2W (xl) + 2W (xt) + xF c(xl) + x, x > xt

(6)

The general expression for SWAP(i) can be obtained using

iterative method, and is given in Equation (7).

T (x) =







W (xt) + x, x ≤ xt

iW (xl) + iW (xt) + (i − 1)xF c(xl) + x,
x > xt

(7)

Observe that the derived expressions for conditional mean

response times dont show performance gain acquired by short

jobs from delaying large jobs more times. To intuitively see

the reduction on short jobs response times, note that if large

jobs arent delayed, the short jobs would be served after the

scanned large jobs which would in turn increase their mean

response time by W (xl).
2) Models for arrivals at scanned state: We now consider a

tagged job arriving to a scanned queue. We derive models for

the worst case scenario where the tagged job finds in the queue

scanned short jobs being serviced, all scanned large jobs and

other unscanned jobs including at least one large unscanned

job waiting in the queue. This tagged job will experience the

longest mean response time under SWAP. Other scenarios that

we shall skip due to space limitation include the tagged job

arriving just after a scanning event and a tagged job arriving to

a scanned queue with only short unscanned jobs. The analyses

of these skipped scenarios however are straight forward.

Let’s assume the tagged short job is arriving to a scanned

queue of SWAP(1) policy under the worst case scenario

presented above, its service will be delayed by all scanned

jobs it finds in the queue, all unscanned short jobs that it finds

in the queue, and finally one large unscanned job that will

trigger the next scan. The conditional mean response time of

the tagged short job will include mean waiting time due to the

service of the remaining scanned short jobs (Wr(x, t)), mean

service time of scanned large jobs (W (xl)), the service of

the single large job that triggers the scanning (xF c(xl)), and

finally the mean service time of unscanned short jobs it finds

in the queue (W (xt)). If we assume that the tagged job arrives

at the queue at a random point after the queue is scanned, we

can further approximate Wr(xt) as W (xt)/2.

The tagged large job, on the other hand, will additionally

be delayed by large jobs that were newly scanned along with

itself by a mean waiting time of W (xl). The conditional mean

response time for the tagged job is obtained as follows:

T (x) =

{

W (xl) + 3W (xt)/2 + x + xF c(xl), x ≤ xt

2W (xl) + 3W (xt)/2 + x + xF c(xl), x > xt

For SWAP(2), the tagged short job arriving after scanning

will see in the queue scanned short jobs, scanned large jobs

that have been delayed once, and unscanned short jobs and

large jobs. In contrast to a short job under SWAP(1), the

service of the tagged short job here will not be interrupted

by the delayed large jobs since they have to be delayed once

more. Therefore, the job’s response time will be due to the

remaining scanned short jobs by approximate of W (xt)/2,

unscanned short jobs it finds in the queue by mean waiting

time of W (xt), and the one unscanned large jobs that will

trigger the next scanning event.

For a tagged large job, it will be additionally delayed by

the scanned large jobs it finds in the queue by mean waiting

time of W (xl), all short jobs that will arrive until the next

scanning event by mean waiting time of W (xt), the large job

that will trigger the next scanning event, and any large jobs that

it finds in the queue by their mean waiting delay of W (xl).
Using similar arguments as before, we obtain the expression

for conditional response time for the job as follows:

T (x) =

{

3W (xt)/2 + x + xF c(xl), x ≤ xt

2W (xl) + 5W (xt)/2 + x + 2xF c(xl), x > xt

The general expression for SWAP(i) model for short jobs

isnt very obvious to derive. We present instead the general

model large jobs arriving at scanned states as follows:

T (x) = iW (xl)+(i+1/2)W (xt)+x+ixF c(xl), i ≥ 1, x > xt

In the next section, we present numerical results showing

the performance of SWAP and its comparison with SJF and

PS scheduling policies

0 50 100
10

−1

10
0

10
1

10
2

Job size (x)

Ra
tio

 o
f T

(x
)

ρ = 0.9

FCFS
SJF
PS

0 50 100
10

−1

10
0

10
1

10
2

Job size (x)

Ra
tio

 o
f T

(x
)

ρ = 0.5

FCFS
SJF
PS

Fig. 3. Ratios of T (x) vs x exponential workloads, xt = 75

118

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

IV. PERFORMANCE EVALUATION

In this section, we use the derived SWAP models to evaluate

its performance. We look at how SWAP approximates the SJF

for short and large jobs, and we also compare its performance

with that of FCFS and PS policies. We also investigate the

impact of threshold values (xt) to the performance of SWAP.

Processor sharing (PS) is one of the mostly studied policy

in time-sharing operating systems. It is also known as a fair

scheduling policy providing conditional mean response time

of x/(1 − ρ) for a job with size x.

We use exponential and Bounded Pareto distributions pre-

sented in Section II at low and high system load values of

ρ = 0.5 and ρ = 0.9 respectively. For each set of result,

the threshold values were chosen such that ρxt
under both

considered distributions are close to each other. Due to space

limitations, we numerically evaluate SWAP models for jobs

that arrive to unscanned state only which we derived in Section

III-B1.

0 500
10

−2

10
−1

10
0

10
1

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.5

0 500
10

−3

10
−2

10
−1

10
0

10
1

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.9

FCFS

SJF

PS

FCFS

SJF

PS

Fig. 4. Ratios of T (x) vs x for exponential workloads, xt = 500

Figures 3 and 4 show the ratios of conditional mean

response time of short jobs under FCFS, PS, and SJF policies

to that of SWAP for threshold values of xt = 75 and

xt = 500 respectively for the case of exponentially distributed

workload. It can be observed from the figures that SWAP

indeed approximates the SJF for low load and short threshold

values where the response time ratio of SWAP to SJF is always

close to one. The approximation is more accurate for larger

jobs compared to short jobs. The estimates under SWAP are

less accurate for larger thresholds and higher loads as seen in

Figure 4 at ρ = 0.9.

We can also see from the figures that SWAP performs much

better than FCFS and PS for small threshold values regardless

of the load. At high threshold values, SWAP offers similar

mean response time as FCFS since the scanning event is

triggered by very large jobs which makes SWAP scheduling

for even short jobs the same as SJF. This can be seen in Figure

4 where xt = 500 and ρ500 = 0.89.

Similarly, Figures 5 and 6 show results of SWAP in compar-

ison with SJF, FCFS, and PS under Bounded Pareto distributed

workloads presented in Section II. Compared to the results

for exponential workloads, we can quickly see that SWAP

approximates SJF better under Bounded Pareto distribution for

all load values and varying threshold values. Bounded Pareto

workloads are heavy tailed meaning more than 99% of their

0 200 400
10

−2

10
0

10
2

10
4

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.9

FCFS

SJF

PS

0 200 400
10

−1

10
0

10
1

10
2

10
3

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.5

FCFS

SJF

PS

Fig. 5. Ratios of T (x) vs x for Bounded Pareto workloads, xt = 300

0 5

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.5

FCFS

SJF

PS

0 5

x 10
4

10
−4

10
−2

10
0

10
2

Job size (x)

Ra
tio

 o
f T

(x
)

ρ=0.9

FCFS

SJF

PS

Fig. 6. Ratios of T (x) vs x for Bounded Pareto workloads, xt = 50000

jobs are short and constitute to only half of the total load.

Consequently, most of the jobs under Bounded Pareto work-

loads are classified as short, and by delaying the few very large

ones, the performance of short jobs is improved significantly.

However, at large thresholds, regardless of system load, very

short jobs under SWAP experience longer mean response times

than under SJF (see Fig. 6), meaning SWAP is inaccurate in

approximating SJF.

We also observe that the mean response time provided by

SWAP compared to that of FCFS and PS under Bounded

Pareto job size distributions follow similar trends to the

performance under exponential distribution. In general, SWAP

performs much better than FCFS for short jobs. SWAP also

performs better than PS except for very few short jobs under

SWAP with large threshold values such as in Fig. 6.

10
0

10
5

10
10

10
0

10
2

10
4

10
6

10
8

Job size (x)

T(
x L)

Bounded Pareto

10
2

10
4

10
6

10
2

10
3

10
4

10
5

10
6

Job size (x)

T(
x L)

Exponential

SWAP(3)

SWAP(2)

SWAP(1)

SJF

Fig. 7. T (x) vs xL for exponential with xt = 200 and Bounded Pareto
with xt = 5000, ρ = 0.9

We finally investigate the conditional mean response time

of large jobs under exponential and heavy tailed workloads

for SWAP system with high and low loads. We specifically

compare the performance of large jobs under SWAP and SJF

to see how well SWAP approximates SJF for large jobs, and

119

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

under SWAP(i) for i = 1, 2, 3 to see how much additional

response time large jobs experience as a result of being

delayed further. We exclude results that compare SWAP to

PS and FCFS for large jobs due to space limitation.

We observe from Figure 7 that for the considered pa-

rameters, all SWAP(i) offers similar performance and all

approximate SJF well for the very large jobs under exponential

workload. We also observe that some shorter jobs experience

longer mean response time under SJF than under SWAP

policies. The situation is however very different for heavy

tailed workloads where SWAP with larger i offering notice-

ably worse conditional mean response time than SWAP with

smaller i. The performance of SWAP also significantly differs

from SJF specifically for shorter jobs where SWAP performs

worse and for the largest jobs where SWAP instead performs

better that SJF. The largest jobs under SJF are interrupted by

all jobs in the system which is not the case for SWAP. On the

other hand, shorter jobs under SWAP are interrupted by large

jobs of any size compared to only jobs that are less than their

sizes under SJF.

10
0

10
5

10
10

10
0

10
2

10
4

10
6

Job size (x)

T(
x L)

Exponential

10
0

10
5

10
10

10
0

10
2

10
4

10
6

Job size (x)

T(
x L)

Bounded Pareto

SWAP(3)

SWAP(2)

SWAP(1)

SJF

Fig. 8. T (x) vs xL for exponential with xt = 75 and Bounded Pareto with
xt = 300, ρ = 0.5

Figure 8 shows the results at low load of ρ = 0.5, and

smaller threshold values of xt = 75 and xt = 300 for

exponential and heavy tailed workloads respectively. We can

easily see that the performance of all SWAP(i) policies is

similar for the case of exponential distribution. In this case,

we also see that SWAP approximates SJF very well. However,

for heavy-tailed workloads the performance of shorter jobs is

still worse under SWAP than under SJF but is just slightly less

than for the case of ρ = 0.9. The performance of the largest

jobs however is the same under all policies showing better

approximation of SJF by SWAP for the largest jobs compared

to the case for high load and large threshold shown in Figure

7.

We conclude therefore that the performance of SWAP in

terms of jobs mean response time depends on the distribution

of workloads. Similarly, its accuracy in approximating SJF also

depends on the distribution of the workloads. In particular,

SWAP performs well under both respects for short jobs that

arrive to unscanned queue for heavy-tailed workloads. In

contrast, SWAP performs poorly in terms of offering higher

mean response time than SJF to large jobs just above the

threshold value regardless the load and threshold value. SWAP

scheduling is also inaccurate in approximating SJF for large

jobs except for low load and shorter thresholds.

V. CONCLUSION

We modelled and evaluated the recently proposed SWAP

scheduling policy under varying workload distributions. The

numerical results that we obtained from the derived models

show that SWAP can be used to approximate Shortest Job First

(SJF) however it is more accurate for workloads with highly

varying job sizes such heavy-tailed job size distributions.

This is because heavy-tailed distributions exhibit expectation

paradox that is a clear manifestation of temporal dependence,

which is the basic assumption under which SWAP was pro-

posed. The comparison of SWAP with FCFS and PS also show

that SWAP is a more superior policy in terms of reducing the

mean response time of short jobs. We further observed that in

contrast to exponentially distributed workloads, especially at

high threshold and load values, large jobs under SWAP suffer

very negligible penalty.

In this paper, we presented numerical results of SWAP at

unscanned state only due to space limitations. In the future,

we will numerically investigate SWAP at scanned state as

well. We will also explore the use of SWAP for networked

environments with Internet flows as transferred entities. In

contrast to jobs, flows don’t arrive at a system all at once,

making it very hard to immediately infer their sizes. We

will check to see if per-connection buffer occupancy will

approximate SWAP in such environments. Finally, we intend

to validate the SWAP models derived in this paper using

simulations of the policies.

ACKNOWLEDGEMENT

This work was partially funded by CISCO University

Research Fund, a corporate adviced fund of Silicon Valley

Community Foundation.

REFERENCES

[1] N. Bansal and M. Harchol-Balter. Analysis of SRPT Scheduling: Investi-
gating Unfairness. In Sigmetrics 2001 / Performance 2001, pp. 279-290,
June 2001.

[2] M. Harchol-Balter, M. Schroeder, B. Bansal, and M. Agrawal. Size-
based scheduling to improve web performance. ACM Transactions on

Computer Systems (TOCS) 21, 2 (May 2003).
[3] Leonard Kleinrock, Queueing Systems, Volume II. Computer Applica-

tions: John Wiley & Sons, 1976.
[4] D. Lu, P. Dinda, Y. Qiao, H. Sheng, F. Bustamante. Applications of

SRPT Scheduling with Inaccurate Scheduling Information. In Proceed-

ings of IEEE MASCOTS, October (2004).
[5] D. Lu, H. Sheng, and P. Dinda. Size-based scheduling policies with

inaccurate scheduling information.In Proceedings of IEEE MASCOTS

(2004).
[6] N. Mi, G. Casale, and E. Smirni. Scheduling for Performance and

Availability in Systems with Temporal Dependent Workloads. In The

International Conference on Dependable Systems and Networks, pp.
336-345, 2008.

[7] I. A. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS Scheduling
for Job Size Distributions with High Variance. In Proc. of ACM

SIGMETRICS’03, pp. 218-228, June 2003.
[8] I. A. Rai, G. Urvoy-Keller, M. K. Vernon and E. W. Biersack. Per-

formance Analysis of LAS-based Scheduling Disciplines in a Packet
Switched Network. In Proc. ACM SIGMETRICS, June 2004.

120

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

